aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/tcmalloc/tcmalloc/internal/numa_test.cc
blob: 29dbeffd715d0927371af661e912435b5446793b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright 2021 The TCMalloc Authors 
// 
// Licensed under the Apache License, Version 2.0 (the "License"); 
// you may not use this file except in compliance with the License. 
// You may obtain a copy of the License at 
// 
//     https://www.apache.org/licenses/LICENSE-2.0 
// 
// Unless required by applicable law or agreed to in writing, software 
// distributed under the License is distributed on an "AS IS" BASIS, 
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
// See the License for the specific language governing permissions and 
// limitations under the License. 
 
#include "tcmalloc/internal/numa.h" 
 
#include <errno.h> 
#include <linux/memfd.h> 
#include <sched.h> 
#include <stddef.h> 
#include <stdio.h> 
#include <string.h> 
#include <syscall.h> 
#include <unistd.h> 
 
#include <algorithm> 
#include <new> 
#include <string> 
#include <utility> 
#include <vector> 
 
#include "gtest/gtest.h" 
#include "absl/random/random.h" 
#include "absl/strings/str_cat.h" 
#include "absl/strings/str_join.h" 
#include "absl/strings/string_view.h" 
#include "absl/types/span.h" 
#include "tcmalloc/internal/logging.h" 
 
namespace tcmalloc { 
namespace tcmalloc_internal { 
namespace { 
 
int memfd_create(const char *name, unsigned int flags) { 
#ifdef __NR_memfd_create 
  return syscall(__NR_memfd_create, name, flags); 
#else 
  errno = ENOSYS; 
  return -1; 
#endif 
} 
 
// A synthetic cpulist that can be read from a file descriptor. 
class SyntheticCpuList { 
 public: 
  explicit SyntheticCpuList(const absl::string_view content) { 
    fd_ = memfd_create("cpulist", MFD_CLOEXEC); 
    CHECK_CONDITION(fd_ != -1); 
 
    CHECK_CONDITION(write(fd_, content.data(), content.size()) == 
                    content.size()); 
    CHECK_CONDITION(write(fd_, "\n", 1) == 1); 
    CHECK_CONDITION(lseek(fd_, 0, SEEK_SET) == 0); 
  } 
 
  ~SyntheticCpuList() { close(fd_); } 
 
  // Disallow copies, which would make require reference counting to know when 
  // we should close fd_. 
  SyntheticCpuList(const SyntheticCpuList &) = delete; 
  SyntheticCpuList &operator=(const SyntheticCpuList &) = delete; 
 
  // Moves are fine - only one instance at a time holds the fd. 
  SyntheticCpuList(SyntheticCpuList &&other) 
      : fd_(std::exchange(other.fd_, -1)) {} 
  SyntheticCpuList &operator=(SyntheticCpuList &&other) { 
    new (this) SyntheticCpuList(std::move(other)); 
    return *this; 
  } 
 
  int fd() const { return fd_; } 
 
 private: 
  // The underlying memfd. 
  int fd_; 
}; 
 
class NumaTopologyTest : public ::testing::Test { 
 protected: 
  void SetUp() override { 
    // We use memfd to create synthetic cpulist files, and can't run without 
    // it. Skip all affected tests if memfd is not supported (i.e. Linux < 
    // 3.17). 
    const int fd = memfd_create("test", MFD_CLOEXEC); 
    if (fd == -1 && errno == ENOSYS) { 
      GTEST_SKIP() << "Test requires memfd support"; 
    } 
    close(fd); 
 
    // If rseq is unavailable the NumaTopology never enables NUMA awareness. 
    if (!subtle::percpu::IsFast()) { 
      GTEST_SKIP() << "Test requires rseq support"; 
    } 
  } 
}; 
 
template <size_t NumPartitions> 
NumaTopology<NumPartitions> CreateNumaTopology( 
    const absl::Span<const SyntheticCpuList> cpu_lists) { 
  NumaTopology<NumPartitions> nt; 
  nt.InitForTest([&](const size_t node) { 
    if (node >= cpu_lists.size()) { 
      errno = ENOENT; 
      return -1; 
    } 
    return cpu_lists[node].fd(); 
  }); 
  return nt; 
} 
 
// Ensure that if we set NumPartitions=1 then NUMA awareness is disabled even 
// in the presence of a system with multiple NUMA nodes. 
TEST_F(NumaTopologyTest, NoCompileTimeNuma) { 
  std::vector<SyntheticCpuList> nodes; 
  nodes.emplace_back("0"); 
  nodes.emplace_back("1"); 
 
  const auto nt = CreateNumaTopology<1>(nodes); 
 
  EXPECT_EQ(nt.numa_aware(), false); 
  EXPECT_EQ(nt.active_partitions(), 1); 
} 
 
// Ensure that if we run on a system with no NUMA support at all (i.e. no 
// /sys/devices/system/node/nodeX/cpulist files) we correctly disable NUMA 
// awareness. 
TEST_F(NumaTopologyTest, NoRunTimeNuma) { 
  const auto nt = CreateNumaTopology<2>({}); 
 
  EXPECT_EQ(nt.numa_aware(), false); 
  EXPECT_EQ(nt.active_partitions(), 1); 
} 
 
// Ensure that if we run on a system with only 1 node then we disable NUMA 
// awareness. 
TEST_F(NumaTopologyTest, SingleNode) { 
  std::vector<SyntheticCpuList> nodes; 
  nodes.emplace_back("0-27"); 
 
  const auto nt = CreateNumaTopology<4>(nodes); 
 
  EXPECT_EQ(nt.numa_aware(), false); 
  EXPECT_EQ(nt.active_partitions(), 1); 
} 
 
// Basic sanity test modelling a simple 2 node system. 
TEST_F(NumaTopologyTest, TwoNode) { 
  std::vector<SyntheticCpuList> nodes; 
  nodes.emplace_back("0-5"); 
  nodes.emplace_back("6-11"); 
 
  const auto nt = CreateNumaTopology<2>(nodes); 
 
  EXPECT_EQ(nt.numa_aware(), true); 
  EXPECT_EQ(nt.active_partitions(), 2); 
 
  for (int cpu = 0; cpu <= 5; cpu++) { 
    EXPECT_EQ(nt.GetCpuPartition(cpu), 0); 
  } 
  for (int cpu = 6; cpu <= 11; cpu++) { 
    EXPECT_EQ(nt.GetCpuPartition(cpu), 1); 
  } 
} 
 
// Test that cpulists too long to fit into the 16 byte buffer used by 
// InitNumaTopology() parse successfully. 
TEST_F(NumaTopologyTest, LongCpuLists) { 
  std::vector<SyntheticCpuList> nodes; 
 
  // Content from here onwards lies   | 
  // beyond the 16 byte buffer.       | 
  //                                  v 
  nodes.emplace_back("0-1,2-3,4-5,6-7,8");        // Right after a comma 
  nodes.emplace_back("9,10,11,12,13,14,15-19");   // Right before a comma 
  nodes.emplace_back("20-21,22-23,24-25,26-29");  // Within range end 
  nodes.emplace_back("30-32,33,34,35,36-38,39");  // Within range start 
  nodes.emplace_back("40-43,44,45-49"); 
 
  const auto nt = CreateNumaTopology<3>(nodes); 
 
  EXPECT_EQ(nt.numa_aware(), true); 
  EXPECT_EQ(nt.active_partitions(), 3); 
 
  for (int cpu = 0; cpu <= 8; cpu++) { 
    EXPECT_EQ(nt.GetCpuPartition(cpu), 0); 
  } 
  for (int cpu = 9; cpu <= 19; cpu++) { 
    EXPECT_EQ(nt.GetCpuPartition(cpu), 1); 
  } 
  for (int cpu = 20; cpu <= 29; cpu++) { 
    EXPECT_EQ(nt.GetCpuPartition(cpu), 2); 
  } 
  for (int cpu = 30; cpu <= 39; cpu++) { 
    EXPECT_EQ(nt.GetCpuPartition(cpu), 0); 
  } 
  for (int cpu = 40; cpu <= 49; cpu++) { 
    EXPECT_EQ(nt.GetCpuPartition(cpu), 1); 
  } 
} 
 
// Ensure we can initialize using the host system's real NUMA topology 
// information. 
TEST_F(NumaTopologyTest, Host) { 
  NumaTopology<4> nt; 
  nt.Init(); 
 
  // We don't actually know anything about the host, so there's not much more 
  // we can do beyond checking that we didn't crash. 
} 
 
// Ensure that we can parse randomized cpulists correctly. 
TEST(ParseCpulistTest, Random) { 
  absl::BitGen gen; 
 
  static constexpr int kIterations = 100; 
  for (int i = 0; i < kIterations; i++) { 
    cpu_set_t reference; 
    CPU_ZERO(&reference); 
 
    // Set a random number of CPUs within the reference set. 
    const double density = absl::Uniform(gen, 0.0, 1.0); 
    for (int cpu = 0; cpu < CPU_SETSIZE; cpu++) { 
      if (absl::Bernoulli(gen, density)) { 
        CPU_SET(cpu, &reference); 
      } 
    } 
 
    // Serialize the reference set into a cpulist-style string. 
    std::vector<std::string> components; 
    for (int cpu = 0; cpu < CPU_SETSIZE; cpu++) { 
      if (!CPU_ISSET(cpu, &reference)) continue; 
 
      const int start = cpu; 
      int next = cpu + 1; 
      while (next < CPU_SETSIZE && CPU_ISSET(next, &reference)) { 
        cpu = next; 
        next = cpu + 1; 
      } 
 
      if (cpu == start) { 
        components.push_back(absl::StrCat(cpu)); 
      } else { 
        components.push_back(absl::StrCat(start, "-", cpu)); 
      } 
    } 
    const std::string serialized = absl::StrJoin(components, ","); 
 
    // Now parse that string using our ParseCpulist function, randomizing the 
    // amount of data we provide to it from each read. 
    absl::string_view remaining(serialized); 
    const cpu_set_t parsed = 
        ParseCpulist([&](char *const buf, const size_t count) -> ssize_t { 
          // Calculate how much data we have left to provide. 
          const size_t max = std::min(count, remaining.size()); 
 
          // If none, we have no choice but to provide nothing. 
          if (max == 0) return 0; 
 
          // If we do have data, return a randomly sized subset of it to stress 
          // the logic around reading partial values. 
          const size_t copy = absl::Uniform(gen, static_cast<size_t>(1), max); 
          memcpy(buf, remaining.data(), copy); 
          remaining.remove_prefix(copy); 
          return copy; 
        }); 
 
    // We ought to have parsed the same set of CPUs that we serialized. 
    EXPECT_TRUE(CPU_EQUAL(&parsed, &reference)); 
  } 
} 
 
}  // namespace 
}  // namespace tcmalloc_internal 
}  // namespace tcmalloc