aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/protobuf_old/src/google/protobuf/stubs/map_util.h
blob: 24e098ad1bc956527c593644baa317c2f42a3c41 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// from google3/util/gtl/map_util.h
// Author: Anton Carver

#ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
#define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__

#include <stddef.h>
#include <iterator>
#include <string>
#include <utility>
#include <vector>

#include <google/protobuf/stubs/common.h>

namespace google {
namespace protobuf {
namespace internal {
// Local implementation of RemoveConst to avoid including base/type_traits.h.
template <class T> struct RemoveConst { typedef T type; };
template <class T> struct RemoveConst<const T> : RemoveConst<T> {};
}  // namespace internal

//
// Find*()
//

// Returns a const reference to the value associated with the given key if it
// exists. Crashes otherwise.
//
// This is intended as a replacement for operator[] as an rvalue (for reading)
// when the key is guaranteed to exist.
//
// operator[] for lookup is discouraged for several reasons:
//  * It has a side-effect of inserting missing keys
//  * It is not thread-safe (even when it is not inserting, it can still
//      choose to resize the underlying storage)
//  * It invalidates iterators (when it chooses to resize)
//  * It default constructs a value object even if it doesn't need to
//
// This version assumes the key is printable, and includes it in the fatal log
// message.
template <class Collection>
const typename Collection::value_type::second_type&
FindOrDie(const Collection& collection,
          const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
  return it->second;
}

// Same as above, but returns a non-const reference.
template <class Collection>
typename Collection::value_type::second_type&
FindOrDie(Collection& collection,  // NOLINT
          const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
  return it->second;
}

// Same as FindOrDie above, but doesn't log the key on failure.
template <class Collection>
const typename Collection::value_type::second_type&
FindOrDieNoPrint(const Collection& collection,
                 const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found";
  return it->second;
}

// Same as above, but returns a non-const reference.
template <class Collection>
typename Collection::value_type::second_type&
FindOrDieNoPrint(Collection& collection,  // NOLINT
                 const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) << "Map key not found";
  return it->second;
}

// Returns a const reference to the value associated with the given key if it
// exists, otherwise returns a const reference to the provided default value.
//
// WARNING: If a temporary object is passed as the default "value,"
// this function will return a reference to that temporary object,
// which will be destroyed at the end of the statement. A common
// example: if you have a map with string values, and you pass a char*
// as the default "value," either use the returned value immediately
// or store it in a string (not string&).
// Details: http://go/findwithdefault
template <class Collection>
const typename Collection::value_type::second_type&
FindWithDefault(const Collection& collection,
                const typename Collection::value_type::first_type& key,
                const typename Collection::value_type::second_type& value) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return value;
  }
  return it->second;
}

// Returns a pointer to the const value associated with the given key if it
// exists, or nullptr otherwise.
template <class Collection>
const typename Collection::value_type::second_type*
FindOrNull(const Collection& collection,
           const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return 0;
  }
  return &it->second;
}

// Same as above but returns a pointer to the non-const value.
template <class Collection>
typename Collection::value_type::second_type*
FindOrNull(Collection& collection,  // NOLINT
           const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  if (it == collection.end()) {
    return 0;
  }
  return &it->second;
}

// Returns the pointer value associated with the given key. If none is found,
// nullptr is returned. The function is designed to be used with a map of keys to
// pointers.
//
// This function does not distinguish between a missing key and a key mapped
// to nullptr.
template <class Collection>
typename Collection::value_type::second_type
FindPtrOrNull(const Collection& collection,
              const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return typename Collection::value_type::second_type();
  }
  return it->second;
}

// Same as above, except takes non-const reference to collection.
//
// This function is needed for containers that propagate constness to the
// pointee, such as boost::ptr_map.
template <class Collection>
typename Collection::value_type::second_type
FindPtrOrNull(Collection& collection,  // NOLINT
              const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection.find(key);
  if (it == collection.end()) {
    return typename Collection::value_type::second_type();
  }
  return it->second;
}

// Finds the pointer value associated with the given key in a map whose values
// are linked_ptrs. Returns nullptr if key is not found.
template <class Collection>
typename Collection::value_type::second_type::element_type*
FindLinkedPtrOrNull(const Collection& collection,
                    const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return 0;
  }
  // Since linked_ptr::get() is a const member returning a non const,
  // we do not need a version of this function taking a non const collection.
  return it->second.get();
}

// Same as above, but dies if the key is not found.
template <class Collection>
typename Collection::value_type::second_type::element_type&
FindLinkedPtrOrDie(const Collection& collection,
                   const typename Collection::value_type::first_type& key) {
  typename Collection::const_iterator it = collection.find(key);
  GOOGLE_CHECK(it != collection.end()) <<  "key not found: " << key;
  // Since linked_ptr::operator*() is a const member returning a non const,
  // we do not need a version of this function taking a non const collection.
  return *it->second;
}

// Finds the value associated with the given key and copies it to *value (if not
// nullptr). Returns false if the key was not found, true otherwise.
template <class Collection, class Key, class Value>
bool FindCopy(const Collection& collection,
              const Key& key,
              Value* const value) {
  typename Collection::const_iterator it = collection.find(key);
  if (it == collection.end()) {
    return false;
  }
  if (value) {
    *value = it->second;
  }
  return true;
}

//
// Contains*()
//

// Returns true if and only if the given collection contains the given key.
template <class Collection, class Key>
bool ContainsKey(const Collection& collection, const Key& key) {
  return collection.find(key) != collection.end();
}

// Returns true if and only if the given collection contains the given key-value
// pair.
template <class Collection, class Key, class Value>
bool ContainsKeyValuePair(const Collection& collection,
                          const Key& key,
                          const Value& value) {
  typedef typename Collection::const_iterator const_iterator;
  std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
  for (const_iterator it = range.first; it != range.second; ++it) {
    if (it->second == value) {
      return true;
    }
  }
  return false;
}

//
// Insert*()
//

// Inserts the given key-value pair into the collection. Returns true if and
// only if the key from the given pair didn't previously exist. Otherwise, the
// value in the map is replaced with the value from the given pair.
template <class Collection>
bool InsertOrUpdate(Collection* const collection,
                    const typename Collection::value_type& vt) {
  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
  if (!ret.second) {
    // update
    ret.first->second = vt.second;
    return false;
  }
  return true;
}

// Same as above, except that the key and value are passed separately.
template <class Collection>
bool InsertOrUpdate(Collection* const collection,
                    const typename Collection::value_type::first_type& key,
                    const typename Collection::value_type::second_type& value) {
  return InsertOrUpdate(
      collection, typename Collection::value_type(key, value));
}

// Inserts/updates all the key-value pairs from the range defined by the
// iterators "first" and "last" into the given collection.
template <class Collection, class InputIterator>
void InsertOrUpdateMany(Collection* const collection,
                        InputIterator first, InputIterator last) {
  for (; first != last; ++first) {
    InsertOrUpdate(collection, *first);
  }
}

// Change the value associated with a particular key in a map or hash_map
// of the form map<Key, Value*> which owns the objects pointed to by the
// value pointers.  If there was an existing value for the key, it is deleted.
// True indicates an insert took place, false indicates an update + delete.
template <class Collection>
bool InsertAndDeleteExisting(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& value) {
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, value));
  if (!ret.second) {
    delete ret.first->second;
    ret.first->second = value;
    return false;
  }
  return true;
}

// Inserts the given key and value into the given collection if and only if the
// given key did NOT already exist in the collection. If the key previously
// existed in the collection, the value is not changed. Returns true if the
// key-value pair was inserted; returns false if the key was already present.
template <class Collection>
bool InsertIfNotPresent(Collection* const collection,
                        const typename Collection::value_type& vt) {
  return collection->insert(vt).second;
}

// Same as above except the key and value are passed separately.
template <class Collection>
bool InsertIfNotPresent(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& value) {
  return InsertIfNotPresent(
      collection, typename Collection::value_type(key, value));
}

// Same as above except dies if the key already exists in the collection.
template <class Collection>
void InsertOrDie(Collection* const collection,
                 const typename Collection::value_type& value) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, value))
      << "duplicate value: " << value;
}

// Same as above except doesn't log the value on error.
template <class Collection>
void InsertOrDieNoPrint(Collection* const collection,
                        const typename Collection::value_type& value) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
}

// Inserts the key-value pair into the collection. Dies if key was already
// present.
template <class Collection>
void InsertOrDie(Collection* const collection,
                 const typename Collection::value_type::first_type& key,
                 const typename Collection::value_type::second_type& data) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, key, data))
      << "duplicate key: " << key;
}

// Same as above except doesn't log the key on error.
template <class Collection>
void InsertOrDieNoPrint(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& data) {
  GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
}

// Inserts a new key and default-initialized value. Dies if the key was already
// present. Returns a reference to the value. Example usage:
//
// map<int, SomeProto> m;
// SomeProto& proto = InsertKeyOrDie(&m, 3);
// proto.set_field("foo");
template <class Collection>
typename Collection::value_type::second_type& InsertKeyOrDie(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typedef typename Collection::value_type value_type;
  std::pair<typename Collection::iterator, bool> res =
      collection->insert(value_type(key, typename value_type::second_type()));
  GOOGLE_CHECK(res.second) << "duplicate key: " << key;
  return res.first->second;
}

//
// Lookup*()
//

// Looks up a given key and value pair in a collection and inserts the key-value
// pair if it's not already present. Returns a reference to the value associated
// with the key.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsert(Collection* const collection,
               const typename Collection::value_type& vt) {
  return collection->insert(vt).first->second;
}

// Same as above except the key-value are passed separately.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsert(Collection* const collection,
               const typename Collection::value_type::first_type& key,
               const typename Collection::value_type::second_type& value) {
  return LookupOrInsert(
      collection, typename Collection::value_type(key, value));
}

// Counts the number of equivalent elements in the given "sequence", and stores
// the results in "count_map" with element as the key and count as the value.
//
// Example:
//   vector<string> v = {"a", "b", "c", "a", "b"};
//   map<string, int> m;
//   AddTokenCounts(v, 1, &m);
//   assert(m["a"] == 2);
//   assert(m["b"] == 2);
//   assert(m["c"] == 1);
template <typename Sequence, typename Collection>
void AddTokenCounts(
    const Sequence& sequence,
    const typename Collection::value_type::second_type& increment,
    Collection* const count_map) {
  for (typename Sequence::const_iterator it = sequence.begin();
       it != sequence.end(); ++it) {
    typename Collection::value_type::second_type& value =
        LookupOrInsert(count_map, *it,
                       typename Collection::value_type::second_type());
    value += increment;
  }
}

// Returns a reference to the value associated with key. If not found, a value
// is default constructed on the heap and added to the map.
//
// This function is useful for containers of the form map<Key, Value*>, where
// inserting a new key, value pair involves constructing a new heap-allocated
// Value, and storing a pointer to that in the collection.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsertNew(Collection* const collection,
                  const typename Collection::value_type::first_type& key) {
  typedef typename std::iterator_traits<
    typename Collection::value_type::second_type>::value_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(
          key,
          static_cast<typename Collection::value_type::second_type>(nullptr)));
  if (ret.second) {
    ret.first->second = new Element();
  }
  return ret.first->second;
}

// Same as above but constructs the value using the single-argument constructor
// and the given "arg".
template <class Collection, class Arg>
typename Collection::value_type::second_type&
LookupOrInsertNew(Collection* const collection,
                  const typename Collection::value_type::first_type& key,
                  const Arg& arg) {
  typedef typename std::iterator_traits<
    typename Collection::value_type::second_type>::value_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(
          key,
          static_cast<typename Collection::value_type::second_type>(nullptr)));
  if (ret.second) {
    ret.first->second = new Element(arg);
  }
  return ret.first->second;
}

// Lookup of linked/shared pointers is used in two scenarios:
//
// Use LookupOrInsertNewLinkedPtr if the container owns the elements.
// In this case it is fine working with the raw pointer as long as it is
// guaranteed that no other thread can delete/update an accessed element.
// A mutex will need to lock the container operation as well as the use
// of the returned elements. Finding an element may be performed using
// FindLinkedPtr*().
//
// Use LookupOrInsertNewSharedPtr if the container does not own the elements
// for their whole lifetime. This is typically the case when a reader allows
// parallel updates to the container. In this case a Mutex only needs to lock
// container operations, but all element operations must be performed on the
// shared pointer. Finding an element must be performed using FindPtr*() and
// cannot be done with FindLinkedPtr*() even though it compiles.

// Lookup a key in a map or hash_map whose values are linked_ptrs.  If it is
// missing, set collection[key].reset(new Value::element_type) and return that.
// Value::element_type must be default constructable.
template <class Collection>
typename Collection::value_type::second_type::element_type*
LookupOrInsertNewLinkedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typedef typename Collection::value_type::second_type Value;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, Value()));
  if (ret.second) {
    ret.first->second.reset(new typename Value::element_type);
  }
  return ret.first->second.get();
}

// A variant of LookupOrInsertNewLinkedPtr where the value is constructed using
// a single-parameter constructor.  Note: the constructor argument is computed
// even if it will not be used, so only values cheap to compute should be passed
// here.  On the other hand it does not matter how expensive the construction of
// the actual stored value is, as that only occurs if necessary.
template <class Collection, class Arg>
typename Collection::value_type::second_type::element_type*
LookupOrInsertNewLinkedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const Arg& arg) {
  typedef typename Collection::value_type::second_type Value;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, Value()));
  if (ret.second) {
    ret.first->second.reset(new typename Value::element_type(arg));
  }
  return ret.first->second.get();
}

// Lookup a key in a map or hash_map whose values are shared_ptrs.  If it is
// missing, set collection[key].reset(new Value::element_type). Unlike
// LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
// the raw pointer. Value::element_type must be default constructable.
template <class Collection>
typename Collection::value_type::second_type&
LookupOrInsertNewSharedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typedef typename Collection::value_type::second_type SharedPtr;
  typedef typename Collection::value_type::second_type::element_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, SharedPtr()));
  if (ret.second) {
    ret.first->second.reset(new Element());
  }
  return ret.first->second;
}

// A variant of LookupOrInsertNewSharedPtr where the value is constructed using
// a single-parameter constructor.  Note: the constructor argument is computed
// even if it will not be used, so only values cheap to compute should be passed
// here.  On the other hand it does not matter how expensive the construction of
// the actual stored value is, as that only occurs if necessary.
template <class Collection, class Arg>
typename Collection::value_type::second_type&
LookupOrInsertNewSharedPtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const Arg& arg) {
  typedef typename Collection::value_type::second_type SharedPtr;
  typedef typename Collection::value_type::second_type::element_type Element;
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, SharedPtr()));
  if (ret.second) {
    ret.first->second.reset(new Element(arg));
  }
  return ret.first->second;
}

//
// Misc Utility Functions
//

// Updates the value associated with the given key. If the key was not already
// present, then the key-value pair are inserted and "previous" is unchanged. If
// the key was already present, the value is updated and "*previous" will
// contain a copy of the old value.
//
// InsertOrReturnExisting has complementary behavior that returns the
// address of an already existing value, rather than updating it.
template <class Collection>
bool UpdateReturnCopy(Collection* const collection,
                      const typename Collection::value_type::first_type& key,
                      const typename Collection::value_type::second_type& value,
                      typename Collection::value_type::second_type* previous) {
  std::pair<typename Collection::iterator, bool> ret =
      collection->insert(typename Collection::value_type(key, value));
  if (!ret.second) {
    // update
    if (previous) {
      *previous = ret.first->second;
    }
    ret.first->second = value;
    return true;
  }
  return false;
}

// Same as above except that the key and value are passed as a pair.
template <class Collection>
bool UpdateReturnCopy(Collection* const collection,
                      const typename Collection::value_type& vt,
                      typename Collection::value_type::second_type* previous) {
  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
  if (!ret.second) {
    // update
    if (previous) {
      *previous = ret.first->second;
    }
    ret.first->second = vt.second;
    return true;
  }
  return false;
}

// Tries to insert the given key-value pair into the collection. Returns nullptr if
// the insert succeeds. Otherwise, returns a pointer to the existing value.
//
// This complements UpdateReturnCopy in that it allows to update only after
// verifying the old value and still insert quickly without having to look up
// twice. Unlike UpdateReturnCopy this also does not come with the issue of an
// undefined previous* in case new data was inserted.
template <class Collection>
typename Collection::value_type::second_type* InsertOrReturnExisting(
    Collection* const collection, const typename Collection::value_type& vt) {
  std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
  if (ret.second) {
    return nullptr;  // Inserted, no existing previous value.
  } else {
    return &ret.first->second;  // Return address of already existing value.
  }
}

// Same as above, except for explicit key and data.
template <class Collection>
typename Collection::value_type::second_type* InsertOrReturnExisting(
    Collection* const collection,
    const typename Collection::value_type::first_type& key,
    const typename Collection::value_type::second_type& data) {
  return InsertOrReturnExisting(collection,
                                typename Collection::value_type(key, data));
}

// Erases the collection item identified by the given key, and returns the value
// associated with that key. It is assumed that the value (i.e., the
// mapped_type) is a pointer. Returns nullptr if the key was not found in the
// collection.
//
// Examples:
//   map<string, MyType*> my_map;
//
// One line cleanup:
//     delete EraseKeyReturnValuePtr(&my_map, "abc");
//
// Use returned value:
//     std::unique_ptr<MyType> value_ptr(
//         EraseKeyReturnValuePtr(&my_map, "abc"));
//     if (value_ptr.get())
//       value_ptr->DoSomething();
//
template <class Collection>
typename Collection::value_type::second_type EraseKeyReturnValuePtr(
    Collection* const collection,
    const typename Collection::value_type::first_type& key) {
  typename Collection::iterator it = collection->find(key);
  if (it == collection->end()) {
    return nullptr;
  }
  typename Collection::value_type::second_type v = it->second;
  collection->erase(it);
  return v;
}

// Inserts all the keys from map_container into key_container, which must
// support insert(MapContainer::key_type).
//
// Note: any initial contents of the key_container are not cleared.
template <class MapContainer, class KeyContainer>
void InsertKeysFromMap(const MapContainer& map_container,
                       KeyContainer* key_container) {
  GOOGLE_CHECK(key_container != nullptr);
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    key_container->insert(it->first);
  }
}

// Appends all the keys from map_container into key_container, which must
// support push_back(MapContainer::key_type).
//
// Note: any initial contents of the key_container are not cleared.
template <class MapContainer, class KeyContainer>
void AppendKeysFromMap(const MapContainer& map_container,
                       KeyContainer* key_container) {
  GOOGLE_CHECK(key_container != nullptr);
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    key_container->push_back(it->first);
  }
}

// A more specialized overload of AppendKeysFromMap to optimize reallocations
// for the common case in which we're appending keys to a vector and hence can
// (and sometimes should) call reserve() first.
//
// (It would be possible to play SFINAE games to call reserve() for any
// container that supports it, but this seems to get us 99% of what we need
// without the complexity of a SFINAE-based solution.)
template <class MapContainer, class KeyType>
void AppendKeysFromMap(const MapContainer& map_container,
                       std::vector<KeyType>* key_container) {
  GOOGLE_CHECK(key_container != nullptr);
  // We now have the opportunity to call reserve(). Calling reserve() every
  // time is a bad idea for some use cases: libstdc++'s implementation of
  // vector<>::reserve() resizes the vector's backing store to exactly the
  // given size (unless it's already at least that big). Because of this,
  // the use case that involves appending a lot of small maps (total size
  // N) one by one to a vector would be O(N^2). But never calling reserve()
  // loses the opportunity to improve the use case of adding from a large
  // map to an empty vector (this improves performance by up to 33%). A
  // number of heuristics are possible; see the discussion in
  // cl/34081696. Here we use the simplest one.
  if (key_container->empty()) {
    key_container->reserve(map_container.size());
  }
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    key_container->push_back(it->first);
  }
}

// Inserts all the values from map_container into value_container, which must
// support push_back(MapContainer::mapped_type).
//
// Note: any initial contents of the value_container are not cleared.
template <class MapContainer, class ValueContainer>
void AppendValuesFromMap(const MapContainer& map_container,
                         ValueContainer* value_container) {
  GOOGLE_CHECK(value_container != nullptr);
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    value_container->push_back(it->second);
  }
}

// A more specialized overload of AppendValuesFromMap to optimize reallocations
// for the common case in which we're appending values to a vector and hence
// can (and sometimes should) call reserve() first.
//
// (It would be possible to play SFINAE games to call reserve() for any
// container that supports it, but this seems to get us 99% of what we need
// without the complexity of a SFINAE-based solution.)
template <class MapContainer, class ValueType>
void AppendValuesFromMap(const MapContainer& map_container,
                         std::vector<ValueType>* value_container) {
  GOOGLE_CHECK(value_container != nullptr);
  // See AppendKeysFromMap for why this is done.
  if (value_container->empty()) {
    value_container->reserve(map_container.size());
  }
  for (typename MapContainer::const_iterator it = map_container.begin();
       it != map_container.end(); ++it) {
    value_container->push_back(it->second);
  }
}

}  // namespace protobuf
}  // namespace google

#endif  // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__