aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/snappy/snappy-stubs-internal.h
blob: 48b40bac9801ecbe5f3d96efdb8b38c3b5d1208b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// Copyright 2011 Google Inc. All Rights Reserved. 
// 
// Redistribution and use in source and binary forms, with or without 
// modification, are permitted provided that the following conditions are 
// met: 
// 
//     * Redistributions of source code must retain the above copyright 
// notice, this list of conditions and the following disclaimer. 
//     * Redistributions in binary form must reproduce the above 
// copyright notice, this list of conditions and the following disclaimer 
// in the documentation and/or other materials provided with the 
// distribution. 
//     * Neither the name of Google Inc. nor the names of its 
// contributors may be used to endorse or promote products derived from 
// this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
// 
// Various stubs for the open-source version of Snappy. 
 
#ifndef THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
#define THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif 
 
#include <string>
 
#include <assert.h> 
#include <stdlib.h> 
#include <string.h> 
 
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#if defined(_MSC_VER)
#include <intrin.h>
#endif  // defined(_MSC_VER)

#ifndef __has_feature
#define __has_feature(x) 0
#endif

#if __has_feature(memory_sanitizer)
#include <sanitizer/msan_interface.h>
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) \
    __msan_unpoison((address), (size))
#else
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) /* empty */
#endif  // __has_feature(memory_sanitizer)

#include "snappy-stubs-public.h" 
 
#if defined(__x86_64__) 
 
// Enable 64-bit optimized versions of some routines. 
#define ARCH_K8 1 
 
#elif defined(__ppc64__)

#define ARCH_PPC 1

#elif defined(__aarch64__)

#define ARCH_ARM 1

#endif 
 
// Needed by OS X, among others. 
#ifndef MAP_ANONYMOUS 
#define MAP_ANONYMOUS MAP_ANON 
#endif 
 
// The size of an array, if known at compile-time. 
// Will give unexpected results if used on a pointer. 
// We undefine it first, since some compilers already have a definition. 
#ifdef ARRAYSIZE 
#undef ARRAYSIZE 
#endif 
#define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a))) 
 
// Static prediction hints.
#ifdef HAVE_BUILTIN_EXPECT
#define SNAPPY_PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define SNAPPY_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#else
#define SNAPPY_PREDICT_FALSE(x) x
#define SNAPPY_PREDICT_TRUE(x) x
#endif
 
// This is only used for recomputing the tag byte table used during 
// decompression; for simplicity we just remove it from the open-source 
// version (anyone who wants to regenerate it can just do the call 
// themselves within main()). 
#define DEFINE_bool(flag_name, default_value, description) \ 
  bool FLAGS_ ## flag_name = default_value 
#define DECLARE_bool(flag_name) \ 
  extern bool FLAGS_ ## flag_name 
 
namespace snappy { 
 
static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF); 
static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL); 
 
// Potentially unaligned loads and stores. 
 
// x86, PowerPC, and ARM64 can simply do these loads and stores native.
 
#if defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) || \
    defined(__aarch64__)
 
#define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p)) 
#define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p)) 
#define UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p)) 
 
#define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val)) 
#define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val)) 
#define UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val)) 
 
// ARMv7 and newer support native unaligned accesses, but only of 16-bit 
// and 32-bit values (not 64-bit); older versions either raise a fatal signal, 
// do an unaligned read and rotate the words around a bit, or do the reads very 
// slowly (trip through kernel mode). There's no simple #define that says just 
// “ARMv7 or higher”, so we have to filter away all ARMv5 and ARMv6 
// sub-architectures. 
// 
// This is a mess, but there's not much we can do about it. 
//
// To further complicate matters, only LDR instructions (single reads) are
// allowed to be unaligned, not LDRD (two reads) or LDM (many reads). Unless we
// explicitly tell the compiler that these accesses can be unaligned, it can and
// will combine accesses. On armcc, the way to signal this is done by accessing
// through the type (uint32 __packed *), but GCC has no such attribute
// (it ignores __attribute__((packed)) on individual variables). However,
// we can tell it that a _struct_ is unaligned, which has the same effect,
// so we do that.
 
#elif defined(__arm__) && \ 
      !defined(__ARM_ARCH_4__) && \
      !defined(__ARM_ARCH_4T__) && \
      !defined(__ARM_ARCH_5__) && \ 
      !defined(__ARM_ARCH_5T__) && \ 
      !defined(__ARM_ARCH_5TE__) && \ 
      !defined(__ARM_ARCH_5TEJ__) && \ 
      !defined(__ARM_ARCH_6__) && \ 
      !defined(__ARM_ARCH_6J__) && \ 
      !defined(__ARM_ARCH_6K__) && \ 
      !defined(__ARM_ARCH_6Z__) && \ 
      !defined(__ARM_ARCH_6ZK__) && \ 
      !defined(__ARM_ARCH_6T2__) 
 
#if __GNUC__
#define ATTRIBUTE_PACKED __attribute__((__packed__))
#else
#define ATTRIBUTE_PACKED
#endif
 
namespace base {
namespace internal {
 
struct Unaligned16Struct {
  uint16 value;
  uint8 dummy;  // To make the size non-power-of-two.
} ATTRIBUTE_PACKED;

struct Unaligned32Struct {
  uint32 value;
  uint8 dummy;  // To make the size non-power-of-two.
} ATTRIBUTE_PACKED;

}  // namespace internal
}  // namespace base

#define UNALIGNED_LOAD16(_p) \
    ((reinterpret_cast<const ::snappy::base::internal::Unaligned16Struct *>(_p))->value)
#define UNALIGNED_LOAD32(_p) \
    ((reinterpret_cast<const ::snappy::base::internal::Unaligned32Struct *>(_p))->value)

#define UNALIGNED_STORE16(_p, _val) \
    ((reinterpret_cast< ::snappy::base::internal::Unaligned16Struct *>(_p))->value = \
         (_val))
#define UNALIGNED_STORE32(_p, _val) \
    ((reinterpret_cast< ::snappy::base::internal::Unaligned32Struct *>(_p))->value = \
         (_val))

// TODO: NEON supports unaligned 64-bit loads and stores.
// See if that would be more efficient on platforms supporting it, 
// at least for copies. 
 
inline uint64 UNALIGNED_LOAD64(const void *p) { 
  uint64 t; 
  memcpy(&t, p, sizeof t); 
  return t; 
} 
 
inline void UNALIGNED_STORE64(void *p, uint64 v) { 
  memcpy(p, &v, sizeof v); 
} 
 
#else 
 
// These functions are provided for architectures that don't support 
// unaligned loads and stores. 
 
inline uint16 UNALIGNED_LOAD16(const void *p) { 
  uint16 t; 
  memcpy(&t, p, sizeof t); 
  return t; 
} 
 
inline uint32 UNALIGNED_LOAD32(const void *p) { 
  uint32 t; 
  memcpy(&t, p, sizeof t); 
  return t; 
} 
 
inline uint64 UNALIGNED_LOAD64(const void *p) { 
  uint64 t; 
  memcpy(&t, p, sizeof t); 
  return t; 
} 
 
inline void UNALIGNED_STORE16(void *p, uint16 v) { 
  memcpy(p, &v, sizeof v); 
} 
 
inline void UNALIGNED_STORE32(void *p, uint32 v) { 
  memcpy(p, &v, sizeof v); 
} 
 
inline void UNALIGNED_STORE64(void *p, uint64 v) { 
  memcpy(p, &v, sizeof v); 
} 
 
#endif 
 
// The following guarantees declaration of the byte swap functions.
#if defined(SNAPPY_IS_BIG_ENDIAN)
 
#ifdef HAVE_SYS_BYTEORDER_H
#include <sys/byteorder.h>
#endif

#ifdef HAVE_SYS_ENDIAN_H
#include <sys/endian.h>
#endif

#ifdef _MSC_VER
#include <stdlib.h>
#define bswap_16(x) _byteswap_ushort(x)
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)

#elif defined(__APPLE__)
// Mac OS X / Darwin features
#include <libkern/OSByteOrder.h>
#define bswap_16(x) OSSwapInt16(x)
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)

#elif defined(HAVE_BYTESWAP_H)
#include <byteswap.h>

#elif defined(bswap32)
// FreeBSD defines bswap{16,32,64} in <sys/endian.h> (already #included).
#define bswap_16(x) bswap16(x)
#define bswap_32(x) bswap32(x)
#define bswap_64(x) bswap64(x)

#elif defined(BSWAP_64)
// Solaris 10 defines BSWAP_{16,32,64} in <sys/byteorder.h> (already #included).
#define bswap_16(x) BSWAP_16(x)
#define bswap_32(x) BSWAP_32(x)
#define bswap_64(x) BSWAP_64(x)

#else

inline uint16 bswap_16(uint16 x) {
  return (x << 8) | (x >> 8);
} 
 
inline uint32 bswap_32(uint32 x) {
  x = ((x & 0xff00ff00UL) >> 8) | ((x & 0x00ff00ffUL) << 8);
  return (x >> 16) | (x << 16);
}

inline uint64 bswap_64(uint64 x) {
  x = ((x & 0xff00ff00ff00ff00ULL) >> 8) | ((x & 0x00ff00ff00ff00ffULL) << 8);
  x = ((x & 0xffff0000ffff0000ULL) >> 16) | ((x & 0x0000ffff0000ffffULL) << 16);
  return (x >> 32) | (x << 32);
}

#endif

#endif  // defined(SNAPPY_IS_BIG_ENDIAN)

// Convert to little-endian storage, opposite of network format. 
// Convert x from host to little endian: x = LittleEndian.FromHost(x); 
// convert x from little endian to host: x = LittleEndian.ToHost(x); 
// 
//  Store values into unaligned memory converting to little endian order: 
//    LittleEndian.Store16(p, x); 
// 
//  Load unaligned values stored in little endian converting to host order: 
//    x = LittleEndian.Load16(p); 
class LittleEndian { 
 public: 
  // Conversion functions. 
#if defined(SNAPPY_IS_BIG_ENDIAN)
 
  static uint16 FromHost16(uint16 x) { return bswap_16(x); }
  static uint16 ToHost16(uint16 x) { return bswap_16(x); }
 
  static uint32 FromHost32(uint32 x) { return bswap_32(x); }
  static uint32 ToHost32(uint32 x) { return bswap_32(x); }

  static bool IsLittleEndian() { return false; } 
 
#else  // !defined(SNAPPY_IS_BIG_ENDIAN)

  static uint16 FromHost16(uint16 x) { return x; }
  static uint16 ToHost16(uint16 x) { return x; }

  static uint32 FromHost32(uint32 x) { return x; }
  static uint32 ToHost32(uint32 x) { return x; }

  static bool IsLittleEndian() { return true; }

#endif  // !defined(SNAPPY_IS_BIG_ENDIAN)

  // Functions to do unaligned loads and stores in little-endian order. 
  static uint16 Load16(const void *p) { 
    return ToHost16(UNALIGNED_LOAD16(p)); 
  } 
 
  static void Store16(void *p, uint16 v) { 
    UNALIGNED_STORE16(p, FromHost16(v)); 
  } 
 
  static uint32 Load32(const void *p) { 
    return ToHost32(UNALIGNED_LOAD32(p)); 
  } 
 
  static void Store32(void *p, uint32 v) { 
    UNALIGNED_STORE32(p, FromHost32(v)); 
  } 
}; 
 
// Some bit-manipulation functions. 
class Bits { 
 public: 
  // Return floor(log2(n)) for positive integer n.
  static int Log2FloorNonZero(uint32 n);

  // Return floor(log2(n)) for positive integer n.  Returns -1 iff n == 0. 
  static int Log2Floor(uint32 n); 
 
  // Return the first set least / most significant bit, 0-indexed.  Returns an 
  // undefined value if n == 0.  FindLSBSetNonZero() is similar to ffs() except 
  // that it's 0-indexed. 
  static int FindLSBSetNonZero(uint32 n); 

#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
  static int FindLSBSetNonZero64(uint64 n); 
#endif  // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
 
 private: 
  // No copying
  Bits(const Bits&);
  void operator=(const Bits&);
}; 
 
#ifdef HAVE_BUILTIN_CTZ 
 
inline int Bits::Log2FloorNonZero(uint32 n) {
  assert(n != 0);
  // (31 ^ x) is equivalent to (31 - x) for x in [0, 31]. An easy proof
  // represents subtraction in base 2 and observes that there's no carry.
  //
  // GCC and Clang represent __builtin_clz on x86 as 31 ^ _bit_scan_reverse(x).
  // Using "31 ^" here instead of "31 -" allows the optimizer to strip the
  // function body down to _bit_scan_reverse(x).
  return 31 ^ __builtin_clz(n);
}

inline int Bits::Log2Floor(uint32 n) { 
  return (n == 0) ? -1 : Bits::Log2FloorNonZero(n);
} 
 
inline int Bits::FindLSBSetNonZero(uint32 n) { 
  assert(n != 0);
  return __builtin_ctz(n); 
} 
 
#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
inline int Bits::FindLSBSetNonZero64(uint64 n) { 
  assert(n != 0);
  return __builtin_ctzll(n); 
} 
#endif  // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
 
#elif defined(_MSC_VER)

inline int Bits::Log2FloorNonZero(uint32 n) {
  assert(n != 0);
  unsigned long where;
  _BitScanReverse(&where, n);
  return static_cast<int>(where);
}

inline int Bits::Log2Floor(uint32 n) {
  unsigned long where;
  if (_BitScanReverse(&where, n))
    return static_cast<int>(where);
  return -1;
}

inline int Bits::FindLSBSetNonZero(uint32 n) {
  assert(n != 0);
  unsigned long where;
  if (_BitScanForward(&where, n))
    return static_cast<int>(where);
  return 32;
}

#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
inline int Bits::FindLSBSetNonZero64(uint64 n) {
  assert(n != 0);
  unsigned long where;
  if (_BitScanForward64(&where, n))
    return static_cast<int>(where);
  return 64;
}
#endif  // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)

#else  // Portable versions. 
 
inline int Bits::Log2FloorNonZero(uint32 n) {
  assert(n != 0);

  int log = 0; 
  uint32 value = n; 
  for (int i = 4; i >= 0; --i) { 
    int shift = (1 << i); 
    uint32 x = value >> shift; 
    if (x != 0) { 
      value = x; 
      log += shift; 
    } 
  } 
  assert(value == 1); 
  return log; 
} 
 
inline int Bits::Log2Floor(uint32 n) {
  return (n == 0) ? -1 : Bits::Log2FloorNonZero(n);
}

inline int Bits::FindLSBSetNonZero(uint32 n) { 
  assert(n != 0);

  int rc = 31; 
  for (int i = 4, shift = 1 << 4; i >= 0; --i) { 
    const uint32 x = n << shift; 
    if (x != 0) { 
      n = x; 
      rc -= shift; 
    } 
    shift >>= 1; 
  } 
  return rc; 
} 
 
#if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
// FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero(). 
inline int Bits::FindLSBSetNonZero64(uint64 n) { 
  assert(n != 0);

  const uint32 bottombits = static_cast<uint32>(n); 
  if (bottombits == 0) { 
    // Bottom bits are zero, so scan in top bits 
    return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32)); 
  } else { 
    return FindLSBSetNonZero(bottombits); 
  } 
} 
#endif  // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM)
 
#endif  // End portable versions. 
 
// Variable-length integer encoding. 
class Varint { 
 public: 
  // Maximum lengths of varint encoding of uint32. 
  static const int kMax32 = 5; 
 
  // Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1]. 
  // Never reads a character at or beyond limit.  If a valid/terminated varint32 
  // was found in the range, stores it in *OUTPUT and returns a pointer just 
  // past the last byte of the varint32. Else returns NULL.  On success, 
  // "result <= limit". 
  static const char* Parse32WithLimit(const char* ptr, const char* limit, 
                                      uint32* OUTPUT); 
 
  // REQUIRES   "ptr" points to a buffer of length sufficient to hold "v". 
  // EFFECTS    Encodes "v" into "ptr" and returns a pointer to the 
  //            byte just past the last encoded byte. 
  static char* Encode32(char* ptr, uint32 v); 
 
  // EFFECTS    Appends the varint representation of "value" to "*s". 
  static void Append32(std::string* s, uint32 value);
}; 
 
inline const char* Varint::Parse32WithLimit(const char* p, 
                                            const char* l, 
                                            uint32* OUTPUT) { 
  const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p); 
  const unsigned char* limit = reinterpret_cast<const unsigned char*>(l); 
  uint32 b, result; 
  if (ptr >= limit) return NULL; 
  b = *(ptr++); result = b & 127;          if (b < 128) goto done; 
  if (ptr >= limit) return NULL; 
  b = *(ptr++); result |= (b & 127) <<  7; if (b < 128) goto done; 
  if (ptr >= limit) return NULL; 
  b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done; 
  if (ptr >= limit) return NULL; 
  b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done; 
  if (ptr >= limit) return NULL; 
  b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done; 
  return NULL;       // Value is too long to be a varint32 
 done: 
  *OUTPUT = result; 
  return reinterpret_cast<const char*>(ptr); 
} 
 
inline char* Varint::Encode32(char* sptr, uint32 v) { 
  // Operate on characters as unsigneds 
  unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr); 
  static const int B = 128; 
  if (v < (1<<7)) { 
    *(ptr++) = v; 
  } else if (v < (1<<14)) { 
    *(ptr++) = v | B; 
    *(ptr++) = v>>7; 
  } else if (v < (1<<21)) { 
    *(ptr++) = v | B; 
    *(ptr++) = (v>>7) | B; 
    *(ptr++) = v>>14; 
  } else if (v < (1<<28)) { 
    *(ptr++) = v | B; 
    *(ptr++) = (v>>7) | B; 
    *(ptr++) = (v>>14) | B; 
    *(ptr++) = v>>21; 
  } else { 
    *(ptr++) = v | B; 
    *(ptr++) = (v>>7) | B; 
    *(ptr++) = (v>>14) | B; 
    *(ptr++) = (v>>21) | B; 
    *(ptr++) = v>>28; 
  } 
  return reinterpret_cast<char*>(ptr); 
} 
 
// If you know the internal layout of the std::string in use, you can
// replace this function with one that resizes the string without 
// filling the new space with zeros (if applicable) -- 
// it will be non-portable but faster. 
inline void STLStringResizeUninitialized(std::string* s, size_t new_size) {
  s->resize(new_size);
} 
 
// Return a mutable char* pointing to a string's internal buffer, 
// which may not be null-terminated. Writing through this pointer will 
// modify the string. 
// 
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the 
// next call to a string method that invalidates iterators. 
// 
// As of 2006-04, there is no standard-blessed way of getting a 
// mutable reference to a string's internal buffer. However, issue 530 
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530) 
// proposes this as the method. It will officially be part of the standard 
// for C++0x. This should already work on all current implementations. 
inline char* string_as_array(std::string* str) {
  return str->empty() ? NULL : &*str->begin();
} 
 
}  // namespace snappy 
 
#endif  // THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_