aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/openssl/crypto/rsa/rsa_gen.c
blob: 29056a62a1ae0145df81ae225c5e191eeaf862c2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
 * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * NB: these functions have been "upgraded", the deprecated versions (which
 * are compatibility wrappers using these functions) are in rsa_depr.c. -
 * Geoff
 */

#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include "rsa_local.h"

static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
                              BN_GENCB *cb);

/*
 * NB: this wrapper would normally be placed in rsa_lib.c and the static
 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
 * so that we don't introduce a new linker dependency. Eg. any application
 * that wasn't previously linking object code related to key-generation won't
 * have to now just because key-generation is part of RSA_METHOD.
 */
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
{
    if (rsa->meth->rsa_keygen != NULL)
        return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);

    return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
                                        e_value, cb);
}

int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
                                 BIGNUM *e_value, BN_GENCB *cb)
{
    /* multi-prime is only supported with the builtin key generation */
    if (rsa->meth->rsa_multi_prime_keygen != NULL) {
        return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
                                                 e_value, cb);
    } else if (rsa->meth->rsa_keygen != NULL) {
        /*
         * However, if rsa->meth implements only rsa_keygen, then we
         * have to honour it in 2-prime case and assume that it wouldn't
         * know what to do with multi-prime key generated by builtin
         * subroutine...
         */
        if (primes == 2)
            return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
        else
            return 0;
    }

    return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
}

static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
                              BN_GENCB *cb)
{
    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
    int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
    int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
    RSA_PRIME_INFO *pinfo = NULL;
    STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
    BN_CTX *ctx = NULL;
    BN_ULONG bitst = 0;
    unsigned long error = 0;

    if (bits < RSA_MIN_MODULUS_BITS) {
        ok = 0;             /* we set our own err */
        RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
        goto err;
    }

    if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
        ok = 0;             /* we set our own err */
        RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID);
        goto err;
    }

    ctx = BN_CTX_new();
    if (ctx == NULL)
        goto err;
    BN_CTX_start(ctx);
    r0 = BN_CTX_get(ctx);
    r1 = BN_CTX_get(ctx);
    r2 = BN_CTX_get(ctx);
    if (r2 == NULL)
        goto err;

    /* divide bits into 'primes' pieces evenly */
    quo = bits / primes;
    rmd = bits % primes;

    for (i = 0; i < primes; i++)
        bitsr[i] = (i < rmd) ? quo + 1 : quo;

    /* We need the RSA components non-NULL */
    if (!rsa->n && ((rsa->n = BN_new()) == NULL))
        goto err;
    if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
        goto err;
    if (!rsa->e && ((rsa->e = BN_new()) == NULL))
        goto err;
    if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
        goto err;
    if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
        goto err;
    if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
        goto err;
    if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
        goto err;
    if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
        goto err;

    /* initialize multi-prime components */
    if (primes > RSA_DEFAULT_PRIME_NUM) {
        rsa->version = RSA_ASN1_VERSION_MULTI;
        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
        if (prime_infos == NULL)
            goto err;
        if (rsa->prime_infos != NULL) {
            /* could this happen? */
            sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
        }
        rsa->prime_infos = prime_infos;

        /* prime_info from 2 to |primes| -1 */
        for (i = 2; i < primes; i++) {
            pinfo = rsa_multip_info_new();
            if (pinfo == NULL)
                goto err;
            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
        }
    }

    if (BN_copy(rsa->e, e_value) == NULL)
        goto err;

    /* generate p, q and other primes (if any) */
    for (i = 0; i < primes; i++) {
        adj = 0;
        retries = 0;

        if (i == 0) {
            prime = rsa->p;
        } else if (i == 1) {
            prime = rsa->q;
        } else {
            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
            prime = pinfo->r;
        }
        BN_set_flags(prime, BN_FLG_CONSTTIME);

        for (;;) {
 redo:
            if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
                goto err;
            /*
             * prime should not be equal to p, q, r_3...
             * (those primes prior to this one)
             */
            {
                int j;

                for (j = 0; j < i; j++) {
                    BIGNUM *prev_prime;

                    if (j == 0)
                        prev_prime = rsa->p;
                    else if (j == 1)
                        prev_prime = rsa->q;
                    else
                        prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
                                                             j - 2)->r;

                    if (!BN_cmp(prime, prev_prime)) {
                        goto redo;
                    }
                }
            }
            if (!BN_sub(r2, prime, BN_value_one()))
                goto err;
            ERR_set_mark();
            BN_set_flags(r2, BN_FLG_CONSTTIME);
            if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
               /* GCD == 1 since inverse exists */
                break;
            }
            error = ERR_peek_last_error();
            if (ERR_GET_LIB(error) == ERR_LIB_BN
                && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
                /* GCD != 1 */
                ERR_pop_to_mark();
            } else {
                goto err;
            }
            if (!BN_GENCB_call(cb, 2, n++))
                goto err;
        }

        bitse += bitsr[i];

        /* calculate n immediately to see if it's sufficient */
        if (i == 1) {
            /* we get at least 2 primes */
            if (!BN_mul(r1, rsa->p, rsa->q, ctx))
                goto err;
        } else if (i != 0) {
            /* modulus n = p * q * r_3 * r_4 ... */
            if (!BN_mul(r1, rsa->n, prime, ctx))
                goto err;
        } else {
            /* i == 0, do nothing */
            if (!BN_GENCB_call(cb, 3, i))
                goto err;
            continue;
        }
        /*
         * if |r1|, product of factors so far, is not as long as expected
         * (by checking the first 4 bits are less than 0x9 or greater than
         * 0xF). If so, re-generate the last prime.
         *
         * NOTE: This actually can't happen in two-prime case, because of
         * the way factors are generated.
         *
         * Besides, another consideration is, for multi-prime case, even the
         * length modulus is as long as expected, the modulus could start at
         * 0x8, which could be utilized to distinguish a multi-prime private
         * key by using the modulus in a certificate. This is also covered
         * by checking the length should not be less than 0x9.
         */
        if (!BN_rshift(r2, r1, bitse - 4))
            goto err;
        bitst = BN_get_word(r2);

        if (bitst < 0x9 || bitst > 0xF) {
            /*
             * For keys with more than 4 primes, we attempt longer factor to
             * meet length requirement.
             *
             * Otherwise, we just re-generate the prime with the same length.
             *
             * This strategy has the following goals:
             *
             * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
             * 2. stay the same logic with normal 2-prime key
             */
            bitse -= bitsr[i];
            if (!BN_GENCB_call(cb, 2, n++))
                goto err;
            if (primes > 4) {
                if (bitst < 0x9)
                    adj++;
                else
                    adj--;
            } else if (retries == 4) {
                /*
                 * re-generate all primes from scratch, mainly used
                 * in 4 prime case to avoid long loop. Max retry times
                 * is set to 4.
                 */
                i = -1;
                bitse = 0;
                continue;
            }
            retries++;
            goto redo;
        }
        /* save product of primes for further use, for multi-prime only */
        if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
            goto err;
        if (BN_copy(rsa->n, r1) == NULL)
            goto err;
        if (!BN_GENCB_call(cb, 3, i))
            goto err;
    }

    if (BN_cmp(rsa->p, rsa->q) < 0) {
        tmp = rsa->p;
        rsa->p = rsa->q;
        rsa->q = tmp;
    }

    /* calculate d */

    /* p - 1 */
    if (!BN_sub(r1, rsa->p, BN_value_one()))
        goto err;
    /* q - 1 */
    if (!BN_sub(r2, rsa->q, BN_value_one()))
        goto err;
    /* (p - 1)(q - 1) */
    if (!BN_mul(r0, r1, r2, ctx))
        goto err;
    /* multi-prime */
    for (i = 2; i < primes; i++) {
        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
        /* save r_i - 1 to pinfo->d temporarily */
        if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
            goto err;
        if (!BN_mul(r0, r0, pinfo->d, ctx))
            goto err;
    }

    {
        BIGNUM *pr0 = BN_new();

        if (pr0 == NULL)
            goto err;

        BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
        if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
            BN_free(pr0);
            goto err;               /* d */
        }
        /* We MUST free pr0 before any further use of r0 */
        BN_free(pr0);
    }

    {
        BIGNUM *d = BN_new();

        if (d == NULL)
            goto err;

        BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);

        /* calculate d mod (p-1) and d mod (q - 1) */
        if (!BN_mod(rsa->dmp1, d, r1, ctx)
            || !BN_mod(rsa->dmq1, d, r2, ctx)) {
            BN_free(d);
            goto err;
        }

        /* calculate CRT exponents */
        for (i = 2; i < primes; i++) {
            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
            /* pinfo->d == r_i - 1 */
            if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
                BN_free(d);
                goto err;
            }
        }

        /* We MUST free d before any further use of rsa->d */
        BN_free(d);
    }

    {
        BIGNUM *p = BN_new();

        if (p == NULL)
            goto err;
        BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);

        /* calculate inverse of q mod p */
        if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
            BN_free(p);
            goto err;
        }

        /* calculate CRT coefficient for other primes */
        for (i = 2; i < primes; i++) {
            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
            BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
            if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
                BN_free(p);
                goto err;
            }
        }

        /* We MUST free p before any further use of rsa->p */
        BN_free(p);
    }

    ok = 1;
 err:
    if (ok == -1) {
        RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
        ok = 0;
    }
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
    return ok;
}