aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/protobuf_old/src/google/protobuf/dynamic_message.cc
blob: b68ecc8d9b2a5becdf2b88ed25bdeadcf5dc0395 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// DynamicMessage is implemented by constructing a data structure which
// has roughly the same memory layout as a generated message would have.
// Then, we use Reflection to implement our reflection interface.  All
// the other operations we need to implement (e.g.  parsing, copying,
// etc.) are already implemented in terms of Reflection, so the rest is
// easy.
//
// The up side of this strategy is that it's very efficient.  We don't
// need to use hash_maps or generic representations of fields.  The
// down side is that this is a low-level memory management hack which
// can be tricky to get right.
//
// As mentioned in the header, we only expose a DynamicMessageFactory
// publicly, not the DynamicMessage class itself.  This is because
// GenericMessageReflection wants to have a pointer to a "default"
// copy of the class, with all fields initialized to their default
// values.  We only want to construct one of these per message type,
// so DynamicMessageFactory stores a cache of default messages for
// each type it sees (each unique Descriptor pointer).  The code
// refers to the "default" copy of the class as the "prototype".
//
// Note on memory allocation:  This module often calls "operator new()"
// to allocate untyped memory, rather than calling something like
// "new uint8_t[]".  This is because "operator new()" means "Give me some
// space which I can use as I please." while "new uint8_t[]" means "Give
// me an array of 8-bit integers.".  In practice, the later may return
// a pointer that is not aligned correctly for general use.  I believe
// Item 8 of "More Effective C++" discusses this in more detail, though
// I don't have the book on me right now so I'm not sure.

#include <google/protobuf/dynamic_message.h>

#include <algorithm>
#include <cstddef>
#include <memory>
#include <new>
#include <unordered_map>

#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/generated_message_reflection.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/unknown_field_set.h>
#include <google/protobuf/stubs/hash.h>
#include <google/protobuf/arenastring.h>
#include <google/protobuf/extension_set.h>
#include <google/protobuf/map_field.h>
#include <google/protobuf/map_field_inl.h>
#include <google/protobuf/map_type_handler.h>
#include <google/protobuf/reflection_ops.h>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/wire_format.h>

#include <google/protobuf/port_def.inc>  // NOLINT

namespace google {
namespace protobuf {

using internal::DynamicMapField;
using internal::ExtensionSet;
using internal::MapField;


using internal::ArenaStringPtr;

// ===================================================================
// Some helper tables and functions...

class DynamicMessageReflectionHelper {
 public:
  static bool IsLazyField(const Reflection* reflection,
                          const FieldDescriptor* field) {
    return reflection->IsLazyField(field);
  }
};

namespace {

bool IsMapFieldInApi(const FieldDescriptor* field) { return field->is_map(); }

// Sync with helpers.h.
inline bool HasHasbit(const FieldDescriptor* field) {
  // This predicate includes proto3 message fields only if they have "optional".
  //   Foo submsg1 = 1;           // HasHasbit() == false
  //   optional Foo submsg2 = 2;  // HasHasbit() == true
  // This is slightly odd, as adding "optional" to a singular proto3 field does
  // not change the semantics or API. However whenever any field in a message
  // has a hasbit, it forces reflection to include hasbit offsets for *all*
  // fields, even if almost all of them are set to -1 (no hasbit). So to avoid
  // causing a sudden size regression for ~all proto3 messages, we give proto3
  // message fields a hasbit only if "optional" is present. If the user is
  // explicitly writing "optional", it is likely they are writing it on
  // primitive fields also.
  return (field->has_optional_keyword() || field->is_required()) &&
         !field->options().weak();
}

inline bool InRealOneof(const FieldDescriptor* field) {
  return field->containing_oneof() &&
         !field->containing_oneof()->is_synthetic();
}

// Compute the byte size of the in-memory representation of the field.
int FieldSpaceUsed(const FieldDescriptor* field) {
  typedef FieldDescriptor FD;  // avoid line wrapping
  if (field->label() == FD::LABEL_REPEATED) {
    switch (field->cpp_type()) {
      case FD::CPPTYPE_INT32:
        return sizeof(RepeatedField<arc_i32>);
      case FD::CPPTYPE_INT64:
        return sizeof(RepeatedField<arc_i64>);
      case FD::CPPTYPE_UINT32:
        return sizeof(RepeatedField<arc_ui32>);
      case FD::CPPTYPE_UINT64:
        return sizeof(RepeatedField<arc_ui64>);
      case FD::CPPTYPE_DOUBLE:
        return sizeof(RepeatedField<double>);
      case FD::CPPTYPE_FLOAT:
        return sizeof(RepeatedField<float>);
      case FD::CPPTYPE_BOOL:
        return sizeof(RepeatedField<bool>);
      case FD::CPPTYPE_ENUM:
        return sizeof(RepeatedField<int>);
      case FD::CPPTYPE_MESSAGE:
        if (IsMapFieldInApi(field)) {
          return sizeof(DynamicMapField);
        } else {
          return sizeof(RepeatedPtrField<Message>);
        }

      case FD::CPPTYPE_STRING:
        switch (field->options().ctype()) {
          default:  // TODO(kenton):  Support other string reps.
          case FieldOptions::STRING:
            return sizeof(RepeatedPtrField<TProtoStringType>);
        }
        break;
    }
  } else {
    switch (field->cpp_type()) {
      case FD::CPPTYPE_INT32:
        return sizeof(arc_i32);
      case FD::CPPTYPE_INT64:
        return sizeof(arc_i64);
      case FD::CPPTYPE_UINT32:
        return sizeof(arc_ui32);
      case FD::CPPTYPE_UINT64:
        return sizeof(arc_ui64);
      case FD::CPPTYPE_DOUBLE:
        return sizeof(double);
      case FD::CPPTYPE_FLOAT:
        return sizeof(float);
      case FD::CPPTYPE_BOOL:
        return sizeof(bool);
      case FD::CPPTYPE_ENUM:
        return sizeof(int);

      case FD::CPPTYPE_MESSAGE:
        return sizeof(Message*);

      case FD::CPPTYPE_STRING:
        switch (field->options().ctype()) {
          default:  // TODO(kenton):  Support other string reps.
          case FieldOptions::STRING:
            return sizeof(ArenaStringPtr);
        }
        break;
    }
  }

  GOOGLE_LOG(DFATAL) << "Can't get here.";
  return 0;
}

inline int DivideRoundingUp(int i, int j) { return (i + (j - 1)) / j; }

static const int kSafeAlignment = sizeof(arc_ui64);
static const int kMaxOneofUnionSize = sizeof(arc_ui64);

inline int AlignTo(int offset, int alignment) {
  return DivideRoundingUp(offset, alignment) * alignment;
}

// Rounds the given byte offset up to the next offset aligned such that any
// type may be stored at it.
inline int AlignOffset(int offset) { return AlignTo(offset, kSafeAlignment); }

#define bitsizeof(T) (sizeof(T) * 8)

}  // namespace

// ===================================================================

class DynamicMessage : public Message {
 public:
  explicit DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info);

  // This should only be used by GetPrototypeNoLock() to avoid dead lock.
  DynamicMessage(DynamicMessageFactory::TypeInfo* type_info, bool lock_factory);

  ~DynamicMessage();

  // Called on the prototype after construction to initialize message fields.
  // Cross linking the default instances allows for fast reflection access of
  // unset message fields. Without it we would have to go to the MessageFactory
  // to get the prototype, which is a much more expensive operation.
  //
  // Generated messages do not cross-link to avoid dynamic initialization of the
  // global instances.
  // Instead, they keep the default instances in the FieldDescriptor objects.
  void CrossLinkPrototypes();

  // implements Message ----------------------------------------------

  Message* New(Arena* arena) const override;

  int GetCachedSize() const override;
  void SetCachedSize(int size) const override;

  Metadata GetMetadata() const override;

#if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation)
  static void operator delete(DynamicMessage* msg, std::destroying_delete_t);
#else
  // We actually allocate more memory than sizeof(*this) when this
  // class's memory is allocated via the global operator new. Thus, we need to
  // manually call the global operator delete. Calling the destructor is taken
  // care of for us. This makes DynamicMessage compatible with -fsized-delete.
  // It doesn't work for MSVC though.
#ifndef _MSC_VER
  static void operator delete(void* ptr) { ::operator delete(ptr); }
#endif  // !_MSC_VER
#endif

 private:
  DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info,
                 Arena* arena);

  void SharedCtor(bool lock_factory);

  // Needed to get the offset of the internal metadata member.
  friend class DynamicMessageFactory;

  bool is_prototype() const;

  inline int OffsetValue(int v, FieldDescriptor::Type type) const {
    if (type == FieldDescriptor::TYPE_MESSAGE) {
      return v & ~0x1u;
    }
    return v;
  }

  inline void* OffsetToPointer(int offset) {
    return reinterpret_cast<uint8_t*>(this) + offset;
  }
  inline const void* OffsetToPointer(int offset) const {
    return reinterpret_cast<const uint8_t*>(this) + offset;
  }

  void* MutableRaw(int i);
  void* MutableExtensionsRaw();
  void* MutableWeakFieldMapRaw();
  void* MutableOneofCaseRaw(int i);
  void* MutableOneofFieldRaw(const FieldDescriptor* f);

  const DynamicMessageFactory::TypeInfo* type_info_;
  mutable std::atomic<int> cached_byte_size_;
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
};

struct DynamicMessageFactory::TypeInfo {
  int size;
  int has_bits_offset;
  int oneof_case_offset;
  int extensions_offset;

  // Not owned by the TypeInfo.
  DynamicMessageFactory* factory;  // The factory that created this object.
  const DescriptorPool* pool;      // The factory's DescriptorPool.
  const Descriptor* type;          // Type of this DynamicMessage.

  // Warning:  The order in which the following pointers are defined is
  //   important (the prototype must be deleted *before* the offsets).
  std::unique_ptr<arc_ui32[]> offsets;
  std::unique_ptr<arc_ui32[]> has_bits_indices;
  std::unique_ptr<const Reflection> reflection;
  // Don't use a unique_ptr to hold the prototype: the destructor for
  // DynamicMessage needs to know whether it is the prototype, and does so by
  // looking back at this field. This would assume details about the
  // implementation of unique_ptr.
  const DynamicMessage* prototype;
  int weak_field_map_offset;  // The offset for the weak_field_map;

  TypeInfo() : prototype(nullptr) {}

  ~TypeInfo() { delete prototype; }
};

DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info)
    : type_info_(type_info), cached_byte_size_(0) {
  SharedCtor(true);
}

DynamicMessage::DynamicMessage(const DynamicMessageFactory::TypeInfo* type_info,
                               Arena* arena)
    : Message(arena), type_info_(type_info), cached_byte_size_(0) {
  SharedCtor(true);
}

DynamicMessage::DynamicMessage(DynamicMessageFactory::TypeInfo* type_info,
                               bool lock_factory)
    : type_info_(type_info), cached_byte_size_(0) {
  // The prototype in type_info has to be set before creating the prototype
  // instance on memory. e.g., message Foo { map<arc_i32, Foo> a = 1; }. When
  // creating prototype for Foo, prototype of the map entry will also be
  // created, which needs the address of the prototype of Foo (the value in
  // map). To break the cyclic dependency, we have to assign the address of
  // prototype into type_info first.
  type_info->prototype = this;
  SharedCtor(lock_factory);
}

inline void* DynamicMessage::MutableRaw(int i) {
  return OffsetToPointer(
      OffsetValue(type_info_->offsets[i], type_info_->type->field(i)->type()));
}
void* DynamicMessage::MutableExtensionsRaw() {
  return OffsetToPointer(type_info_->extensions_offset);
}
void* DynamicMessage::MutableWeakFieldMapRaw() {
  return OffsetToPointer(type_info_->weak_field_map_offset);
}
void* DynamicMessage::MutableOneofCaseRaw(int i) {
  return OffsetToPointer(type_info_->oneof_case_offset + sizeof(arc_ui32) * i);
}
void* DynamicMessage::MutableOneofFieldRaw(const FieldDescriptor* f) {
  return OffsetToPointer(
      OffsetValue(type_info_->offsets[type_info_->type->field_count() +
                                      f->containing_oneof()->index()],
                  f->type()));
}

void DynamicMessage::SharedCtor(bool lock_factory) {
  // We need to call constructors for various fields manually and set
  // default values where appropriate.  We use placement new to call
  // constructors.  If you haven't heard of placement new, I suggest Googling
  // it now.  We use placement new even for primitive types that don't have
  // constructors for consistency.  (In theory, placement new should be used
  // any time you are trying to convert untyped memory to typed memory, though
  // in practice that's not strictly necessary for types that don't have a
  // constructor.)

  const Descriptor* descriptor = type_info_->type;
  // Initialize oneof cases.
  int oneof_count = 0;
  for (int i = 0; i < descriptor->oneof_decl_count(); ++i) {
    if (descriptor->oneof_decl(i)->is_synthetic()) continue;
    new (MutableOneofCaseRaw(oneof_count++)) arc_ui32{0};
  }

  if (type_info_->extensions_offset != -1) {
    new (MutableExtensionsRaw()) ExtensionSet(GetArenaForAllocation());
  }
  for (int i = 0; i < descriptor->field_count(); i++) {
    const FieldDescriptor* field = descriptor->field(i);
    void* field_ptr = MutableRaw(i);
    if (InRealOneof(field)) {
      continue;
    }
    switch (field->cpp_type()) {
#define HANDLE_TYPE(CPPTYPE, TYPE)                                  \
  case FieldDescriptor::CPPTYPE_##CPPTYPE:                          \
    if (!field->is_repeated()) {                                    \
      new (field_ptr) TYPE(field->default_value_##TYPE());          \
    } else {                                                        \
      new (field_ptr) RepeatedField<TYPE>(GetArenaForAllocation()); \
    }                                                               \
    break;

      HANDLE_TYPE(INT32, arc_i32);
      HANDLE_TYPE(INT64, arc_i64);
      HANDLE_TYPE(UINT32, arc_ui32);
      HANDLE_TYPE(UINT64, arc_ui64);
      HANDLE_TYPE(DOUBLE, double);
      HANDLE_TYPE(FLOAT, float);
      HANDLE_TYPE(BOOL, bool);
#undef HANDLE_TYPE

      case FieldDescriptor::CPPTYPE_ENUM:
        if (!field->is_repeated()) {
          new (field_ptr) int{field->default_value_enum()->number()};
        } else {
          new (field_ptr) RepeatedField<int>(GetArenaForAllocation());
        }
        break;

      case FieldDescriptor::CPPTYPE_STRING:
        switch (field->options().ctype()) {
          default:  // TODO(kenton):  Support other string reps.
          case FieldOptions::STRING:
            if (!field->is_repeated()) {
              const TProtoStringType* default_value =
                  field->default_value_string().empty()
                      ? &internal::GetEmptyStringAlreadyInited()
                      : nullptr;
              ArenaStringPtr* asp = new (field_ptr) ArenaStringPtr();
              asp->UnsafeSetDefault(default_value);
            } else {
              new (field_ptr)
                  RepeatedPtrField<TProtoStringType>(GetArenaForAllocation());
            }
            break;
        }
        break;

      case FieldDescriptor::CPPTYPE_MESSAGE: {
        if (!field->is_repeated()) {
          new (field_ptr) Message*(nullptr);
        } else {
          if (IsMapFieldInApi(field)) {
            // We need to lock in most cases to avoid data racing. Only not lock
            // when the constructor is called inside GetPrototype(), in which
            // case we have already locked the factory.
            if (lock_factory) {
              if (GetArenaForAllocation() != nullptr) {
                new (field_ptr) DynamicMapField(
                    type_info_->factory->GetPrototype(field->message_type()),
                    GetArenaForAllocation());
                if (GetOwningArena() != nullptr) {
                  // Needs to destroy the mutex member.
                  GetOwningArena()->OwnDestructor(
                      static_cast<DynamicMapField*>(field_ptr));
                }
              } else {
                new (field_ptr) DynamicMapField(
                    type_info_->factory->GetPrototype(field->message_type()));
              }
            } else {
              if (GetArenaForAllocation() != nullptr) {
                new (field_ptr)
                    DynamicMapField(type_info_->factory->GetPrototypeNoLock(
                                        field->message_type()),
                                    GetArenaForAllocation());
                if (GetOwningArena() != nullptr) {
                  // Needs to destroy the mutex member.
                  GetOwningArena()->OwnDestructor(
                      static_cast<DynamicMapField*>(field_ptr));
                }
              } else {
                new (field_ptr)
                    DynamicMapField(type_info_->factory->GetPrototypeNoLock(
                        field->message_type()));
              }
            }
          } else {
            new (field_ptr) RepeatedPtrField<Message>(GetArenaForAllocation());
          }
        }
        break;
      }
    }
  }
}

bool DynamicMessage::is_prototype() const {
  return type_info_->prototype == this ||
         // If type_info_->prototype is nullptr, then we must be constructing
         // the prototype now, which means we must be the prototype.
         type_info_->prototype == nullptr;
}

#if defined(__cpp_lib_destroying_delete) && defined(__cpp_sized_deallocation)
void DynamicMessage::operator delete(DynamicMessage* msg,
                                     std::destroying_delete_t) {
  const size_t size = msg->type_info_->size;
  msg->~DynamicMessage();
  ::operator delete(msg, size);
}
#endif

DynamicMessage::~DynamicMessage() {
  const Descriptor* descriptor = type_info_->type;

  _internal_metadata_.Delete<UnknownFieldSet>();

  if (type_info_->extensions_offset != -1) {
    reinterpret_cast<ExtensionSet*>(MutableExtensionsRaw())->~ExtensionSet();
  }

  // We need to manually run the destructors for repeated fields and strings,
  // just as we ran their constructors in the DynamicMessage constructor.
  // We also need to manually delete oneof fields if it is set and is string
  // or message.
  // Additionally, if any singular embedded messages have been allocated, we
  // need to delete them, UNLESS we are the prototype message of this type,
  // in which case any embedded messages are other prototypes and shouldn't
  // be touched.
  for (int i = 0; i < descriptor->field_count(); i++) {
    const FieldDescriptor* field = descriptor->field(i);
    if (InRealOneof(field)) {
      void* field_ptr = MutableOneofCaseRaw(field->containing_oneof()->index());
      if (*(reinterpret_cast<const arc_i32*>(field_ptr)) == field->number()) {
        field_ptr = MutableOneofFieldRaw(field);
        if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
          switch (field->options().ctype()) {
            default:
            case FieldOptions::STRING: {
              // Oneof string fields are never set as a default instance.
              // We just need to pass some arbitrary default string to make it
              // work. This allows us to not have the real default accessible
              // from reflection.
              const TProtoStringType* default_value = nullptr;
              reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(
                  default_value, nullptr);
              break;
            }
          }
        } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
            delete *reinterpret_cast<Message**>(field_ptr);
        }
      }
      continue;
    }
    void* field_ptr = MutableRaw(i);

    if (field->is_repeated()) {
      switch (field->cpp_type()) {
#define HANDLE_TYPE(UPPERCASE, LOWERCASE)                  \
  case FieldDescriptor::CPPTYPE_##UPPERCASE:               \
    reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr) \
        ->~RepeatedField<LOWERCASE>();                     \
    break

        HANDLE_TYPE(INT32, arc_i32);
        HANDLE_TYPE(INT64, arc_i64);
        HANDLE_TYPE(UINT32, arc_ui32);
        HANDLE_TYPE(UINT64, arc_ui64);
        HANDLE_TYPE(DOUBLE, double);
        HANDLE_TYPE(FLOAT, float);
        HANDLE_TYPE(BOOL, bool);
        HANDLE_TYPE(ENUM, int);
#undef HANDLE_TYPE

        case FieldDescriptor::CPPTYPE_STRING:
          switch (field->options().ctype()) {
            default:  // TODO(kenton):  Support other string reps.
            case FieldOptions::STRING:
              reinterpret_cast<RepeatedPtrField<TProtoStringType>*>(field_ptr)
                  ->~RepeatedPtrField<TProtoStringType>();
              break;
          }
          break;

        case FieldDescriptor::CPPTYPE_MESSAGE:
          if (IsMapFieldInApi(field)) {
            reinterpret_cast<DynamicMapField*>(field_ptr)->~DynamicMapField();
          } else {
            reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
                ->~RepeatedPtrField<Message>();
          }
          break;
      }

    } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
      switch (field->options().ctype()) {
        default:  // TODO(kenton):  Support other string reps.
        case FieldOptions::STRING: {
          const TProtoStringType* default_value =
              reinterpret_cast<const ArenaStringPtr*>(
                  type_info_->prototype->OffsetToPointer(
                      type_info_->offsets[i]))
                  ->GetPointer();
          reinterpret_cast<ArenaStringPtr*>(field_ptr)->Destroy(default_value,
                                                                nullptr);
          break;
        }
      }
    } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
          if (!is_prototype()) {
        Message* message = *reinterpret_cast<Message**>(field_ptr);
        if (message != nullptr) {
          delete message;
        }
      }
    }
  }
}

void DynamicMessage::CrossLinkPrototypes() {
  // This should only be called on the prototype message.
  GOOGLE_CHECK(is_prototype());

  DynamicMessageFactory* factory = type_info_->factory;
  const Descriptor* descriptor = type_info_->type;

  // Cross-link default messages.
  for (int i = 0; i < descriptor->field_count(); i++) {
    const FieldDescriptor* field = descriptor->field(i);
    if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
        !field->options().weak() && !InRealOneof(field) &&
        !field->is_repeated()) {
      void* field_ptr = MutableRaw(i);
      // For fields with message types, we need to cross-link with the
      // prototype for the field's type.
      // For singular fields, the field is just a pointer which should
      // point to the prototype.
      *reinterpret_cast<const Message**>(field_ptr) =
          factory->GetPrototypeNoLock(field->message_type());
    }
  }
}

Message* DynamicMessage::New(Arena* arena) const {
  if (arena != nullptr) {
    void* new_base = Arena::CreateArray<char>(arena, type_info_->size);
    memset(new_base, 0, type_info_->size);
    return new (new_base) DynamicMessage(type_info_, arena);
  } else {
    void* new_base = operator new(type_info_->size);
    memset(new_base, 0, type_info_->size);
    return new (new_base) DynamicMessage(type_info_);
  }
}

int DynamicMessage::GetCachedSize() const {
  return cached_byte_size_.load(std::memory_order_relaxed);
}

void DynamicMessage::SetCachedSize(int size) const {
  cached_byte_size_.store(size, std::memory_order_relaxed);
}

Metadata DynamicMessage::GetMetadata() const {
  Metadata metadata;
  metadata.descriptor = type_info_->type;
  metadata.reflection = type_info_->reflection.get();
  return metadata;
}

// ===================================================================

DynamicMessageFactory::DynamicMessageFactory()
    : pool_(nullptr), delegate_to_generated_factory_(false) {}

DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
    : pool_(pool), delegate_to_generated_factory_(false) {}

DynamicMessageFactory::~DynamicMessageFactory() {
  for (auto iter = prototypes_.begin(); iter != prototypes_.end(); ++iter) {
    delete iter->second;
  }
}

const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
  MutexLock lock(&prototypes_mutex_);
  return GetPrototypeNoLock(type);
}

const Message* DynamicMessageFactory::GetPrototypeNoLock(
    const Descriptor* type) {
  if (delegate_to_generated_factory_ &&
      type->file()->pool() == DescriptorPool::generated_pool()) {
    return MessageFactory::generated_factory()->GetPrototype(type);
  }

  const TypeInfo** target = &prototypes_[type];
  if (*target != nullptr) {
    // Already exists.
    return (*target)->prototype;
  }

  TypeInfo* type_info = new TypeInfo;
  *target = type_info;

  type_info->type = type;
  type_info->pool = (pool_ == nullptr) ? type->file()->pool() : pool_;
  type_info->factory = this;

  // We need to construct all the structures passed to Reflection's constructor.
  // This includes:
  // - A block of memory that contains space for all the message's fields.
  // - An array of integers indicating the byte offset of each field within
  //   this block.
  // - A big bitfield containing a bit for each field indicating whether
  //   or not that field is set.
  int real_oneof_count = 0;
  for (int i = 0; i < type->oneof_decl_count(); i++) {
    if (!type->oneof_decl(i)->is_synthetic()) {
      real_oneof_count++;
    }
  }

  // Compute size and offsets.
  arc_ui32* offsets = new arc_ui32[type->field_count() + real_oneof_count];
  type_info->offsets.reset(offsets);

  // Decide all field offsets by packing in order.
  // We place the DynamicMessage object itself at the beginning of the allocated
  // space.
  int size = sizeof(DynamicMessage);
  size = AlignOffset(size);

  // Next the has_bits, which is an array of uint32s.
  type_info->has_bits_offset = -1;
  int max_hasbit = 0;
  for (int i = 0; i < type->field_count(); i++) {
    if (HasHasbit(type->field(i))) {
      if (type_info->has_bits_offset == -1) {
        // At least one field in the message requires a hasbit, so allocate
        // hasbits.
        type_info->has_bits_offset = size;
        arc_ui32* has_bits_indices = new arc_ui32[type->field_count()];
        for (int j = 0; j < type->field_count(); j++) {
          // Initialize to -1, fields that need a hasbit will overwrite.
          has_bits_indices[j] = static_cast<arc_ui32>(-1);
        }
        type_info->has_bits_indices.reset(has_bits_indices);
      }
      type_info->has_bits_indices[i] = max_hasbit++;
    }
  }

  if (max_hasbit > 0) {
    int has_bits_array_size = DivideRoundingUp(max_hasbit, bitsizeof(arc_ui32));
    size += has_bits_array_size * sizeof(arc_ui32);
    size = AlignOffset(size);
  }

  // The oneof_case, if any. It is an array of uint32s.
  if (real_oneof_count > 0) {
    type_info->oneof_case_offset = size;
    size += real_oneof_count * sizeof(arc_ui32);
    size = AlignOffset(size);
  }

  // The ExtensionSet, if any.
  if (type->extension_range_count() > 0) {
    type_info->extensions_offset = size;
    size += sizeof(ExtensionSet);
    size = AlignOffset(size);
  } else {
    // No extensions.
    type_info->extensions_offset = -1;
  }

  // All the fields.
  //
  // TODO(b/31226269):  Optimize the order of fields to minimize padding.
  for (int i = 0; i < type->field_count(); i++) {
    // Make sure field is aligned to avoid bus errors.
    // Oneof fields do not use any space.
    if (!InRealOneof(type->field(i))) {
      int field_size = FieldSpaceUsed(type->field(i));
      size = AlignTo(size, std::min(kSafeAlignment, field_size));
      offsets[i] = size;
      size += field_size;
    }
  }

  // The oneofs.
  for (int i = 0; i < type->oneof_decl_count(); i++) {
    if (!type->oneof_decl(i)->is_synthetic()) {
      size = AlignTo(size, kSafeAlignment);
      offsets[type->field_count() + i] = size;
      size += kMaxOneofUnionSize;
    }
  }

  type_info->weak_field_map_offset = -1;

  // Align the final size to make sure no clever allocators think that
  // alignment is not necessary.
  type_info->size = size;

  // Construct the reflection object.

  // Compute the size of default oneof instance and offsets of default
  // oneof fields.
  for (int i = 0; i < type->oneof_decl_count(); i++) {
    if (type->oneof_decl(i)->is_synthetic()) continue;
    for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
      const FieldDescriptor* field = type->oneof_decl(i)->field(j);
      // oneof fields are not accessed through offsets, but we still have the
      // entry from a legacy implementation. This should be removed at some
      // point.
      // Mark the field to prevent unintentional access through reflection.
      // Don't use the top bit because that is for unused fields.
      offsets[field->index()] = internal::kInvalidFieldOffsetTag;
    }
  }

  // Allocate the prototype fields.
  void* base = operator new(size);
  memset(base, 0, size);

  // We have already locked the factory so we should not lock in the constructor
  // of dynamic message to avoid dead lock.
  DynamicMessage* prototype = new (base) DynamicMessage(type_info, false);

  internal::ReflectionSchema schema = {
      type_info->prototype,
      type_info->offsets.get(),
      type_info->has_bits_indices.get(),
      type_info->has_bits_offset,
      PROTOBUF_FIELD_OFFSET(DynamicMessage, _internal_metadata_),
      type_info->extensions_offset,
      type_info->oneof_case_offset,
      type_info->size,
      type_info->weak_field_map_offset,
      nullptr /* inlined_string_indices_ */,
      0 /* inlined_string_donated_offset_ */};

  type_info->reflection.reset(
      new Reflection(type_info->type, schema, type_info->pool, this));

  // Cross link prototypes.
  prototype->CrossLinkPrototypes();

  return prototype;
}

}  // namespace protobuf
}  // namespace google

#include <google/protobuf/port_undef.inc>  // NOLINT