1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: robinson@google.com (Will Robinson)
//
// This module outputs pure-Python protocol message classes that will
// largely be constructed at runtime via the metaclass in reflection.py.
// In other words, our job is basically to output a Python equivalent
// of the C++ *Descriptor objects, and fix up all circular references
// within these objects.
//
// Note that the runtime performance of protocol message classes created in
// this way is expected to be lousy. The plan is to create an alternate
// generator that outputs a Python/C extension module that lets
// performance-minded Python code leverage the fast C++ implementation
// directly.
#include <google/protobuf/compiler/python/generator.h>
#include <algorithm>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/compiler/python/helpers.h>
#include <google/protobuf/compiler/python/pyi_generator.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/io/printer.h>
#include <google/protobuf/io/zero_copy_stream.h>
namespace google {
namespace protobuf {
namespace compiler {
namespace python {
namespace {
// Returns the alias we assign to the module of the given .proto filename
// when importing. See testPackageInitializationImport in
// net/proto2/python/internal/reflection_test.py
// to see why we need the alias.
TProtoStringType ModuleAlias(const TProtoStringType& filename) {
TProtoStringType module_name = ModuleName(filename);
// We can't have dots in the module name, so we replace each with _dot_.
// But that could lead to a collision between a.b and a_dot_b, so we also
// duplicate each underscore.
GlobalReplaceSubstring("_", "__", &module_name);
GlobalReplaceSubstring(".", "_dot_", &module_name);
return module_name;
}
// Name of the class attribute where we store the Python
// descriptor.Descriptor instance for the generated class.
// Must stay consistent with the _DESCRIPTOR_KEY constant
// in proto2/public/reflection.py.
const char kDescriptorKey[] = "DESCRIPTOR";
// file output by this generator.
void PrintTopBoilerplate(io::Printer* printer, const FileDescriptor* file,
bool descriptor_proto) {
// TODO(robinson): Allow parameterization of Python version?
printer->Print(
"# -*- coding: utf-8 -*-\n"
"# Generated by the protocol buffer compiler. DO NOT EDIT!\n"
"# source: $filename$\n"
"\"\"\"Generated protocol buffer code.\"\"\"\n",
"filename", file->name());
printer->Print(
"from google.protobuf.internal import builder as _builder\n"
"from google.protobuf import descriptor as _descriptor\n"
"from google.protobuf import descriptor_pool as "
"_descriptor_pool\n"
"from google.protobuf import symbol_database as "
"_symbol_database\n");
printer->Print("# @@protoc_insertion_point(imports)\n\n");
printer->Print("_sym_db = _symbol_database.Default()\n");
printer->Print("\n\n");
}
// Returns a Python literal giving the default value for a field.
// If the field specifies no explicit default value, we'll return
// the default default value for the field type (zero for numbers,
// empty string for strings, empty list for repeated fields, and
// None for non-repeated, composite fields).
//
// TODO(robinson): Unify with code from
// //compiler/cpp/internal/primitive_field.cc
// //compiler/cpp/internal/enum_field.cc
// //compiler/cpp/internal/string_field.cc
TProtoStringType StringifyDefaultValue(const FieldDescriptor& field) {
if (field.is_repeated()) {
return "[]";
}
switch (field.cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
return StrCat(field.default_value_int32());
case FieldDescriptor::CPPTYPE_UINT32:
return StrCat(field.default_value_uint32());
case FieldDescriptor::CPPTYPE_INT64:
return StrCat(field.default_value_int64());
case FieldDescriptor::CPPTYPE_UINT64:
return StrCat(field.default_value_uint64());
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value = field.default_value_double();
if (value == std::numeric_limits<double>::infinity()) {
// Python pre-2.6 on Windows does not parse "inf" correctly. However,
// a numeric literal that is too big for a double will become infinity.
return "1e10000";
} else if (value == -std::numeric_limits<double>::infinity()) {
// See above.
return "-1e10000";
} else if (value != value) {
// infinity * 0 = nan
return "(1e10000 * 0)";
} else {
return "float(" + SimpleDtoa(value) + ")";
}
}
case FieldDescriptor::CPPTYPE_FLOAT: {
float value = field.default_value_float();
if (value == std::numeric_limits<float>::infinity()) {
// Python pre-2.6 on Windows does not parse "inf" correctly. However,
// a numeric literal that is too big for a double will become infinity.
return "1e10000";
} else if (value == -std::numeric_limits<float>::infinity()) {
// See above.
return "-1e10000";
} else if (value != value) {
// infinity - infinity = nan
return "(1e10000 * 0)";
} else {
return "float(" + SimpleFtoa(value) + ")";
}
}
case FieldDescriptor::CPPTYPE_BOOL:
return field.default_value_bool() ? "True" : "False";
case FieldDescriptor::CPPTYPE_ENUM:
return StrCat(field.default_value_enum()->number());
case FieldDescriptor::CPPTYPE_STRING:
return "b\"" + CEscape(field.default_value_string()) +
(field.type() != FieldDescriptor::TYPE_STRING
? "\""
: "\".decode('utf-8')");
case FieldDescriptor::CPPTYPE_MESSAGE:
return "None";
}
// (We could add a default case above but then we wouldn't get the nice
// compiler warning when a new type is added.)
GOOGLE_LOG(FATAL) << "Not reached.";
return "";
}
TProtoStringType StringifySyntax(FileDescriptor::Syntax syntax) {
switch (syntax) {
case FileDescriptor::SYNTAX_PROTO2:
return "proto2";
case FileDescriptor::SYNTAX_PROTO3:
return "proto3";
case FileDescriptor::SYNTAX_UNKNOWN:
default:
GOOGLE_LOG(FATAL) << "Unsupported syntax; this generator only supports proto2 "
"and proto3 syntax.";
return "";
}
}
} // namespace
Generator::Generator() : file_(nullptr) {}
Generator::~Generator() {}
uint64_t Generator::GetSupportedFeatures() const {
return CodeGenerator::Feature::FEATURE_PROTO3_OPTIONAL;
}
bool Generator::Generate(const FileDescriptor* file,
const TProtoStringType& parameter,
GeneratorContext* context, TProtoStringType* error) const {
// -----------------------------------------------------------------
// parse generator options
bool cpp_generated_lib_linked = false;
std::vector<std::pair<TProtoStringType, TProtoStringType> > options;
ParseGeneratorParameter(parameter, &options);
for (int i = 0; i < options.size(); i++) {
if (options[i].first == "cpp_generated_lib_linked") {
cpp_generated_lib_linked = true;
} else if (options[i].first == "pyi_out") {
python::PyiGenerator pyi_generator;
if (!pyi_generator.Generate(file, "", context, error)) {
return false;
}
} else {
*error = "Unknown generator option: " + options[i].first;
return false;
}
}
// Completely serialize all Generate() calls on this instance. The
// thread-safety constraints of the CodeGenerator interface aren't clear so
// just be as conservative as possible. It's easier to relax this later if
// we need to, but I doubt it will be an issue.
// TODO(kenton): The proper thing to do would be to allocate any state on
// the stack and use that, so that the Generator class itself does not need
// to have any mutable members. Then it is implicitly thread-safe.
MutexLock lock(&mutex_);
file_ = file;
TProtoStringType filename = GetFileName(file, ".py");
pure_python_workable_ = !cpp_generated_lib_linked;
if (HasPrefixString(file->name(), "google/protobuf/")) {
pure_python_workable_ = true;
}
FileDescriptorProto fdp;
file_->CopyTo(&fdp);
fdp.SerializeToString(&file_descriptor_serialized_);
std::unique_ptr<io::ZeroCopyOutputStream> output(context->Open(filename));
GOOGLE_CHECK(output.get());
io::Printer printer(output.get(), '$');
printer_ = &printer;
PrintTopBoilerplate(printer_, file_, GeneratingDescriptorProto());
if (pure_python_workable_) {
PrintImports();
}
PrintFileDescriptor();
if (pure_python_workable_) {
if (GeneratingDescriptorProto()) {
printer_->Print("if _descriptor._USE_C_DESCRIPTORS == False:\n");
printer_->Indent();
// Create enums before message descriptors
PrintAllNestedEnumsInFile();
PrintMessageDescriptors();
FixForeignFieldsInDescriptors();
printer_->Outdent();
printer_->Print("else:\n");
printer_->Indent();
}
// Find the message descriptors first and then use the message
// descriptor to find enums.
printer_->Print(
"_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())\n");
if (GeneratingDescriptorProto()) {
printer_->Outdent();
}
}
TProtoStringType module_name = ModuleName(file->name());
printer_->Print(
"_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '$module_name$', "
"globals())\n",
"module_name", module_name);
if (pure_python_workable_) {
printer.Print("if _descriptor._USE_C_DESCRIPTORS == False:\n");
printer_->Indent();
// We have to fix up the extensions after the message classes themselves,
// since they need to call static RegisterExtension() methods on these
// classes.
FixForeignFieldsInExtensions();
// Descriptor options may have custom extensions. These custom options
// can only be successfully parsed after we register corresponding
// extensions. Therefore we parse all options again here to recognize
// custom options that may be unknown when we define the descriptors.
// This does not apply to services because they are not used by extensions.
FixAllDescriptorOptions();
// Set serialized_start and serialized_end.
SetSerializedPbInterval();
printer_->Outdent();
}
if (HasGenericServices(file)) {
printer_->Print(
"_builder.BuildServices(DESCRIPTOR, '$module_name$', globals())\n",
"module_name", module_name);
}
printer.Print("# @@protoc_insertion_point(module_scope)\n");
return !printer.failed();
}
// Prints Python imports for all modules imported by |file|.
void Generator::PrintImports() const {
for (int i = 0; i < file_->dependency_count(); ++i) {
const TProtoStringType& filename = file_->dependency(i)->name();
TProtoStringType module_name = ModuleName(filename);
TProtoStringType module_alias = ModuleAlias(filename);
if (ContainsPythonKeyword(module_name)) {
// If the module path contains a Python keyword, we have to quote the
// module name and import it using importlib. Otherwise the usual kind of
// import statement would result in a syntax error from the presence of
// the keyword.
printer_->Print("import importlib\n");
printer_->Print("$alias$ = importlib.import_module('$name$')\n", "alias",
module_alias, "name", module_name);
} else {
int last_dot_pos = module_name.rfind('.');
TProtoStringType import_statement;
if (last_dot_pos == TProtoStringType::npos) {
// NOTE(petya): this is not tested as it would require a protocol buffer
// outside of any package, and I don't think that is easily achievable.
import_statement = "import " + module_name;
} else {
import_statement = "from " + module_name.substr(0, last_dot_pos) +
" import " + module_name.substr(last_dot_pos + 1);
}
printer_->Print("$statement$ as $alias$\n", "statement", import_statement,
"alias", module_alias);
}
CopyPublicDependenciesAliases(module_alias, file_->dependency(i));
}
printer_->Print("\n");
// Print public imports.
for (int i = 0; i < file_->public_dependency_count(); ++i) {
TProtoStringType module_name = ModuleName(file_->public_dependency(i)->name());
printer_->Print("from $module$ import *\n", "module", module_name);
}
printer_->Print("\n");
}
// Prints the single file descriptor for this file.
void Generator::PrintFileDescriptor() const {
std::map<TProtoStringType, TProtoStringType> m;
m["descriptor_name"] = kDescriptorKey;
m["name"] = file_->name();
m["package"] = file_->package();
m["syntax"] = StringifySyntax(file_->syntax());
m["options"] = OptionsValue(file_->options().SerializeAsString());
m["serialized_descriptor"] = strings::CHexEscape(file_descriptor_serialized_);
if (GeneratingDescriptorProto()) {
printer_->Print("if _descriptor._USE_C_DESCRIPTORS == False:\n");
printer_->Indent();
// Pure python's AddSerializedFile() depend on the generated
// descriptor_pb2.py thus we can not use AddSerializedFile() when
// generated descriptor.proto for pure python.
const char file_descriptor_template[] =
"$descriptor_name$ = _descriptor.FileDescriptor(\n"
" name='$name$',\n"
" package='$package$',\n"
" syntax='$syntax$',\n"
" serialized_options=$options$,\n"
" create_key=_descriptor._internal_create_key,\n";
printer_->Print(m, file_descriptor_template);
printer_->Indent();
if (pure_python_workable_) {
printer_->Print("serialized_pb=b'$value$'\n", "value",
strings::CHexEscape(file_descriptor_serialized_));
if (file_->dependency_count() != 0) {
printer_->Print(",\ndependencies=[");
for (int i = 0; i < file_->dependency_count(); ++i) {
TProtoStringType module_alias = ModuleAlias(file_->dependency(i)->name());
printer_->Print("$module_alias$.DESCRIPTOR,", "module_alias",
module_alias);
}
printer_->Print("]");
}
if (file_->public_dependency_count() > 0) {
printer_->Print(",\npublic_dependencies=[");
for (int i = 0; i < file_->public_dependency_count(); ++i) {
TProtoStringType module_alias =
ModuleAlias(file_->public_dependency(i)->name());
printer_->Print("$module_alias$.DESCRIPTOR,", "module_alias",
module_alias);
}
printer_->Print("]");
}
} else {
printer_->Print("serialized_pb=''\n");
}
// TODO(falk): Also print options and fix the message_type, enum_type,
// service and extension later in the generation.
printer_->Outdent();
printer_->Print(")\n");
printer_->Outdent();
printer_->Print("else:\n");
printer_->Indent();
}
printer_->Print(m,
"$descriptor_name$ = "
"_descriptor_pool.Default().AddSerializedFile(b'$serialized_"
"descriptor$')\n");
if (GeneratingDescriptorProto()) {
printer_->Outdent();
}
printer_->Print("\n");
}
// Prints all enums contained in all message types in |file|.
void Generator::PrintAllNestedEnumsInFile() const {
for (int i = 0; i < file_->message_type_count(); ++i) {
PrintNestedEnums(*file_->message_type(i));
}
}
// Prints a Python statement assigning the appropriate module-level
// enum name to a Python EnumDescriptor object equivalent to
// enum_descriptor.
void Generator::PrintEnum(const EnumDescriptor& enum_descriptor) const {
std::map<TProtoStringType, TProtoStringType> m;
TProtoStringType module_level_descriptor_name =
ModuleLevelDescriptorName(enum_descriptor);
m["descriptor_name"] = module_level_descriptor_name;
m["name"] = enum_descriptor.name();
m["full_name"] = enum_descriptor.full_name();
m["file"] = kDescriptorKey;
const char enum_descriptor_template[] =
"$descriptor_name$ = _descriptor.EnumDescriptor(\n"
" name='$name$',\n"
" full_name='$full_name$',\n"
" filename=None,\n"
" file=$file$,\n"
" create_key=_descriptor._internal_create_key,\n"
" values=[\n";
TProtoStringType options_string;
enum_descriptor.options().SerializeToString(&options_string);
printer_->Print(m, enum_descriptor_template);
printer_->Indent();
printer_->Indent();
if (pure_python_workable_) {
for (int i = 0; i < enum_descriptor.value_count(); ++i) {
PrintEnumValueDescriptor(*enum_descriptor.value(i));
printer_->Print(",\n");
}
}
printer_->Outdent();
printer_->Print("],\n");
printer_->Print("containing_type=None,\n");
printer_->Print("serialized_options=$options_value$,\n", "options_value",
OptionsValue(options_string));
EnumDescriptorProto edp;
printer_->Outdent();
printer_->Print(")\n");
if (pure_python_workable_) {
printer_->Print("_sym_db.RegisterEnumDescriptor($name$)\n", "name",
module_level_descriptor_name);
}
printer_->Print("\n");
}
// Recursively prints enums in nested types within descriptor, then
// prints enums contained at the top level in descriptor.
void Generator::PrintNestedEnums(const Descriptor& descriptor) const {
for (int i = 0; i < descriptor.nested_type_count(); ++i) {
PrintNestedEnums(*descriptor.nested_type(i));
}
for (int i = 0; i < descriptor.enum_type_count(); ++i) {
PrintEnum(*descriptor.enum_type(i));
}
}
// Prints Python equivalents of all Descriptors in |file|.
void Generator::PrintMessageDescriptors() const {
for (int i = 0; i < file_->message_type_count(); ++i) {
PrintDescriptor(*file_->message_type(i));
printer_->Print("\n");
}
}
void Generator::PrintServiceDescriptors() const {
for (int i = 0; i < file_->service_count(); ++i) {
PrintServiceDescriptor(*file_->service(i));
}
}
void Generator::PrintServices() const {
for (int i = 0; i < file_->service_count(); ++i) {
PrintServiceClass(*file_->service(i));
PrintServiceStub(*file_->service(i));
printer_->Print("\n");
}
}
void Generator::PrintServiceDescriptor(
const ServiceDescriptor& descriptor) const {
std::map<TProtoStringType, TProtoStringType> m;
m["service_name"] = ModuleLevelServiceDescriptorName(descriptor);
m["name"] = descriptor.name();
m["file"] = kDescriptorKey;
printer_->Print(m, "$service_name$ = $file$.services_by_name['$name$']\n");
}
void Generator::PrintDescriptorKeyAndModuleName(
const ServiceDescriptor& descriptor) const {
TProtoStringType name = ModuleLevelServiceDescriptorName(descriptor);
if (!pure_python_workable_) {
name = "_descriptor.ServiceDescriptor(full_name='" +
descriptor.full_name() + "')";
}
printer_->Print("$descriptor_key$ = $descriptor_name$,\n", "descriptor_key",
kDescriptorKey, "descriptor_name", name);
TProtoStringType module_name = ModuleName(file_->name());
printer_->Print("__module__ = '$module_name$'\n", "module_name", module_name);
}
void Generator::PrintServiceClass(const ServiceDescriptor& descriptor) const {
// Print the service.
printer_->Print(
"$class_name$ = service_reflection.GeneratedServiceType("
"'$class_name$', (_service.Service,), dict(\n",
"class_name", descriptor.name());
printer_->Indent();
Generator::PrintDescriptorKeyAndModuleName(descriptor);
printer_->Print("))\n\n");
printer_->Outdent();
}
void Generator::PrintServiceStub(const ServiceDescriptor& descriptor) const {
// Print the service stub.
printer_->Print(
"$class_name$_Stub = "
"service_reflection.GeneratedServiceStubType("
"'$class_name$_Stub', ($class_name$,), dict(\n",
"class_name", descriptor.name());
printer_->Indent();
Generator::PrintDescriptorKeyAndModuleName(descriptor);
printer_->Print("))\n\n");
printer_->Outdent();
}
// Prints statement assigning ModuleLevelDescriptorName(message_descriptor)
// to a Python Descriptor object for message_descriptor.
//
// Mutually recursive with PrintNestedDescriptors().
void Generator::PrintDescriptor(const Descriptor& message_descriptor) const {
std::map<TProtoStringType, TProtoStringType> m;
m["name"] = message_descriptor.name();
m["full_name"] = message_descriptor.full_name();
m["file"] = kDescriptorKey;
PrintNestedDescriptors(message_descriptor);
printer_->Print("\n");
printer_->Print("$descriptor_name$ = _descriptor.Descriptor(\n",
"descriptor_name",
ModuleLevelDescriptorName(message_descriptor));
printer_->Indent();
const char required_function_arguments[] =
"name='$name$',\n"
"full_name='$full_name$',\n"
"filename=None,\n"
"file=$file$,\n"
"containing_type=None,\n"
"create_key=_descriptor._internal_create_key,\n";
printer_->Print(m, required_function_arguments);
PrintFieldsInDescriptor(message_descriptor);
PrintExtensionsInDescriptor(message_descriptor);
// Nested types
printer_->Print("nested_types=[");
for (int i = 0; i < message_descriptor.nested_type_count(); ++i) {
const TProtoStringType nested_name =
ModuleLevelDescriptorName(*message_descriptor.nested_type(i));
printer_->Print("$name$, ", "name", nested_name);
}
printer_->Print("],\n");
// Enum types
printer_->Print("enum_types=[\n");
printer_->Indent();
for (int i = 0; i < message_descriptor.enum_type_count(); ++i) {
const TProtoStringType descriptor_name =
ModuleLevelDescriptorName(*message_descriptor.enum_type(i));
printer_->Print(descriptor_name.c_str());
printer_->Print(",\n");
}
printer_->Outdent();
printer_->Print("],\n");
TProtoStringType options_string;
message_descriptor.options().SerializeToString(&options_string);
printer_->Print(
"serialized_options=$options_value$,\n"
"is_extendable=$extendable$,\n"
"syntax='$syntax$'",
"options_value", OptionsValue(options_string), "extendable",
message_descriptor.extension_range_count() > 0 ? "True" : "False",
"syntax", StringifySyntax(message_descriptor.file()->syntax()));
printer_->Print(",\n");
// Extension ranges
printer_->Print("extension_ranges=[");
for (int i = 0; i < message_descriptor.extension_range_count(); ++i) {
const Descriptor::ExtensionRange* range =
message_descriptor.extension_range(i);
printer_->Print("($start$, $end$), ", "start", StrCat(range->start),
"end", StrCat(range->end));
}
printer_->Print("],\n");
printer_->Print("oneofs=[\n");
printer_->Indent();
for (int i = 0; i < message_descriptor.oneof_decl_count(); ++i) {
const OneofDescriptor* desc = message_descriptor.oneof_decl(i);
m.clear();
m["name"] = desc->name();
m["full_name"] = desc->full_name();
m["index"] = StrCat(desc->index());
options_string = OptionsValue(desc->options().SerializeAsString());
if (options_string == "None") {
m["serialized_options"] = "";
} else {
m["serialized_options"] = ", serialized_options=" + options_string;
}
printer_->Print(m,
"_descriptor.OneofDescriptor(\n"
" name='$name$', full_name='$full_name$',\n"
" index=$index$, containing_type=None,\n"
" create_key=_descriptor._internal_create_key,\n"
"fields=[]$serialized_options$),\n");
}
printer_->Outdent();
printer_->Print("],\n");
printer_->Outdent();
printer_->Print(")\n");
}
// Prints Python Descriptor objects for all nested types contained in
// message_descriptor.
//
// Mutually recursive with PrintDescriptor().
void Generator::PrintNestedDescriptors(
const Descriptor& containing_descriptor) const {
for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
PrintDescriptor(*containing_descriptor.nested_type(i));
}
}
// Prints all messages in |file|.
void Generator::PrintMessages() const {
for (int i = 0; i < file_->message_type_count(); ++i) {
std::vector<TProtoStringType> to_register;
PrintMessage(*file_->message_type(i), "", &to_register, false);
for (int j = 0; j < to_register.size(); ++j) {
printer_->Print("_sym_db.RegisterMessage($name$)\n", "name",
ResolveKeyword(to_register[j]));
}
printer_->Print("\n");
}
}
// Prints a Python class for the given message descriptor. We defer to the
// metaclass to do almost all of the work of actually creating a useful class.
// The purpose of this function and its many helper functions above is merely
// to output a Python version of the descriptors, which the metaclass in
// reflection.py will use to construct the meat of the class itself.
//
// Mutually recursive with PrintNestedMessages().
// Collect nested message names to_register for the symbol_database.
void Generator::PrintMessage(const Descriptor& message_descriptor,
const TProtoStringType& prefix,
std::vector<TProtoStringType>* to_register,
bool is_nested) const {
TProtoStringType qualified_name;
if (is_nested) {
if (IsPythonKeyword(message_descriptor.name())) {
qualified_name =
"getattr(" + prefix + ", '" + message_descriptor.name() + "')";
} else {
qualified_name = prefix + "." + message_descriptor.name();
}
printer_->Print(
"'$name$' : _reflection.GeneratedProtocolMessageType('$name$', "
"(_message.Message,), {\n",
"name", message_descriptor.name());
} else {
qualified_name = ResolveKeyword(message_descriptor.name());
printer_->Print(
"$qualified_name$ = _reflection.GeneratedProtocolMessageType('$name$', "
"(_message.Message,), {\n",
"qualified_name", qualified_name, "name", message_descriptor.name());
}
printer_->Indent();
to_register->push_back(qualified_name);
PrintNestedMessages(message_descriptor, qualified_name, to_register);
std::map<TProtoStringType, TProtoStringType> m;
m["descriptor_key"] = kDescriptorKey;
if (pure_python_workable_) {
m["descriptor_name"] = ModuleLevelDescriptorName(message_descriptor);
} else {
m["descriptor_name"] = "_descriptor.Descriptor(full_name='" +
message_descriptor.full_name() + "')";
}
printer_->Print(m, "'$descriptor_key$' : $descriptor_name$,\n");
TProtoStringType module_name = ModuleName(file_->name());
printer_->Print("'__module__' : '$module_name$'\n", "module_name",
module_name);
printer_->Print("# @@protoc_insertion_point(class_scope:$full_name$)\n",
"full_name", message_descriptor.full_name());
printer_->Print("})\n");
printer_->Outdent();
}
// Prints all nested messages within |containing_descriptor|.
// Mutually recursive with PrintMessage().
void Generator::PrintNestedMessages(
const Descriptor& containing_descriptor, const TProtoStringType& prefix,
std::vector<TProtoStringType>* to_register) const {
for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
printer_->Print("\n");
PrintMessage(*containing_descriptor.nested_type(i), prefix, to_register,
true);
printer_->Print(",\n");
}
}
// Recursively fixes foreign fields in all nested types in |descriptor|, then
// sets the message_type and enum_type of all message and enum fields to point
// to their respective descriptors.
// Args:
// descriptor: descriptor to print fields for.
// containing_descriptor: if descriptor is a nested type, this is its
// containing type, or NULL if this is a root/top-level type.
void Generator::FixForeignFieldsInDescriptor(
const Descriptor& descriptor,
const Descriptor* containing_descriptor) const {
for (int i = 0; i < descriptor.nested_type_count(); ++i) {
FixForeignFieldsInDescriptor(*descriptor.nested_type(i), &descriptor);
}
for (int i = 0; i < descriptor.field_count(); ++i) {
const FieldDescriptor& field_descriptor = *descriptor.field(i);
FixForeignFieldsInField(&descriptor, field_descriptor, "fields_by_name");
}
FixContainingTypeInDescriptor(descriptor, containing_descriptor);
for (int i = 0; i < descriptor.enum_type_count(); ++i) {
const EnumDescriptor& enum_descriptor = *descriptor.enum_type(i);
FixContainingTypeInDescriptor(enum_descriptor, &descriptor);
}
for (int i = 0; i < descriptor.oneof_decl_count(); ++i) {
std::map<TProtoStringType, TProtoStringType> m;
const OneofDescriptor* oneof = descriptor.oneof_decl(i);
m["descriptor_name"] = ModuleLevelDescriptorName(descriptor);
m["oneof_name"] = oneof->name();
for (int j = 0; j < oneof->field_count(); ++j) {
m["field_name"] = oneof->field(j)->name();
printer_->Print(
m,
"$descriptor_name$.oneofs_by_name['$oneof_name$'].fields.append(\n"
" $descriptor_name$.fields_by_name['$field_name$'])\n");
printer_->Print(
m,
"$descriptor_name$.fields_by_name['$field_name$'].containing_oneof = "
"$descriptor_name$.oneofs_by_name['$oneof_name$']\n");
}
}
}
void Generator::AddMessageToFileDescriptor(const Descriptor& descriptor) const {
std::map<TProtoStringType, TProtoStringType> m;
m["descriptor_name"] = kDescriptorKey;
m["message_name"] = descriptor.name();
m["message_descriptor_name"] = ModuleLevelDescriptorName(descriptor);
const char file_descriptor_template[] =
"$descriptor_name$.message_types_by_name['$message_name$'] = "
"$message_descriptor_name$\n";
printer_->Print(m, file_descriptor_template);
}
void Generator::AddServiceToFileDescriptor(
const ServiceDescriptor& descriptor) const {
std::map<TProtoStringType, TProtoStringType> m;
m["descriptor_name"] = kDescriptorKey;
m["service_name"] = descriptor.name();
m["service_descriptor_name"] = ModuleLevelServiceDescriptorName(descriptor);
const char file_descriptor_template[] =
"$descriptor_name$.services_by_name['$service_name$'] = "
"$service_descriptor_name$\n";
printer_->Print(m, file_descriptor_template);
}
void Generator::AddEnumToFileDescriptor(
const EnumDescriptor& descriptor) const {
std::map<TProtoStringType, TProtoStringType> m;
m["descriptor_name"] = kDescriptorKey;
m["enum_name"] = descriptor.name();
m["enum_descriptor_name"] = ModuleLevelDescriptorName(descriptor);
const char file_descriptor_template[] =
"$descriptor_name$.enum_types_by_name['$enum_name$'] = "
"$enum_descriptor_name$\n";
printer_->Print(m, file_descriptor_template);
}
void Generator::AddExtensionToFileDescriptor(
const FieldDescriptor& descriptor) const {
std::map<TProtoStringType, TProtoStringType> m;
m["descriptor_name"] = kDescriptorKey;
m["field_name"] = descriptor.name();
m["resolved_name"] = ResolveKeyword(descriptor.name());
const char file_descriptor_template[] =
"$descriptor_name$.extensions_by_name['$field_name$'] = "
"$resolved_name$\n";
printer_->Print(m, file_descriptor_template);
}
// Sets any necessary message_type and enum_type attributes
// for the Python version of |field|.
//
// containing_type may be NULL, in which case this is a module-level field.
//
// python_dict_name is the name of the Python dict where we should
// look the field up in the containing type. (e.g., fields_by_name
// or extensions_by_name). We ignore python_dict_name if containing_type
// is NULL.
void Generator::FixForeignFieldsInField(
const Descriptor* containing_type, const FieldDescriptor& field,
const TProtoStringType& python_dict_name) const {
const TProtoStringType field_referencing_expression =
FieldReferencingExpression(containing_type, field, python_dict_name);
std::map<TProtoStringType, TProtoStringType> m;
m["field_ref"] = field_referencing_expression;
const Descriptor* foreign_message_type = field.message_type();
if (foreign_message_type) {
m["foreign_type"] = ModuleLevelDescriptorName(*foreign_message_type);
printer_->Print(m, "$field_ref$.message_type = $foreign_type$\n");
}
const EnumDescriptor* enum_type = field.enum_type();
if (enum_type) {
m["enum_type"] = ModuleLevelDescriptorName(*enum_type);
printer_->Print(m, "$field_ref$.enum_type = $enum_type$\n");
}
}
// Returns the module-level expression for the given FieldDescriptor.
// Only works for fields in the .proto file this Generator is generating for.
//
// containing_type may be NULL, in which case this is a module-level field.
//
// python_dict_name is the name of the Python dict where we should
// look the field up in the containing type. (e.g., fields_by_name
// or extensions_by_name). We ignore python_dict_name if containing_type
// is NULL.
TProtoStringType Generator::FieldReferencingExpression(
const Descriptor* containing_type, const FieldDescriptor& field,
const TProtoStringType& python_dict_name) const {
// We should only ever be looking up fields in the current file.
// The only things we refer to from other files are message descriptors.
GOOGLE_CHECK_EQ(field.file(), file_)
<< field.file()->name() << " vs. " << file_->name();
if (!containing_type) {
return ResolveKeyword(field.name());
}
return strings::Substitute("$0.$1['$2']",
ModuleLevelDescriptorName(*containing_type),
python_dict_name, field.name());
}
// Prints containing_type for nested descriptors or enum descriptors.
template <typename DescriptorT>
void Generator::FixContainingTypeInDescriptor(
const DescriptorT& descriptor,
const Descriptor* containing_descriptor) const {
if (containing_descriptor != nullptr) {
const TProtoStringType nested_name = ModuleLevelDescriptorName(descriptor);
const TProtoStringType parent_name =
ModuleLevelDescriptorName(*containing_descriptor);
printer_->Print("$nested_name$.containing_type = $parent_name$\n",
"nested_name", nested_name, "parent_name", parent_name);
}
}
// Prints statements setting the message_type and enum_type fields in the
// Python descriptor objects we've already output in the file. We must
// do this in a separate step due to circular references (otherwise, we'd
// just set everything in the initial assignment statements).
void Generator::FixForeignFieldsInDescriptors() const {
for (int i = 0; i < file_->message_type_count(); ++i) {
FixForeignFieldsInDescriptor(*file_->message_type(i), nullptr);
}
for (int i = 0; i < file_->message_type_count(); ++i) {
AddMessageToFileDescriptor(*file_->message_type(i));
}
for (int i = 0; i < file_->enum_type_count(); ++i) {
AddEnumToFileDescriptor(*file_->enum_type(i));
}
for (int i = 0; i < file_->extension_count(); ++i) {
AddExtensionToFileDescriptor(*file_->extension(i));
}
// TODO(jieluo): Move this register to PrintFileDescriptor() when
// FieldDescriptor.file is added in generated file.
printer_->Print("_sym_db.RegisterFileDescriptor($name$)\n", "name",
kDescriptorKey);
printer_->Print("\n");
}
// We need to not only set any necessary message_type fields, but
// also need to call RegisterExtension() on each message we're
// extending.
void Generator::FixForeignFieldsInExtensions() const {
// Top-level extensions.
for (int i = 0; i < file_->extension_count(); ++i) {
FixForeignFieldsInExtension(*file_->extension(i));
}
// Nested extensions.
for (int i = 0; i < file_->message_type_count(); ++i) {
FixForeignFieldsInNestedExtensions(*file_->message_type(i));
}
printer_->Print("\n");
}
void Generator::FixForeignFieldsInExtension(
const FieldDescriptor& extension_field) const {
GOOGLE_CHECK(extension_field.is_extension());
std::map<TProtoStringType, TProtoStringType> m;
// Confusingly, for FieldDescriptors that happen to be extensions,
// containing_type() means "extended type."
// On the other hand, extension_scope() will give us what we normally
// mean by containing_type().
m["extended_message_class"] =
ModuleLevelMessageName(*extension_field.containing_type());
m["field"] = FieldReferencingExpression(
extension_field.extension_scope(), extension_field, "extensions_by_name");
printer_->Print(m, "$extended_message_class$.RegisterExtension($field$)\n");
}
void Generator::FixForeignFieldsInNestedExtensions(
const Descriptor& descriptor) const {
// Recursively fix up extensions in all nested types.
for (int i = 0; i < descriptor.nested_type_count(); ++i) {
FixForeignFieldsInNestedExtensions(*descriptor.nested_type(i));
}
// Fix up extensions directly contained within this type.
for (int i = 0; i < descriptor.extension_count(); ++i) {
FixForeignFieldsInExtension(*descriptor.extension(i));
}
}
// Returns a Python expression that instantiates a Python EnumValueDescriptor
// object for the given C++ descriptor.
void Generator::PrintEnumValueDescriptor(
const EnumValueDescriptor& descriptor) const {
// TODO(robinson): Fix up EnumValueDescriptor "type" fields.
// More circular references. ::sigh::
TProtoStringType options_string;
descriptor.options().SerializeToString(&options_string);
std::map<TProtoStringType, TProtoStringType> m;
m["name"] = descriptor.name();
m["index"] = StrCat(descriptor.index());
m["number"] = StrCat(descriptor.number());
m["options"] = OptionsValue(options_string);
printer_->Print(m,
"_descriptor.EnumValueDescriptor(\n"
" name='$name$', index=$index$, number=$number$,\n"
" serialized_options=$options$,\n"
" type=None,\n"
" create_key=_descriptor._internal_create_key)");
}
// Returns a CEscaped string of serialized_options.
TProtoStringType Generator::OptionsValue(
const TProtoStringType& serialized_options) const {
if (serialized_options.length() == 0 || GeneratingDescriptorProto()) {
return "None";
} else {
return "b'" + CEscape(serialized_options) + "'";
}
}
// Prints an expression for a Python FieldDescriptor for |field|.
void Generator::PrintFieldDescriptor(const FieldDescriptor& field,
bool is_extension) const {
TProtoStringType options_string;
field.options().SerializeToString(&options_string);
std::map<TProtoStringType, TProtoStringType> m;
m["name"] = field.name();
m["full_name"] = field.full_name();
m["index"] = StrCat(field.index());
m["number"] = StrCat(field.number());
m["type"] = StrCat(field.type());
m["cpp_type"] = StrCat(field.cpp_type());
m["label"] = StrCat(field.label());
m["has_default_value"] = field.has_default_value() ? "True" : "False";
m["default_value"] = StringifyDefaultValue(field);
m["is_extension"] = is_extension ? "True" : "False";
m["serialized_options"] = OptionsValue(options_string);
m["json_name"] =
field.has_json_name() ? ", json_name='" + field.json_name() + "'" : "";
// We always set message_type and enum_type to None at this point, and then
// these fields in correctly after all referenced descriptors have been
// defined and/or imported (see FixForeignFieldsInDescriptors()).
const char field_descriptor_decl[] =
"_descriptor.FieldDescriptor(\n"
" name='$name$', full_name='$full_name$', index=$index$,\n"
" number=$number$, type=$type$, cpp_type=$cpp_type$, label=$label$,\n"
" has_default_value=$has_default_value$, "
"default_value=$default_value$,\n"
" message_type=None, enum_type=None, containing_type=None,\n"
" is_extension=$is_extension$, extension_scope=None,\n"
" serialized_options=$serialized_options$$json_name$, file=DESCRIPTOR,"
" create_key=_descriptor._internal_create_key)";
printer_->Print(m, field_descriptor_decl);
}
// Helper for Print{Fields,Extensions}InDescriptor().
void Generator::PrintFieldDescriptorsInDescriptor(
const Descriptor& message_descriptor, bool is_extension,
const TProtoStringType& list_variable_name, int (Descriptor::*CountFn)() const,
const FieldDescriptor* (Descriptor::*GetterFn)(int)const) const {
printer_->Print("$list$=[\n", "list", list_variable_name);
printer_->Indent();
for (int i = 0; i < (message_descriptor.*CountFn)(); ++i) {
PrintFieldDescriptor(*(message_descriptor.*GetterFn)(i), is_extension);
printer_->Print(",\n");
}
printer_->Outdent();
printer_->Print("],\n");
}
// Prints a statement assigning "fields" to a list of Python FieldDescriptors,
// one for each field present in message_descriptor.
void Generator::PrintFieldsInDescriptor(
const Descriptor& message_descriptor) const {
const bool is_extension = false;
PrintFieldDescriptorsInDescriptor(message_descriptor, is_extension, "fields",
&Descriptor::field_count,
&Descriptor::field);
}
// Prints a statement assigning "extensions" to a list of Python
// FieldDescriptors, one for each extension present in message_descriptor.
void Generator::PrintExtensionsInDescriptor(
const Descriptor& message_descriptor) const {
const bool is_extension = true;
PrintFieldDescriptorsInDescriptor(message_descriptor, is_extension,
"extensions", &Descriptor::extension_count,
&Descriptor::extension);
}
bool Generator::GeneratingDescriptorProto() const {
return file_->name() == "net/proto2/proto/descriptor.proto" ||
file_->name() == "google/protobuf/descriptor.proto";
}
// Returns the unique Python module-level identifier given to a descriptor.
// This name is module-qualified iff the given descriptor describes an
// entity that doesn't come from the current file.
template <typename DescriptorT>
TProtoStringType Generator::ModuleLevelDescriptorName(
const DescriptorT& descriptor) const {
// FIXME(robinson):
// We currently don't worry about collisions with underscores in the type
// names, so these would collide in nasty ways if found in the same file:
// OuterProto.ProtoA.ProtoB
// OuterProto_ProtoA.ProtoB # Underscore instead of period.
// As would these:
// OuterProto.ProtoA_.ProtoB
// OuterProto.ProtoA._ProtoB # Leading vs. trailing underscore.
// (Contrived, but certainly possible).
//
// The C++ implementation doesn't guard against this either. Leaving
// it for now...
TProtoStringType name = NamePrefixedWithNestedTypes(descriptor, "_");
ToUpper(&name);
// Module-private for now. Easy to make public later; almost impossible
// to make private later.
name = "_" + name;
// We now have the name relative to its own module. Also qualify with
// the module name iff this descriptor is from a different .proto file.
if (descriptor.file() != file_) {
name = ModuleAlias(descriptor.file()->name()) + "." + name;
}
return name;
}
// Returns the name of the message class itself, not the descriptor.
// Like ModuleLevelDescriptorName(), module-qualifies the name iff
// the given descriptor describes an entity that doesn't come from
// the current file.
TProtoStringType Generator::ModuleLevelMessageName(
const Descriptor& descriptor) const {
TProtoStringType name = NamePrefixedWithNestedTypes(descriptor, ".");
if (descriptor.file() != file_) {
name = ModuleAlias(descriptor.file()->name()) + "." + name;
}
return name;
}
// Returns the unique Python module-level identifier given to a service
// descriptor.
TProtoStringType Generator::ModuleLevelServiceDescriptorName(
const ServiceDescriptor& descriptor) const {
TProtoStringType name = descriptor.name();
ToUpper(&name);
name = "_" + name;
if (descriptor.file() != file_) {
name = ModuleAlias(descriptor.file()->name()) + "." + name;
}
return name;
}
// Prints standard constructor arguments serialized_start and serialized_end.
// Args:
// descriptor: The cpp descriptor to have a serialized reference.
// proto: A proto
// Example printer output:
// serialized_start=41,
// serialized_end=43,
//
template <typename DescriptorT, typename DescriptorProtoT>
void Generator::PrintSerializedPbInterval(const DescriptorT& descriptor,
DescriptorProtoT& proto,
const TProtoStringType& name) const {
descriptor.CopyTo(&proto);
TProtoStringType sp;
proto.SerializeToString(&sp);
int offset = file_descriptor_serialized_.find(sp);
GOOGLE_CHECK_GE(offset, 0);
printer_->Print(
"$name$._serialized_start=$serialized_start$\n"
"$name$._serialized_end=$serialized_end$\n",
"name", name, "serialized_start", StrCat(offset), "serialized_end",
StrCat(offset + sp.size()));
}
namespace {
void PrintDescriptorOptionsFixingCode(const TProtoStringType& descriptor,
const TProtoStringType& options,
io::Printer* printer) {
// Reset the _options to None thus DescriptorBase.GetOptions() can
// parse _options again after extensions are registered.
printer->Print(
"$descriptor$._options = None\n"
"$descriptor$._serialized_options = $serialized_value$\n",
"descriptor", descriptor, "serialized_value", options);
}
} // namespace
void Generator::SetSerializedPbInterval() const {
// Top level enums.
for (int i = 0; i < file_->enum_type_count(); ++i) {
EnumDescriptorProto proto;
const EnumDescriptor& descriptor = *file_->enum_type(i);
PrintSerializedPbInterval(descriptor, proto,
ModuleLevelDescriptorName(descriptor));
}
// Messages.
for (int i = 0; i < file_->message_type_count(); ++i) {
SetMessagePbInterval(*file_->message_type(i));
}
// Services.
for (int i = 0; i < file_->service_count(); ++i) {
ServiceDescriptorProto proto;
const ServiceDescriptor& service = *file_->service(i);
PrintSerializedPbInterval(service, proto,
ModuleLevelServiceDescriptorName(service));
}
}
void Generator::SetMessagePbInterval(const Descriptor& descriptor) const {
DescriptorProto message_proto;
PrintSerializedPbInterval(descriptor, message_proto,
ModuleLevelDescriptorName(descriptor));
// Nested messages.
for (int i = 0; i < descriptor.nested_type_count(); ++i) {
SetMessagePbInterval(*descriptor.nested_type(i));
}
for (int i = 0; i < descriptor.enum_type_count(); ++i) {
EnumDescriptorProto proto;
const EnumDescriptor& enum_des = *descriptor.enum_type(i);
PrintSerializedPbInterval(enum_des, proto,
ModuleLevelDescriptorName(enum_des));
}
}
// Prints expressions that set the options field of all descriptors.
void Generator::FixAllDescriptorOptions() const {
// Prints an expression that sets the file descriptor's options.
TProtoStringType file_options = OptionsValue(file_->options().SerializeAsString());
if (file_options != "None") {
PrintDescriptorOptionsFixingCode(kDescriptorKey, file_options, printer_);
} else {
printer_->Print("DESCRIPTOR._options = None\n");
}
// Prints expressions that set the options for all top level enums.
for (int i = 0; i < file_->enum_type_count(); ++i) {
const EnumDescriptor& enum_descriptor = *file_->enum_type(i);
FixOptionsForEnum(enum_descriptor);
}
// Prints expressions that set the options for all top level extensions.
for (int i = 0; i < file_->extension_count(); ++i) {
const FieldDescriptor& field = *file_->extension(i);
FixOptionsForField(field);
}
// Prints expressions that set the options for all messages, nested enums,
// nested extensions and message fields.
for (int i = 0; i < file_->message_type_count(); ++i) {
FixOptionsForMessage(*file_->message_type(i));
}
for (int i = 0; i < file_->service_count(); ++i) {
FixOptionsForService(*file_->service(i));
}
}
void Generator::FixOptionsForOneof(const OneofDescriptor& oneof) const {
TProtoStringType oneof_options = OptionsValue(oneof.options().SerializeAsString());
if (oneof_options != "None") {
TProtoStringType oneof_name = strings::Substitute(
"$0.$1['$2']", ModuleLevelDescriptorName(*oneof.containing_type()),
"oneofs_by_name", oneof.name());
PrintDescriptorOptionsFixingCode(oneof_name, oneof_options, printer_);
}
}
// Prints expressions that set the options for an enum descriptor and its
// value descriptors.
void Generator::FixOptionsForEnum(const EnumDescriptor& enum_descriptor) const {
TProtoStringType descriptor_name = ModuleLevelDescriptorName(enum_descriptor);
TProtoStringType enum_options =
OptionsValue(enum_descriptor.options().SerializeAsString());
if (enum_options != "None") {
PrintDescriptorOptionsFixingCode(descriptor_name, enum_options, printer_);
}
for (int i = 0; i < enum_descriptor.value_count(); ++i) {
const EnumValueDescriptor& value_descriptor = *enum_descriptor.value(i);
TProtoStringType value_options =
OptionsValue(value_descriptor.options().SerializeAsString());
if (value_options != "None") {
PrintDescriptorOptionsFixingCode(
StringPrintf("%s.values_by_name[\"%s\"]", descriptor_name.c_str(),
value_descriptor.name().c_str()),
value_options, printer_);
}
}
}
// Prints expressions that set the options for an service descriptor and its
// value descriptors.
void Generator::FixOptionsForService(
const ServiceDescriptor& service_descriptor) const {
TProtoStringType descriptor_name =
ModuleLevelServiceDescriptorName(service_descriptor);
TProtoStringType service_options =
OptionsValue(service_descriptor.options().SerializeAsString());
if (service_options != "None") {
PrintDescriptorOptionsFixingCode(descriptor_name, service_options,
printer_);
}
for (int i = 0; i < service_descriptor.method_count(); ++i) {
const MethodDescriptor* method = service_descriptor.method(i);
TProtoStringType method_options =
OptionsValue(method->options().SerializeAsString());
if (method_options != "None") {
TProtoStringType method_name =
descriptor_name + ".methods_by_name['" + method->name() + "']";
PrintDescriptorOptionsFixingCode(method_name, method_options, printer_);
}
}
}
// Prints expressions that set the options for field descriptors (including
// extensions).
void Generator::FixOptionsForField(const FieldDescriptor& field) const {
TProtoStringType field_options = OptionsValue(field.options().SerializeAsString());
if (field_options != "None") {
TProtoStringType field_name;
if (field.is_extension()) {
if (field.extension_scope() == nullptr) {
// Top level extensions.
field_name = field.name();
} else {
field_name = FieldReferencingExpression(field.extension_scope(), field,
"extensions_by_name");
}
} else {
field_name = FieldReferencingExpression(field.containing_type(), field,
"fields_by_name");
}
PrintDescriptorOptionsFixingCode(field_name, field_options, printer_);
}
}
// Prints expressions that set the options for a message and all its inner
// types (nested messages, nested enums, extensions, fields).
void Generator::FixOptionsForMessage(const Descriptor& descriptor) const {
// Nested messages.
for (int i = 0; i < descriptor.nested_type_count(); ++i) {
FixOptionsForMessage(*descriptor.nested_type(i));
}
// Oneofs.
for (int i = 0; i < descriptor.oneof_decl_count(); ++i) {
FixOptionsForOneof(*descriptor.oneof_decl(i));
}
// Enums.
for (int i = 0; i < descriptor.enum_type_count(); ++i) {
FixOptionsForEnum(*descriptor.enum_type(i));
}
// Fields.
for (int i = 0; i < descriptor.field_count(); ++i) {
const FieldDescriptor& field = *descriptor.field(i);
FixOptionsForField(field);
}
// Extensions.
for (int i = 0; i < descriptor.extension_count(); ++i) {
const FieldDescriptor& field = *descriptor.extension(i);
FixOptionsForField(field);
}
// Message option for this message.
TProtoStringType message_options =
OptionsValue(descriptor.options().SerializeAsString());
if (message_options != "None") {
TProtoStringType descriptor_name = ModuleLevelDescriptorName(descriptor);
PrintDescriptorOptionsFixingCode(descriptor_name, message_options,
printer_);
}
}
// If a dependency forwards other files through public dependencies, let's
// copy over the corresponding module aliases.
void Generator::CopyPublicDependenciesAliases(
const TProtoStringType& copy_from, const FileDescriptor* file) const {
for (int i = 0; i < file->public_dependency_count(); ++i) {
TProtoStringType module_name = ModuleName(file->public_dependency(i)->name());
TProtoStringType module_alias = ModuleAlias(file->public_dependency(i)->name());
// There's no module alias in the dependent file if it was generated by
// an old protoc (less than 3.0.0-alpha-1). Use module name in this
// situation.
printer_->Print(
"try:\n"
" $alias$ = $copy_from$.$alias$\n"
"except AttributeError:\n"
" $alias$ = $copy_from$.$module$\n",
"alias", module_alias, "module", module_name, "copy_from", copy_from);
CopyPublicDependenciesAliases(copy_from, file->public_dependency(i));
}
}
} // namespace python
} // namespace compiler
} // namespace protobuf
} // namespace google
|