1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.
#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
#include <algorithm>
#include <cassert>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/parse_context.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/port.h>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/wire_format_lite.h>
// clang-format off
#include <google/protobuf/port_def.inc> // Must be last
// clang-format on
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Arena;
class Descriptor; // descriptor.h
class FieldDescriptor; // descriptor.h
class DescriptorPool; // descriptor.h
class MessageLite; // message_lite.h
class Message; // message.h
class MessageFactory; // message.h
class Reflection; // message.h
class UnknownFieldSet; // unknown_field_set.h
namespace internal {
class FieldSkipper; // wire_format_lite.h
} // namespace internal
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace internal {
class InternalMetadata;
// Used to store values of type WireFormatLite::FieldType without having to
// #include wire_format_lite.h. Also, ensures that we use only one byte to
// store these values, which is important to keep the layout of
// ExtensionSet::Extension small.
typedef uint8_t FieldType;
// A function which, given an integer value, returns true if the number
// matches one of the defined values for the corresponding enum type. This
// is used with RegisterEnumExtension, below.
typedef bool EnumValidityFunc(int number);
// Version of the above which takes an argument. This is needed to deal with
// extensions that are not compiled in.
typedef bool EnumValidityFuncWithArg(const void* arg, int number);
// Information about a registered extension.
struct ExtensionInfo {
constexpr ExtensionInfo() : enum_validity_check() {}
constexpr ExtensionInfo(const MessageLite* extendee, int param_number,
FieldType type_param, bool isrepeated, bool ispacked)
: message(extendee),
number(param_number),
type(type_param),
is_repeated(isrepeated),
is_packed(ispacked),
enum_validity_check() {}
const MessageLite* message = nullptr;
int number = 0;
FieldType type = 0;
bool is_repeated = false;
bool is_packed = false;
struct EnumValidityCheck {
EnumValidityFuncWithArg* func;
const void* arg;
};
struct MessageInfo {
const MessageLite* prototype;
};
union {
EnumValidityCheck enum_validity_check;
MessageInfo message_info;
};
// The descriptor for this extension, if one exists and is known. May be
// nullptr. Must not be nullptr if the descriptor for the extension does not
// live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor = nullptr;
};
// Abstract interface for an object which looks up extension definitions. Used
// when parsing.
class PROTOBUF_EXPORT ExtensionFinder {
public:
virtual ~ExtensionFinder();
// Find the extension with the given containing type and number.
virtual bool Find(int number, ExtensionInfo* output) = 0;
};
// Implementation of ExtensionFinder which finds extensions defined in .proto
// files which have been compiled into the binary.
class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
public:
explicit GeneratedExtensionFinder(const MessageLite* extendee)
: extendee_(extendee) {}
~GeneratedExtensionFinder() override {}
// Returns true and fills in *output if found, otherwise returns false.
bool Find(int number, ExtensionInfo* output) override;
private:
const MessageLite* extendee_;
};
// A FieldSkipper used for parsing MessageSet.
class MessageSetFieldSkipper;
// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
// finding extensions from a DescriptorPool.
// This is an internal helper class intended for use within the protocol buffer
// library and generated classes. Clients should not use it directly. Instead,
// use the generated accessors such as GetExtension() of the class being
// extended.
//
// This class manages extensions for a protocol message object. The
// message's HasExtension(), GetExtension(), MutableExtension(), and
// ClearExtension() methods are just thin wrappers around the embedded
// ExtensionSet. When parsing, if a tag number is encountered which is
// inside one of the message type's extension ranges, the tag is passed
// off to the ExtensionSet for parsing. Etc.
class PROTOBUF_EXPORT ExtensionSet {
public:
constexpr ExtensionSet();
explicit ExtensionSet(Arena* arena);
~ExtensionSet();
// These are called at startup by protocol-compiler-generated code to
// register known extensions. The registrations are used by ParseField()
// to look up extensions for parsed field numbers. Note that dynamic parsing
// does not use ParseField(); only protocol-compiler-generated parsing
// methods do.
static void RegisterExtension(const MessageLite* extendee, int number,
FieldType type, bool is_repeated,
bool is_packed);
static void RegisterEnumExtension(const MessageLite* extendee, int number,
FieldType type, bool is_repeated,
bool is_packed, EnumValidityFunc* is_valid);
static void RegisterMessageExtension(const MessageLite* extendee, int number,
FieldType type, bool is_repeated,
bool is_packed,
const MessageLite* prototype);
// =================================================================
// Add all fields which are currently present to the given vector. This
// is useful to implement Reflection::ListFields().
void AppendToList(const Descriptor* extendee, const DescriptorPool* pool,
std::vector<const FieldDescriptor*>* output) const;
// =================================================================
// Accessors
//
// Generated message classes include type-safe templated wrappers around
// these methods. Generally you should use those rather than call these
// directly, unless you are doing low-level memory management.
//
// When calling any of these accessors, the extension number requested
// MUST exist in the DescriptorPool provided to the constructor. Otherwise,
// the method will fail an assert. Normally, though, you would not call
// these directly; you would either call the generated accessors of your
// message class (e.g. GetExtension()) or you would call the accessors
// of the reflection interface. In both cases, it is impossible to
// trigger this assert failure: the generated accessors only accept
// linked-in extension types as parameters, while the Reflection interface
// requires you to provide the FieldDescriptor describing the extension.
//
// When calling any of these accessors, a protocol-compiler-generated
// implementation of the extension corresponding to the number MUST
// be linked in, and the FieldDescriptor used to refer to it MUST be
// the one generated by that linked-in code. Otherwise, the method will
// die on an assert failure. The message objects returned by the message
// accessors are guaranteed to be of the correct linked-in type.
//
// These methods pretty much match Reflection except that:
// - They're not virtual.
// - They identify fields by number rather than FieldDescriptors.
// - They identify enum values using integers rather than descriptors.
// - Strings provide Mutable() in addition to Set() accessors.
bool Has(int number) const;
int ExtensionSize(int number) const; // Size of a repeated extension.
int NumExtensions() const; // The number of extensions
FieldType ExtensionType(int number) const;
void ClearExtension(int number);
// singular fields -------------------------------------------------
arc_i32 GetInt32(int number, arc_i32 default_value) const;
arc_i64 GetInt64(int number, arc_i64 default_value) const;
arc_ui32 GetUInt32(int number, arc_ui32 default_value) const;
arc_ui64 GetUInt64(int number, arc_ui64 default_value) const;
float GetFloat(int number, float default_value) const;
double GetDouble(int number, double default_value) const;
bool GetBool(int number, bool default_value) const;
int GetEnum(int number, int default_value) const;
const TProtoStringType& GetString(int number,
const TProtoStringType& default_value) const;
const MessageLite& GetMessage(int number,
const MessageLite& default_value) const;
const MessageLite& GetMessage(int number, const Descriptor* message_type,
MessageFactory* factory) const;
// |descriptor| may be nullptr so long as it is known that the descriptor for
// the extension lives in the same pool as the descriptor for the containing
// type.
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void SetInt32(int number, FieldType type, arc_i32 value, desc);
void SetInt64(int number, FieldType type, arc_i64 value, desc);
void SetUInt32(int number, FieldType type, arc_ui32 value, desc);
void SetUInt64(int number, FieldType type, arc_ui64 value, desc);
void SetFloat(int number, FieldType type, float value, desc);
void SetDouble(int number, FieldType type, double value, desc);
void SetBool(int number, FieldType type, bool value, desc);
void SetEnum(int number, FieldType type, int value, desc);
void SetString(int number, FieldType type, TProtoStringType value, desc);
TProtoStringType* MutableString(int number, FieldType type, desc);
MessageLite* MutableMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* MutableMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
// Adds the given message to the ExtensionSet, taking ownership of the
// message object. Existing message with the same number will be deleted.
// If "message" is nullptr, this is equivalent to "ClearExtension(number)".
void SetAllocatedMessage(int number, FieldType type,
const FieldDescriptor* descriptor,
MessageLite* message);
void UnsafeArenaSetAllocatedMessage(int number, FieldType type,
const FieldDescriptor* descriptor,
MessageLite* message);
PROTOBUF_NODISCARD MessageLite* ReleaseMessage(int number,
const MessageLite& prototype);
MessageLite* UnsafeArenaReleaseMessage(int number,
const MessageLite& prototype);
PROTOBUF_NODISCARD MessageLite* ReleaseMessage(
const FieldDescriptor* descriptor, MessageFactory* factory);
MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
#undef desc
Arena* GetArena() const { return arena_; }
// repeated fields -------------------------------------------------
// Fetches a RepeatedField extension by number; returns |default_value|
// if no such extension exists. User should not touch this directly; it is
// used by the GetRepeatedExtension() method.
const void* GetRawRepeatedField(int number, const void* default_value) const;
// Fetches a mutable version of a RepeatedField extension by number,
// instantiating one if none exists. Similar to above, user should not use
// this directly; it underlies MutableRepeatedExtension().
void* MutableRawRepeatedField(int number, FieldType field_type, bool packed,
const FieldDescriptor* desc);
// This is an overload of MutableRawRepeatedField to maintain compatibility
// with old code using a previous API. This version of
// MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension.
// (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
void* MutableRawRepeatedField(int number);
arc_i32 GetRepeatedInt32(int number, int index) const;
arc_i64 GetRepeatedInt64(int number, int index) const;
arc_ui32 GetRepeatedUInt32(int number, int index) const;
arc_ui64 GetRepeatedUInt64(int number, int index) const;
float GetRepeatedFloat(int number, int index) const;
double GetRepeatedDouble(int number, int index) const;
bool GetRepeatedBool(int number, int index) const;
int GetRepeatedEnum(int number, int index) const;
const TProtoStringType& GetRepeatedString(int number, int index) const;
const MessageLite& GetRepeatedMessage(int number, int index) const;
void SetRepeatedInt32(int number, int index, arc_i32 value);
void SetRepeatedInt64(int number, int index, arc_i64 value);
void SetRepeatedUInt32(int number, int index, arc_ui32 value);
void SetRepeatedUInt64(int number, int index, arc_ui64 value);
void SetRepeatedFloat(int number, int index, float value);
void SetRepeatedDouble(int number, int index, double value);
void SetRepeatedBool(int number, int index, bool value);
void SetRepeatedEnum(int number, int index, int value);
void SetRepeatedString(int number, int index, TProtoStringType value);
TProtoStringType* MutableRepeatedString(int number, int index);
MessageLite* MutableRepeatedMessage(int number, int index);
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void AddInt32(int number, FieldType type, bool packed, arc_i32 value, desc);
void AddInt64(int number, FieldType type, bool packed, arc_i64 value, desc);
void AddUInt32(int number, FieldType type, bool packed, arc_ui32 value, desc);
void AddUInt64(int number, FieldType type, bool packed, arc_ui64 value, desc);
void AddFloat(int number, FieldType type, bool packed, float value, desc);
void AddDouble(int number, FieldType type, bool packed, double value, desc);
void AddBool(int number, FieldType type, bool packed, bool value, desc);
void AddEnum(int number, FieldType type, bool packed, int value, desc);
void AddString(int number, FieldType type, TProtoStringType value, desc);
TProtoStringType* AddString(int number, FieldType type, desc);
MessageLite* AddMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* AddMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
void AddAllocatedMessage(const FieldDescriptor* descriptor,
MessageLite* new_entry);
void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor,
MessageLite* new_entry);
#undef desc
void RemoveLast(int number);
PROTOBUF_NODISCARD MessageLite* ReleaseLast(int number);
MessageLite* UnsafeArenaReleaseLast(int number);
void SwapElements(int number, int index1, int index2);
// -----------------------------------------------------------------
// TODO(kenton): Hardcore memory management accessors
// =================================================================
// convenience methods for implementing methods of Message
//
// These could all be implemented in terms of the other methods of this
// class, but providing them here helps keep the generated code size down.
void Clear();
void MergeFrom(const MessageLite* extendee, const ExtensionSet& other);
void Swap(const MessageLite* extendee, ExtensionSet* other);
void InternalSwap(ExtensionSet* other);
void SwapExtension(const MessageLite* extendee, ExtensionSet* other,
int number);
void UnsafeShallowSwapExtension(ExtensionSet* other, int number);
bool IsInitialized() const;
// Parses a single extension from the input. The input should start out
// positioned immediately after the tag.
bool ParseField(arc_ui32 tag, io::CodedInputStream* input,
ExtensionFinder* extension_finder,
FieldSkipper* field_skipper);
// Specific versions for lite or full messages (constructs the appropriate
// FieldSkipper automatically). |extendee| is the default
// instance for the containing message; it is used only to look up the
// extension by number. See RegisterExtension(), above. Unlike the other
// methods of ExtensionSet, this only works for generated message types --
// it looks up extensions registered using RegisterExtension().
bool ParseField(arc_ui32 tag, io::CodedInputStream* input,
const MessageLite* extendee);
bool ParseField(arc_ui32 tag, io::CodedInputStream* input,
const Message* extendee, UnknownFieldSet* unknown_fields);
bool ParseField(arc_ui32 tag, io::CodedInputStream* input,
const MessageLite* extendee,
io::CodedOutputStream* unknown_fields);
// Lite parser
const char* ParseField(arc_ui64 tag, const char* ptr,
const MessageLite* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
// Full parser
const char* ParseField(arc_ui64 tag, const char* ptr, const Message* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
template <typename Msg>
const char* ParseMessageSet(const char* ptr, const Msg* extendee,
InternalMetadata* metadata,
internal::ParseContext* ctx) {
struct MessageSetItem {
const char* _InternalParse(const char* ptr, ParseContext* ctx) {
return me->ParseMessageSetItem(ptr, extendee, metadata, ctx);
}
ExtensionSet* me;
const Msg* extendee;
InternalMetadata* metadata;
} item{this, extendee, metadata};
while (!ctx->Done(&ptr)) {
arc_ui32 tag;
ptr = ReadTag(ptr, &tag);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
if (tag == WireFormatLite::kMessageSetItemStartTag) {
ptr = ctx->ParseGroup(&item, ptr, tag);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
} else {
if (tag == 0 || (tag & 7) == 4) {
ctx->SetLastTag(tag);
return ptr;
}
ptr = ParseField(tag, ptr, extendee, metadata, ctx);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
}
}
return ptr;
}
// Parse an entire message in MessageSet format. Such messages have no
// fields, only extensions.
bool ParseMessageSetLite(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
FieldSkipper* field_skipper);
bool ParseMessageSet(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Specific versions for lite or full messages (constructs the appropriate
// FieldSkipper automatically).
bool ParseMessageSet(io::CodedInputStream* input, const MessageLite* extendee,
TProtoStringType* unknown_fields);
bool ParseMessageSet(io::CodedInputStream* input, const Message* extendee,
UnknownFieldSet* unknown_fields);
// Write all extension fields with field numbers in the range
// [start_field_number, end_field_number)
// to the output stream, using the cached sizes computed when ByteSize() was
// last called. Note that the range bounds are inclusive-exclusive.
void SerializeWithCachedSizes(const MessageLite* extendee,
int start_field_number, int end_field_number,
io::CodedOutputStream* output) const {
output->SetCur(_InternalSerialize(extendee, start_field_number,
end_field_number, output->Cur(),
output->EpsCopy()));
}
// Same as SerializeWithCachedSizes, but without any bounds checking.
// The caller must ensure that target has sufficient capacity for the
// serialized extensions.
//
// Returns a pointer past the last written byte.
uint8_t* _InternalSerialize(const MessageLite* extendee,
int start_field_number, int end_field_number,
uint8_t* target,
io::EpsCopyOutputStream* stream) const {
if (flat_size_ == 0) {
assert(!is_large());
return target;
}
return _InternalSerializeImpl(extendee, start_field_number,
end_field_number, target, stream);
}
// Like above but serializes in MessageSet format.
void SerializeMessageSetWithCachedSizes(const MessageLite* extendee,
io::CodedOutputStream* output) const {
output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray(
extendee, output->Cur(), output->EpsCopy()));
}
uint8_t* InternalSerializeMessageSetWithCachedSizesToArray(
const MessageLite* extendee, uint8_t* target,
io::EpsCopyOutputStream* stream) const;
// For backward-compatibility, versions of two of the above methods that
// serialize deterministically iff SetDefaultSerializationDeterministic()
// has been called.
uint8_t* SerializeWithCachedSizesToArray(int start_field_number,
int end_field_number,
uint8_t* target) const;
uint8_t* SerializeMessageSetWithCachedSizesToArray(
const MessageLite* extendee, uint8_t* target) const;
// Returns the total serialized size of all the extensions.
size_t ByteSize() const;
// Like ByteSize() but uses MessageSet format.
size_t MessageSetByteSize() const;
// Returns (an estimate of) the total number of bytes used for storing the
// extensions in memory, excluding sizeof(*this). If the ExtensionSet is
// for a lite message (and thus possibly contains lite messages), the results
// are undefined (might work, might crash, might corrupt data, might not even
// be linked in). It's up to the protocol compiler to avoid calling this on
// such ExtensionSets (easy enough since lite messages don't implement
// SpaceUsed()).
size_t SpaceUsedExcludingSelfLong() const;
// This method just calls SpaceUsedExcludingSelfLong() but it can not be
// inlined because the definition of SpaceUsedExcludingSelfLong() is not
// included in lite runtime and when an inline method refers to it MSVC
// will complain about unresolved symbols when building the lite runtime
// as .dll.
int SpaceUsedExcludingSelf() const;
private:
template <typename Type>
friend class PrimitiveTypeTraits;
template <typename Type>
friend class RepeatedPrimitiveTypeTraits;
template <typename Type, bool IsValid(int)>
friend class EnumTypeTraits;
template <typename Type, bool IsValid(int)>
friend class RepeatedEnumTypeTraits;
friend class google::protobuf::Reflection;
const arc_i32& GetRefInt32(int number, const arc_i32& default_value) const;
const arc_i64& GetRefInt64(int number, const arc_i64& default_value) const;
const arc_ui32& GetRefUInt32(int number, const arc_ui32& default_value) const;
const arc_ui64& GetRefUInt64(int number, const arc_ui64& default_value) const;
const float& GetRefFloat(int number, const float& default_value) const;
const double& GetRefDouble(int number, const double& default_value) const;
const bool& GetRefBool(int number, const bool& default_value) const;
const int& GetRefEnum(int number, const int& default_value) const;
const arc_i32& GetRefRepeatedInt32(int number, int index) const;
const arc_i64& GetRefRepeatedInt64(int number, int index) const;
const arc_ui32& GetRefRepeatedUInt32(int number, int index) const;
const arc_ui64& GetRefRepeatedUInt64(int number, int index) const;
const float& GetRefRepeatedFloat(int number, int index) const;
const double& GetRefRepeatedDouble(int number, int index) const;
const bool& GetRefRepeatedBool(int number, int index) const;
const int& GetRefRepeatedEnum(int number, int index) const;
// Implementation of _InternalSerialize for non-empty map_.
uint8_t* _InternalSerializeImpl(const MessageLite* extendee,
int start_field_number, int end_field_number,
uint8_t* target,
io::EpsCopyOutputStream* stream) const;
// Interface of a lazily parsed singular message extension.
class PROTOBUF_EXPORT LazyMessageExtension {
public:
LazyMessageExtension() {}
virtual ~LazyMessageExtension() {}
virtual LazyMessageExtension* New(Arena* arena) const = 0;
virtual const MessageLite& GetMessage(const MessageLite& prototype,
Arena* arena) const = 0;
virtual MessageLite* MutableMessage(const MessageLite& prototype,
Arena* arena) = 0;
virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0;
virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message,
Arena* arena) = 0;
PROTOBUF_NODISCARD virtual MessageLite* ReleaseMessage(
const MessageLite& prototype, Arena* arena) = 0;
virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype,
Arena* arena) = 0;
virtual bool IsInitialized() const = 0;
PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead")
virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); }
virtual size_t ByteSizeLong() const = 0;
virtual size_t SpaceUsedLong() const = 0;
virtual void MergeFrom(const MessageLite* prototype,
const LazyMessageExtension& other, Arena* arena) = 0;
virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0;
virtual void Clear() = 0;
virtual bool ReadMessage(const MessageLite& prototype,
io::CodedInputStream* input) = 0;
virtual const char* _InternalParse(const Message& prototype, Arena* arena,
const char* ptr, ParseContext* ctx) = 0;
virtual uint8_t* WriteMessageToArray(
const MessageLite* prototype, int number, uint8_t* target,
io::EpsCopyOutputStream* stream) const = 0;
private:
virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable.
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension);
};
// Give access to function defined below to see LazyMessageExtension.
friend LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena);
struct Extension {
// The order of these fields packs Extension into 24 bytes when using 8
// byte alignment. Consider this when adding or removing fields here.
union {
arc_i32 arc_i32_value;
arc_i64 arc_i64_value;
arc_ui32 arc_ui32_value;
arc_ui64 arc_ui64_value;
float float_value;
double double_value;
bool bool_value;
int enum_value;
TProtoStringType* string_value;
MessageLite* message_value;
LazyMessageExtension* lazymessage_value;
RepeatedField<arc_i32>* repeated_arc_i32_value;
RepeatedField<arc_i64>* repeated_arc_i64_value;
RepeatedField<arc_ui32>* repeated_arc_ui32_value;
RepeatedField<arc_ui64>* repeated_arc_ui64_value;
RepeatedField<float>* repeated_float_value;
RepeatedField<double>* repeated_double_value;
RepeatedField<bool>* repeated_bool_value;
RepeatedField<int>* repeated_enum_value;
RepeatedPtrField<TProtoStringType>* repeated_string_value;
RepeatedPtrField<MessageLite>* repeated_message_value;
};
FieldType type;
bool is_repeated;
// For singular types, indicates if the extension is "cleared". This
// happens when an extension is set and then later cleared by the caller.
// We want to keep the Extension object around for reuse, so instead of
// removing it from the map, we just set is_cleared = true. This has no
// meaning for repeated types; for those, the size of the RepeatedField
// simply becomes zero when cleared.
bool is_cleared : 4;
// For singular message types, indicates whether lazy parsing is enabled
// for this extension. This field is only valid when type == TYPE_MESSAGE
// and !is_repeated because we only support lazy parsing for singular
// message types currently. If is_lazy = true, the extension is stored in
// lazymessage_value. Otherwise, the extension will be message_value.
bool is_lazy : 4;
// For repeated types, this indicates if the [packed=true] option is set.
bool is_packed;
// For packed fields, the size of the packed data is recorded here when
// ByteSize() is called then used during serialization.
// TODO(kenton): Use atomic<int> when C++ supports it.
mutable int cached_size;
// The descriptor for this extension, if one exists and is known. May be
// nullptr. Must not be nullptr if the descriptor for the extension does
// not live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor;
// Some helper methods for operations on a single Extension.
uint8_t* InternalSerializeFieldWithCachedSizesToArray(
const MessageLite* extendee, const ExtensionSet* extension_set,
int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray(
const MessageLite* extendee, const ExtensionSet* extension_set,
int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
size_t ByteSize(int number) const;
size_t MessageSetItemByteSize(int number) const;
void Clear();
int GetSize() const;
void Free();
size_t SpaceUsedExcludingSelfLong() const;
bool IsInitialized() const;
};
// The Extension struct is small enough to be passed by value, so we use it
// directly as the value type in mappings rather than use pointers. We use
// sorted maps rather than hash-maps because we expect most ExtensionSets will
// only contain a small number of extension. Also, we want AppendToList and
// deterministic serialization to order fields by field number.
struct KeyValue {
int first;
Extension second;
struct FirstComparator {
bool operator()(const KeyValue& lhs, const KeyValue& rhs) const {
return lhs.first < rhs.first;
}
bool operator()(const KeyValue& lhs, int key) const {
return lhs.first < key;
}
bool operator()(int key, const KeyValue& rhs) const {
return key < rhs.first;
}
};
};
typedef std::map<int, Extension> LargeMap;
// Wrapper API that switches between flat-map and LargeMap.
// Finds a key (if present) in the ExtensionSet.
const Extension* FindOrNull(int key) const;
Extension* FindOrNull(int key);
// Helper-functions that only inspect the LargeMap.
const Extension* FindOrNullInLargeMap(int key) const;
Extension* FindOrNullInLargeMap(int key);
// Inserts a new (key, Extension) into the ExtensionSet (and returns true), or
// finds the already-existing Extension for that key (returns false).
// The Extension* will point to the new-or-found Extension.
std::pair<Extension*, bool> Insert(int key);
// Grows the flat_capacity_.
// If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap.
void GrowCapacity(size_t minimum_new_capacity);
static constexpr uint16_t kMaximumFlatCapacity = 256;
bool is_large() const { return static_cast<int16_t>(flat_size_) < 0; }
// Removes a key from the ExtensionSet.
void Erase(int key);
size_t Size() const {
return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_;
}
// Similar to std::for_each.
// Each Iterator is decomposed into ->first and ->second fields, so
// that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair.
template <typename Iterator, typename KeyValueFunctor>
static KeyValueFunctor ForEach(Iterator begin, Iterator end,
KeyValueFunctor func) {
for (Iterator it = begin; it != end; ++it) func(it->first, it->second);
return std::move(func);
}
// Applies a functor to the <int, Extension&> pairs in sorted order.
template <typename KeyValueFunctor>
KeyValueFunctor ForEach(KeyValueFunctor func) {
if (PROTOBUF_PREDICT_FALSE(is_large())) {
return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
}
return ForEach(flat_begin(), flat_end(), std::move(func));
}
// Applies a functor to the <int, const Extension&> pairs in sorted order.
template <typename KeyValueFunctor>
KeyValueFunctor ForEach(KeyValueFunctor func) const {
if (PROTOBUF_PREDICT_FALSE(is_large())) {
return ForEach(map_.large->begin(), map_.large->end(), std::move(func));
}
return ForEach(flat_begin(), flat_end(), std::move(func));
}
// Merges existing Extension from other_extension
void InternalExtensionMergeFrom(const MessageLite* extendee, int number,
const Extension& other_extension,
Arena* other_arena);
// Returns true and fills field_number and extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
bool FindExtensionInfoFromTag(arc_ui32 tag, ExtensionFinder* extension_finder,
int* field_number, ExtensionInfo* extension,
bool* was_packed_on_wire);
// Returns true and fills extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
ExtensionFinder* extension_finder,
ExtensionInfo* extension,
bool* was_packed_on_wire) const;
// Find the prototype for a LazyMessage from the extension registry. Returns
// null if the extension is not found.
const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee,
int number) const;
// Parses a single extension from the input. The input should start out
// positioned immediately after the wire tag. This method is called in
// ParseField() after field number and was_packed_on_wire is extracted from
// the wire tag and ExtensionInfo is found by the field number.
bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire,
const ExtensionInfo& extension,
io::CodedInputStream* input,
FieldSkipper* field_skipper);
// Like ParseField(), but this method may parse singular message extensions
// lazily depending on the value of FLAGS_eagerly_parse_message_sets.
bool ParseFieldMaybeLazily(int wire_type, int field_number,
io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
// Returns true if extension is present and lazy.
bool HasLazy(int number) const;
// Gets the extension with the given number, creating it if it does not
// already exist. Returns true if the extension did not already exist.
bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
Extension** result);
// Gets the repeated extension for the given descriptor, creating it if
// it does not exist.
Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor);
// Parse a single MessageSet item -- called just after the item group start
// tag has been read.
bool ParseMessageSetItemLite(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
FieldSkipper* field_skipper);
// Parse a single MessageSet item -- called just after the item group start
// tag has been read.
bool ParseMessageSetItem(io::CodedInputStream* input,
ExtensionFinder* extension_finder,
MessageSetFieldSkipper* field_skipper);
bool FindExtension(int wire_type, arc_ui32 field, const MessageLite* extendee,
const internal::ParseContext* /*ctx*/,
ExtensionInfo* extension, bool* was_packed_on_wire) {
GeneratedExtensionFinder finder(extendee);
return FindExtensionInfoFromFieldNumber(wire_type, field, &finder,
extension, was_packed_on_wire);
}
inline bool FindExtension(int wire_type, arc_ui32 field,
const Message* extendee,
const internal::ParseContext* ctx,
ExtensionInfo* extension, bool* was_packed_on_wire);
// Used for MessageSet only
const char* ParseFieldMaybeLazily(arc_ui64 tag, const char* ptr,
const MessageLite* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx) {
// Lite MessageSet doesn't implement lazy.
return ParseField(tag, ptr, extendee, metadata, ctx);
}
const char* ParseFieldMaybeLazily(arc_ui64 tag, const char* ptr,
const Message* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
const char* ParseMessageSetItem(const char* ptr, const Message* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
// Implemented in extension_set_inl.h to keep code out of the header file.
template <typename T>
const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire,
const ExtensionInfo& info,
internal::InternalMetadata* metadata,
const char* ptr,
internal::ParseContext* ctx);
template <typename Msg, typename T>
const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
// Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
// friendship should automatically extend to ExtensionSet::Extension, but
// unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
// correctly. So, we must provide helpers for calling methods of that
// class.
// Defined in extension_set_heavy.cc.
static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong(
RepeatedPtrFieldBase* field);
KeyValue* flat_begin() {
assert(!is_large());
return map_.flat;
}
const KeyValue* flat_begin() const {
assert(!is_large());
return map_.flat;
}
KeyValue* flat_end() {
assert(!is_large());
return map_.flat + flat_size_;
}
const KeyValue* flat_end() const {
assert(!is_large());
return map_.flat + flat_size_;
}
Arena* arena_;
// Manual memory-management:
// map_.flat is an allocated array of flat_capacity_ elements.
// [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix.
uint16_t flat_capacity_;
uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large()
union AllocatedData {
KeyValue* flat;
// If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap,
// which guarantees O(n lg n) CPU but larger constant factors.
LargeMap* large;
} map_;
static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity);
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
};
constexpr ExtensionSet::ExtensionSet()
: arena_(nullptr), flat_capacity_(0), flat_size_(0), map_{nullptr} {}
// These are just for convenience...
inline void ExtensionSet::SetString(int number, FieldType type,
TProtoStringType value,
const FieldDescriptor* descriptor) {
MutableString(number, type, descriptor)->assign(std::move(value));
}
inline void ExtensionSet::SetRepeatedString(int number, int index,
TProtoStringType value) {
MutableRepeatedString(number, index)->assign(std::move(value));
}
inline void ExtensionSet::AddString(int number, FieldType type,
TProtoStringType value,
const FieldDescriptor* descriptor) {
AddString(number, type, descriptor)->assign(std::move(value));
}
// ===================================================================
// Glue for generated extension accessors
// -------------------------------------------------------------------
// Template magic
// First we have a set of classes representing "type traits" for different
// field types. A type traits class knows how to implement basic accessors
// for extensions of a particular type given an ExtensionSet. The signature
// for a type traits class looks like this:
//
// class TypeTraits {
// public:
// typedef ? ConstType;
// typedef ? MutableType;
// // TypeTraits for singular fields and repeated fields will define the
// // symbol "Singular" or "Repeated" respectively. These two symbols will
// // be used in extension accessors to distinguish between singular
// // extensions and repeated extensions. If the TypeTraits for the passed
// // in extension doesn't have the expected symbol defined, it means the
// // user is passing a repeated extension to a singular accessor, or the
// // opposite. In that case the C++ compiler will generate an error
// // message "no matching member function" to inform the user.
// typedef ? Singular
// typedef ? Repeated
//
// static inline ConstType Get(int number, const ExtensionSet& set);
// static inline void Set(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, ExtensionSet* set);
//
// // Variants for repeated fields.
// static inline ConstType Get(int number, const ExtensionSet& set,
// int index);
// static inline void Set(int number, int index,
// ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, int index,
// ExtensionSet* set);
// static inline void Add(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Add(int number, ExtensionSet* set);
// This is used by the ExtensionIdentifier constructor to register
// the extension at dynamic initialization.
// template <typename ExtendeeT>
// static void Register(int number, FieldType type, bool is_packed);
// };
//
// Not all of these methods make sense for all field types. For example, the
// "Mutable" methods only make sense for strings and messages, and the
// repeated methods only make sense for repeated types. So, each type
// traits class implements only the set of methods from this signature that it
// actually supports. This will cause a compiler error if the user tries to
// access an extension using a method that doesn't make sense for its type.
// For example, if "foo" is an extension of type "optional int32", then if you
// try to write code like:
// my_message.MutableExtension(foo)
// you will get a compile error because PrimitiveTypeTraits<arc_i32> does not
// have a "Mutable()" method.
// -------------------------------------------------------------------
// PrimitiveTypeTraits
// Since the ExtensionSet has different methods for each primitive type,
// we must explicitly define the methods of the type traits class for each
// known type.
template <typename Type>
class PrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef PrimitiveTypeTraits<Type> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value);
static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
const ConstType& default_value);
static inline void Set(int number, FieldType field_type, ConstType value,
ExtensionSet* set);
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
type, false, is_packed);
}
};
template <typename Type>
class RepeatedPrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
typedef RepeatedField<Type> RepeatedFieldType;
static inline Type Get(int number, const ExtensionSet& set, int index);
static inline const Type* GetPtr(int number, const ExtensionSet& set,
int index);
static inline const RepeatedField<ConstType>* GetRepeatedPtr(
int number, const ExtensionSet& set);
static inline void Set(int number, int index, Type value, ExtensionSet* set);
static inline void Add(int number, FieldType field_type, bool is_packed,
Type value, ExtensionSet* set);
static inline const RepeatedField<ConstType>& GetRepeated(
int number, const ExtensionSet& set);
static inline RepeatedField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set);
static const RepeatedFieldType* GetDefaultRepeatedField();
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
type, true, is_packed);
}
};
class PROTOBUF_EXPORT RepeatedPrimitiveDefaults {
private:
template <typename Type>
friend class RepeatedPrimitiveTypeTraits;
static const RepeatedPrimitiveDefaults* default_instance();
RepeatedField<arc_i32> default_repeated_field_arc_i32_;
RepeatedField<arc_i64> default_repeated_field_arc_i64_;
RepeatedField<arc_ui32> default_repeated_field_arc_ui32_;
RepeatedField<arc_ui64> default_repeated_field_arc_ui64_;
RepeatedField<double> default_repeated_field_double_;
RepeatedField<float> default_repeated_field_float_;
RepeatedField<bool> default_repeated_field_bool_;
};
#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
template <> \
inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, TYPE default_value) { \
return set.Get##METHOD(number, default_value); \
} \
template <> \
inline const TYPE* PrimitiveTypeTraits<TYPE>::GetPtr( \
int number, const ExtensionSet& set, const TYPE& default_value) { \
return &set.GetRef##METHOD(number, default_value); \
} \
template <> \
inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \
TYPE value, ExtensionSet* set) { \
set->Set##METHOD(number, field_type, value, nullptr); \
} \
\
template <> \
inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, int index) { \
return set.GetRepeated##METHOD(number, index); \
} \
template <> \
inline const TYPE* RepeatedPrimitiveTypeTraits<TYPE>::GetPtr( \
int number, const ExtensionSet& set, int index) { \
return &set.GetRefRepeated##METHOD(number, index); \
} \
template <> \
inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
int number, int index, TYPE value, ExtensionSet* set) { \
set->SetRepeated##METHOD(number, index, value); \
} \
template <> \
inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
int number, FieldType field_type, bool is_packed, TYPE value, \
ExtensionSet* set) { \
set->Add##METHOD(number, field_type, is_packed, value, nullptr); \
} \
template <> \
inline const RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
return &RepeatedPrimitiveDefaults::default_instance() \
->default_repeated_field_##TYPE##_; \
} \
template <> \
inline const RepeatedField<TYPE>& \
RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
const ExtensionSet& set) { \
return *reinterpret_cast<const RepeatedField<TYPE>*>( \
set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \
} \
template <> \
inline const RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::GetRepeatedPtr(int number, \
const ExtensionSet& set) { \
return &GetRepeated(number, set); \
} \
template <> \
inline RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \
int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \
return reinterpret_cast<RepeatedField<TYPE>*>( \
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \
}
PROTOBUF_DEFINE_PRIMITIVE_TYPE(arc_i32, Int32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(arc_i64, Int64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(arc_ui32, UInt32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(arc_ui64, UInt64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool)
#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
// -------------------------------------------------------------------
// StringTypeTraits
// Strings support both Set() and Mutable().
class PROTOBUF_EXPORT StringTypeTraits {
public:
typedef const TProtoStringType& ConstType;
typedef TProtoStringType* MutableType;
typedef StringTypeTraits Singular;
static inline const TProtoStringType& Get(int number, const ExtensionSet& set,
ConstType default_value) {
return set.GetString(number, default_value);
}
static inline const TProtoStringType* GetPtr(int number, const ExtensionSet& set,
ConstType default_value) {
return &Get(number, set, default_value);
}
static inline void Set(int number, FieldType field_type,
const TProtoStringType& value, ExtensionSet* set) {
set->SetString(number, field_type, value, nullptr);
}
static inline TProtoStringType* Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return set->MutableString(number, field_type, nullptr);
}
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
type, false, is_packed);
}
};
class PROTOBUF_EXPORT RepeatedStringTypeTraits {
public:
typedef const TProtoStringType& ConstType;
typedef TProtoStringType* MutableType;
typedef RepeatedStringTypeTraits Repeated;
typedef RepeatedPtrField<TProtoStringType> RepeatedFieldType;
static inline const TProtoStringType& Get(int number, const ExtensionSet& set,
int index) {
return set.GetRepeatedString(number, index);
}
static inline const TProtoStringType* GetPtr(int number, const ExtensionSet& set,
int index) {
return &Get(number, set, index);
}
static inline const RepeatedPtrField<TProtoStringType>* GetRepeatedPtr(
int number, const ExtensionSet& set) {
return &GetRepeated(number, set);
}
static inline void Set(int number, int index, const TProtoStringType& value,
ExtensionSet* set) {
set->SetRepeatedString(number, index, value);
}
static inline TProtoStringType* Mutable(int number, int index, ExtensionSet* set) {
return set->MutableRepeatedString(number, index);
}
static inline void Add(int number, FieldType field_type, bool /*is_packed*/,
const TProtoStringType& value, ExtensionSet* set) {
set->AddString(number, field_type, value, nullptr);
}
static inline TProtoStringType* Add(int number, FieldType field_type,
ExtensionSet* set) {
return set->AddString(number, field_type, nullptr);
}
static inline const RepeatedPtrField<TProtoStringType>& GetRepeated(
int number, const ExtensionSet& set) {
return *reinterpret_cast<const RepeatedPtrField<TProtoStringType>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<TProtoStringType>* MutableRepeated(
int number, FieldType field_type, bool is_packed, ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<TProtoStringType>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
}
static const RepeatedFieldType* GetDefaultRepeatedField();
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number,
type, true, is_packed);
}
private:
static void InitializeDefaultRepeatedFields();
static void DestroyDefaultRepeatedFields();
};
// -------------------------------------------------------------------
// EnumTypeTraits
// ExtensionSet represents enums using integers internally, so we have to
// static_cast around.
template <typename Type, bool IsValid(int)>
class EnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef EnumTypeTraits<Type, IsValid> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<Type>(set.GetEnum(number, default_value));
}
static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
const ConstType& default_value) {
return reinterpret_cast<const Type*>(
&set.GetRefEnum(number, default_value));
}
static inline void Set(int number, FieldType field_type, ConstType value,
ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->SetEnum(number, field_type, value, nullptr);
}
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
type, false, is_packed, IsValid);
}
};
template <typename Type, bool IsValid(int)>
class RepeatedEnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
typedef RepeatedField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<Type>(set.GetRepeatedEnum(number, index));
}
static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
int index) {
return reinterpret_cast<const Type*>(
&set.GetRefRepeatedEnum(number, index));
}
static inline void Set(int number, int index, ConstType value,
ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->SetRepeatedEnum(number, index, value);
}
static inline void Add(int number, FieldType field_type, bool is_packed,
ConstType value, ExtensionSet* set) {
GOOGLE_DCHECK(IsValid(value));
set->AddEnum(number, field_type, is_packed, value, nullptr);
}
static inline const RepeatedField<Type>& GetRepeated(
int number, const ExtensionSet& set) {
// Hack: the `Extension` struct stores a RepeatedField<int> for enums.
// RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
// so we need to do some casting magic. See message.h for similar
// contortions for non-extension fields.
return *reinterpret_cast<const RepeatedField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline const RepeatedField<Type>* GetRepeatedPtr(
int number, const ExtensionSet& set) {
return &GetRepeated(number, set);
}
static inline RepeatedField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
}
static const RepeatedFieldType* GetDefaultRepeatedField() {
// Hack: as noted above, repeated enum fields are internally stored as a
// RepeatedField<int>. We need to be able to instantiate global static
// objects to return as default (empty) repeated fields on non-existent
// extensions. We would not be able to know a-priori all of the enum types
// (values of |Type|) to instantiate all of these, so we just re-use
// arc_i32's default repeated field object.
return reinterpret_cast<const RepeatedField<Type>*>(
RepeatedPrimitiveTypeTraits<arc_i32>::GetDefaultRepeatedField());
}
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number,
type, true, is_packed, IsValid);
}
};
// -------------------------------------------------------------------
// MessageTypeTraits
// ExtensionSet guarantees that when manipulating extensions with message
// types, the implementation used will be the compiled-in class representing
// that type. So, we can static_cast down to the exact type we expect.
template <typename Type>
class MessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
typedef MessageTypeTraits<Type> Singular;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<const Type&>(set.GetMessage(number, default_value));
}
static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */,
ConstType /* default_value */) {
// Cannot be implemented because of forward declared messages?
return nullptr;
}
static inline MutableType Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(set->MutableMessage(
number, field_type, Type::default_instance(), nullptr));
}
static inline void SetAllocated(int number, FieldType field_type,
MutableType message, ExtensionSet* set) {
set->SetAllocatedMessage(number, field_type, nullptr, message);
}
static inline void UnsafeArenaSetAllocated(int number, FieldType field_type,
MutableType message,
ExtensionSet* set) {
set->UnsafeArenaSetAllocatedMessage(number, field_type, nullptr, message);
}
PROTOBUF_NODISCARD static inline MutableType Release(
int number, FieldType /* field_type */, ExtensionSet* set) {
return static_cast<Type*>(
set->ReleaseMessage(number, Type::default_instance()));
}
static inline MutableType UnsafeArenaRelease(int number,
FieldType /* field_type */,
ExtensionSet* set) {
return static_cast<Type*>(
set->UnsafeArenaReleaseMessage(number, Type::default_instance()));
}
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
number, type, false, is_packed,
&Type::default_instance());
}
};
// forward declaration.
class RepeatedMessageGenericTypeTraits;
template <typename Type>
class RepeatedMessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
typedef RepeatedMessageTypeTraits<Type> Repeated;
typedef RepeatedPtrField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
}
static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */,
int /* index */) {
// Cannot be implemented because of forward declared messages?
return nullptr;
}
static inline std::nullptr_t GetRepeatedPtr(int /* number */,
const ExtensionSet& /* set */) {
// Cannot be implemented because of forward declared messages?
return nullptr;
}
static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
}
static inline MutableType Add(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(
set->AddMessage(number, field_type, Type::default_instance(), nullptr));
}
static inline const RepeatedPtrField<Type>& GetRepeated(
int number, const ExtensionSet& set) {
// See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
// casting hack applies here, because a RepeatedPtrField<MessageLite>
// cannot naturally become a RepeatedPtrType<Type> even though Type is
// presumably a message. google::protobuf::Message goes through similar contortions
// with a reinterpret_cast<>.
return *reinterpret_cast<const RepeatedPtrField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
}
static const RepeatedFieldType* GetDefaultRepeatedField();
template <typename ExtendeeT>
static void Register(int number, FieldType type, bool is_packed) {
ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(),
number, type, true, is_packed,
&Type::default_instance());
}
};
template <typename Type>
inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
static auto instance = OnShutdownDelete(new RepeatedFieldType);
return instance;
}
// -------------------------------------------------------------------
// ExtensionIdentifier
// This is the type of actual extension objects. E.g. if you have:
// extend Foo {
// optional int32 bar = 1234;
// }
// then "bar" will be defined in C++ as:
// ExtensionIdentifier<Foo, PrimitiveTypeTraits<arc_i32>, 5, false> bar(1234);
//
// Note that we could, in theory, supply the field number as a template
// parameter, and thus make an instance of ExtensionIdentifier have no
// actual contents. However, if we did that, then using an extension
// identifier would not necessarily cause the compiler to output any sort
// of reference to any symbol defined in the extension's .pb.o file. Some
// linkers will actually drop object files that are not explicitly referenced,
// but that would be bad because it would cause this extension to not be
// registered at static initialization, and therefore using it would crash.
template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type,
bool is_packed>
class ExtensionIdentifier {
public:
typedef TypeTraitsType TypeTraits;
typedef ExtendeeType Extendee;
ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
: number_(number), default_value_(default_value) {
Register(number);
}
inline int number() const { return number_; }
typename TypeTraits::ConstType default_value() const {
return default_value_;
}
static void Register(int number) {
TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed);
}
typename TypeTraits::ConstType const& default_value_ref() const {
return default_value_;
}
private:
const int number_;
typename TypeTraits::ConstType default_value_;
};
// -------------------------------------------------------------------
// Generated accessors
// Used to retrieve a lazy extension, may return nullptr in some environments.
extern PROTOBUF_ATTRIBUTE_WEAK ExtensionSet::LazyMessageExtension*
MaybeCreateLazyExtension(Arena* arena);
} // namespace internal
// Call this function to ensure that this extensions's reflection is linked into
// the binary:
//
// google::protobuf::LinkExtensionReflection(Foo::my_extension);
//
// This will ensure that the following lookup will succeed:
//
// DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension");
//
// This is often relevant for parsing extensions in text mode.
//
// As a side-effect, it will also guarantee that anything else from the same
// .proto file will also be available for lookup in the generated pool.
//
// This function does not actually register the extension, so it does not need
// to be called before the lookup. However it does need to occur in a function
// that cannot be stripped from the binary (ie. it must be reachable from main).
//
// Best practice is to call this function as close as possible to where the
// reflection is actually needed. This function is very cheap to call, so you
// should not need to worry about its runtime overhead except in tight loops (on
// x86-64 it compiles into two "mov" instructions).
template <typename ExtendeeType, typename TypeTraitsType,
internal::FieldType field_type, bool is_packed>
void LinkExtensionReflection(
const google::protobuf::internal::ExtensionIdentifier<
ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
internal::StrongReference(extension);
}
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>
#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__
|