1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef GOOGLE_PROTOBUF_METADATA_LITE_H__
#define GOOGLE_PROTOBUF_METADATA_LITE_H__
#include <string>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/port.h>
#include <google/protobuf/port_def.inc>
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
namespace internal {
// This is the representation for messages that support arena allocation. It
// uses a tagged pointer to either store the owning Arena pointer, if there are
// no unknown fields, or a pointer to a block of memory with both the owning
// Arena pointer and the UnknownFieldSet, if there are unknown fields. Besides,
// it also uses the tag to distinguish whether the owning Arena pointer is also
// used by sub-structure allocation. This optimization allows for
// "zero-overhead" storage of the Arena pointer, relative to the above baseline
// implementation.
//
// The tagged pointer uses the least two significant bits to disambiguate cases.
// It uses bit 0 == 0 to indicate an arena pointer and bit 0 == 1 to indicate a
// UFS+Arena-container pointer. Besides it uses bit 1 == 0 to indicate arena
// allocation and bit 1 == 1 to indicate heap allocation.
class InternalMetadata {
public:
constexpr InternalMetadata() : ptr_(0) {}
explicit InternalMetadata(Arena* arena, bool is_message_owned = false)
: ptr_(is_message_owned
? reinterpret_cast<intptr_t>(arena) | kMessageOwnedArenaTagMask
: reinterpret_cast<intptr_t>(arena)) {
GOOGLE_DCHECK(!is_message_owned || arena != nullptr);
}
~InternalMetadata() {
if (HasMessageOwnedArenaTag()) {
delete arena();
}
}
template <typename T>
void Delete() {
// Note that Delete<> should be called not more than once.
if (have_unknown_fields()) {
DeleteOutOfLineHelper<T>();
}
}
PROTOBUF_NDEBUG_INLINE Arena* owning_arena() const {
return HasMessageOwnedArenaTag() ? nullptr : arena();
}
PROTOBUF_NDEBUG_INLINE Arena* arena() const {
if (PROTOBUF_PREDICT_FALSE(have_unknown_fields())) {
return PtrValue<ContainerBase>()->arena;
} else {
return PtrValue<Arena>();
}
}
PROTOBUF_NDEBUG_INLINE bool have_unknown_fields() const {
return HasUnknownFieldsTag();
}
PROTOBUF_NDEBUG_INLINE void* raw_arena_ptr() const {
return reinterpret_cast<void*>(ptr_);
}
template <typename T>
PROTOBUF_NDEBUG_INLINE const T& unknown_fields(
const T& (*default_instance)()) const {
if (PROTOBUF_PREDICT_FALSE(have_unknown_fields())) {
return PtrValue<Container<T>>()->unknown_fields;
} else {
return default_instance();
}
}
template <typename T>
PROTOBUF_NDEBUG_INLINE T* mutable_unknown_fields() {
if (PROTOBUF_PREDICT_TRUE(have_unknown_fields())) {
return &PtrValue<Container<T>>()->unknown_fields;
} else {
return mutable_unknown_fields_slow<T>();
}
}
template <typename T>
PROTOBUF_NDEBUG_INLINE void Swap(InternalMetadata* other) {
// Semantics here are that we swap only the unknown fields, not the arena
// pointer. We cannot simply swap ptr_ with other->ptr_ because we need to
// maintain our own arena ptr. Also, our ptr_ and other's ptr_ may be in
// different states (direct arena pointer vs. container with UFS) so we
// cannot simply swap ptr_ and then restore the arena pointers. We reuse
// UFS's swap implementation instead.
if (have_unknown_fields() || other->have_unknown_fields()) {
DoSwap<T>(other->mutable_unknown_fields<T>());
}
}
PROTOBUF_NDEBUG_INLINE void InternalSwap(InternalMetadata* other) {
std::swap(ptr_, other->ptr_);
}
template <typename T>
PROTOBUF_NDEBUG_INLINE void MergeFrom(const InternalMetadata& other) {
if (other.have_unknown_fields()) {
DoMergeFrom<T>(other.unknown_fields<T>(nullptr));
}
}
template <typename T>
PROTOBUF_NDEBUG_INLINE void Clear() {
if (have_unknown_fields()) {
DoClear<T>();
}
}
private:
intptr_t ptr_;
// Tagged pointer implementation.
static constexpr intptr_t kUnknownFieldsTagMask = 1;
static constexpr intptr_t kMessageOwnedArenaTagMask = 2;
static constexpr intptr_t kPtrTagMask =
kUnknownFieldsTagMask | kMessageOwnedArenaTagMask;
static constexpr intptr_t kPtrValueMask = ~kPtrTagMask;
// Accessors for pointer tag and pointer value.
PROTOBUF_ALWAYS_INLINE bool HasUnknownFieldsTag() const {
return ptr_ & kUnknownFieldsTagMask;
}
PROTOBUF_ALWAYS_INLINE bool HasMessageOwnedArenaTag() const {
return ptr_ & kMessageOwnedArenaTagMask;
}
template <typename U>
U* PtrValue() const {
return reinterpret_cast<U*>(ptr_ & kPtrValueMask);
}
// If ptr_'s tag is kTagContainer, it points to an instance of this struct.
struct ContainerBase {
Arena* arena;
};
template <typename T>
struct Container : public ContainerBase {
T unknown_fields;
};
template <typename T>
PROTOBUF_NOINLINE void DeleteOutOfLineHelper() {
if (arena() == nullptr) {
delete PtrValue<Container<T>>();
}
}
template <typename T>
PROTOBUF_NOINLINE T* mutable_unknown_fields_slow() {
Arena* my_arena = arena();
Container<T>* container = Arena::Create<Container<T>>(my_arena);
intptr_t message_owned_arena_tag = ptr_ & kMessageOwnedArenaTagMask;
// Two-step assignment works around a bug in clang's static analyzer:
// https://bugs.llvm.org/show_bug.cgi?id=34198.
ptr_ = reinterpret_cast<intptr_t>(container);
ptr_ |= kUnknownFieldsTagMask | message_owned_arena_tag;
container->arena = my_arena;
return &(container->unknown_fields);
}
// Templated functions.
template <typename T>
PROTOBUF_NOINLINE void DoClear() {
mutable_unknown_fields<T>()->Clear();
}
template <typename T>
PROTOBUF_NOINLINE void DoMergeFrom(const T& other) {
mutable_unknown_fields<T>()->MergeFrom(other);
}
template <typename T>
PROTOBUF_NOINLINE void DoSwap(T* other) {
mutable_unknown_fields<T>()->Swap(other);
}
};
// String Template specializations.
template <>
PROTOBUF_EXPORT void InternalMetadata::DoClear<TProtoStringType>();
template <>
PROTOBUF_EXPORT void InternalMetadata::DoMergeFrom<TProtoStringType>(
const TProtoStringType& other);
template <>
PROTOBUF_EXPORT void InternalMetadata::DoSwap<TProtoStringType>(TProtoStringType* other);
// This helper RAII class is needed to efficiently parse unknown fields. We
// should only call mutable_unknown_fields if there are actual unknown fields.
// The obvious thing to just use a stack string and swap it at the end of
// the parse won't work, because the destructor of StringOutputStream needs to
// be called before we can modify the string (it check-fails). Using
// LiteUnknownFieldSetter setter(&_internal_metadata_);
// StringOutputStream stream(setter.buffer());
// guarantees that the string is only swapped after stream is destroyed.
class PROTOBUF_EXPORT LiteUnknownFieldSetter {
public:
explicit LiteUnknownFieldSetter(InternalMetadata* metadata)
: metadata_(metadata) {
if (metadata->have_unknown_fields()) {
buffer_.swap(*metadata->mutable_unknown_fields<TProtoStringType>());
}
}
~LiteUnknownFieldSetter() {
if (!buffer_.empty())
metadata_->mutable_unknown_fields<TProtoStringType>()->swap(buffer_);
}
TProtoStringType* buffer() { return &buffer_; }
private:
InternalMetadata* metadata_;
TProtoStringType buffer_;
};
} // namespace internal
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>
#endif // GOOGLE_PROTOBUF_METADATA_LITE_H__
|