aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/openssl/crypto/bn/bn_local.h
blob: adf52da2e04b6bcda76b7212b23813028497f40d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
/* 
 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. 
 * 
 * Licensed under the OpenSSL license (the "License").  You may not use 
 * this file except in compliance with the License.  You can obtain a copy 
 * in the file LICENSE in the source distribution or at 
 * https://www.openssl.org/source/license.html 
 */ 
 
#ifndef OSSL_CRYPTO_BN_LOCAL_H 
# define OSSL_CRYPTO_BN_LOCAL_H 
 
/* 
 * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or 
 * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our 
 * Configure script and needs to support both 32-bit and 64-bit. 
 */ 
# include <openssl/opensslconf.h> 
 
# if !defined(OPENSSL_SYS_UEFI) 
#  include "crypto/bn_conf.h" 
# endif 
 
# include "crypto/bn.h" 
 
/* 
 * These preprocessor symbols control various aspects of the bignum headers 
 * and library code. They're not defined by any "normal" configuration, as 
 * they are intended for development and testing purposes. NB: defining all 
 * three can be useful for debugging application code as well as openssl 
 * itself. BN_DEBUG - turn on various debugging alterations to the bignum 
 * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up 
 * mismanagement of bignum internals. You must also define BN_DEBUG. 
 */ 
/* #define BN_DEBUG */ 
/* #define BN_DEBUG_RAND */ 
 
# ifndef OPENSSL_SMALL_FOOTPRINT 
#  define BN_MUL_COMBA 
#  define BN_SQR_COMBA 
#  define BN_RECURSION 
# endif 
 
/* 
 * This next option uses the C libraries (2 word)/(1 word) function. If it is 
 * not defined, I use my C version (which is slower). The reason for this 
 * flag is that when the particular C compiler library routine is used, and 
 * the library is linked with a different compiler, the library is missing. 
 * This mostly happens when the library is built with gcc and then linked 
 * using normal cc.  This would be a common occurrence because gcc normally 
 * produces code that is 2 times faster than system compilers for the big 
 * number stuff. For machines with only one compiler (or shared libraries), 
 * this should be on.  Again this in only really a problem on machines using 
 * "long long's", are 32bit, and are not using my assembler code. 
 */ 
# if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ 
    defined(OPENSSL_SYS_WIN32) || defined(linux) 
#  define BN_DIV2W 
# endif 
 
/* 
 * 64-bit processor with LP64 ABI 
 */ 
# ifdef SIXTY_FOUR_BIT_LONG 
#  define BN_ULLONG       unsigned long long 
#  define BN_BITS4        32 
#  define BN_MASK2        (0xffffffffffffffffL) 
#  define BN_MASK2l       (0xffffffffL) 
#  define BN_MASK2h       (0xffffffff00000000L) 
#  define BN_MASK2h1      (0xffffffff80000000L) 
#  define BN_DEC_CONV     (10000000000000000000UL) 
#  define BN_DEC_NUM      19 
#  define BN_DEC_FMT1     "%lu" 
#  define BN_DEC_FMT2     "%019lu" 
# endif 
 
/* 
 * 64-bit processor other than LP64 ABI 
 */ 
# ifdef SIXTY_FOUR_BIT 
#  undef BN_LLONG 
#  undef BN_ULLONG 
#  define BN_BITS4        32 
#  define BN_MASK2        (0xffffffffffffffffLL) 
#  define BN_MASK2l       (0xffffffffL) 
#  define BN_MASK2h       (0xffffffff00000000LL) 
#  define BN_MASK2h1      (0xffffffff80000000LL) 
#  define BN_DEC_CONV     (10000000000000000000ULL) 
#  define BN_DEC_NUM      19 
#  define BN_DEC_FMT1     "%llu" 
#  define BN_DEC_FMT2     "%019llu" 
# endif 
 
# ifdef THIRTY_TWO_BIT 
#  ifdef BN_LLONG 
#   if defined(_WIN32) && !defined(__GNUC__) 
#    define BN_ULLONG     unsigned __int64 
#   else 
#    define BN_ULLONG     unsigned long long 
#   endif 
#  endif 
#  define BN_BITS4        16 
#  define BN_MASK2        (0xffffffffL) 
#  define BN_MASK2l       (0xffff) 
#  define BN_MASK2h1      (0xffff8000L) 
#  define BN_MASK2h       (0xffff0000L) 
#  define BN_DEC_CONV     (1000000000L) 
#  define BN_DEC_NUM      9 
#  define BN_DEC_FMT1     "%u" 
#  define BN_DEC_FMT2     "%09u" 
# endif 
 
 
/*- 
 * Bignum consistency macros 
 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from 
 * bignum data after direct manipulations on the data. There is also an 
 * "internal" macro, bn_check_top(), for verifying that there are no leading 
 * zeroes. Unfortunately, some auditing is required due to the fact that 
 * bn_fix_top() has become an overabused duct-tape because bignum data is 
 * occasionally passed around in an inconsistent state. So the following 
 * changes have been made to sort this out; 
 * - bn_fix_top()s implementation has been moved to bn_correct_top() 
 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and 
 *   bn_check_top() is as before. 
 * - if BN_DEBUG *is* defined; 
 *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is 
 *     consistent. (ed: only if BN_DEBUG_RAND is defined) 
 *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. 
 * The idea is to have debug builds flag up inconsistent bignums when they 
 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if 
 * the use of bn_fix_top() was appropriate (ie. it follows directly after code 
 * that manipulates the bignum) it is converted to bn_correct_top(), and if it 
 * was not appropriate, we convert it permanently to bn_check_top() and track 
 * down the cause of the bug. Eventually, no internal code should be using the 
 * bn_fix_top() macro. External applications and libraries should try this with 
 * their own code too, both in terms of building against the openssl headers 
 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it 
 * defined. This not only improves external code, it provides more test 
 * coverage for openssl's own code. 
 */ 
 
# ifdef BN_DEBUG 
/* 
 * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with 
 * bn_correct_top, in other words such vectors are permitted to have zeros 
 * in most significant limbs. Such vectors are used internally to achieve 
 * execution time invariance for critical operations with private keys. 
 * It's BN_DEBUG-only flag, because user application is not supposed to 
 * observe it anyway. Moreover, optimizing compiler would actually remove 
 * all operations manipulating the bit in question in non-BN_DEBUG build. 
 */ 
#  define BN_FLG_FIXED_TOP 0x10000 
#  ifdef BN_DEBUG_RAND 
#   define bn_pollute(a) \ 
        do { \ 
            const BIGNUM *_bnum1 = (a); \ 
            if (_bnum1->top < _bnum1->dmax) { \ 
                unsigned char _tmp_char; \ 
                /* We cast away const without the compiler knowing, any \ 
                 * *genuinely* constant variables that aren't mutable \ 
                 * wouldn't be constructed with top!=dmax. */ \ 
                BN_ULONG *_not_const; \ 
                memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \ 
                RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\ 
                memset(_not_const + _bnum1->top, _tmp_char, \ 
                       sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \ 
            } \ 
        } while(0) 
#  else 
#   define bn_pollute(a) 
#  endif 
#  define bn_check_top(a) \ 
        do { \ 
                const BIGNUM *_bnum2 = (a); \ 
                if (_bnum2 != NULL) { \ 
                        int _top = _bnum2->top; \ 
                        (void)ossl_assert((_top == 0 && !_bnum2->neg) || \ 
                                  (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \ 
                                            || _bnum2->d[_top - 1] != 0))); \ 
                        bn_pollute(_bnum2); \ 
                } \ 
        } while(0) 
 
#  define bn_fix_top(a)           bn_check_top(a) 
 
#  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2) 
#  define bn_wcheck_size(bn, words) \ 
        do { \ 
                const BIGNUM *_bnum2 = (bn); \ 
                assert((words) <= (_bnum2)->dmax && \ 
                       (words) >= (_bnum2)->top); \ 
                /* avoid unused variable warning with NDEBUG */ \ 
                (void)(_bnum2); \ 
        } while(0) 
 
# else                          /* !BN_DEBUG */ 
 
#  define BN_FLG_FIXED_TOP 0 
#  define bn_pollute(a) 
#  define bn_check_top(a) 
#  define bn_fix_top(a)           bn_correct_top(a) 
#  define bn_check_size(bn, bits) 
#  define bn_wcheck_size(bn, words) 
 
# endif 
 
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, 
                          BN_ULONG w); 
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); 
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); 
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); 
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, 
                      int num); 
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, 
                      int num); 
 
struct bignum_st { 
    BN_ULONG *d;                /* Pointer to an array of 'BN_BITS2' bit 
                                 * chunks. */ 
    int top;                    /* Index of last used d +1. */ 
    /* The next are internal book keeping for bn_expand. */ 
    int dmax;                   /* Size of the d array. */ 
    int neg;                    /* one if the number is negative */ 
    int flags; 
}; 
 
/* Used for montgomery multiplication */ 
struct bn_mont_ctx_st { 
    int ri;                     /* number of bits in R */ 
    BIGNUM RR;                  /* used to convert to montgomery form, 
                                   possibly zero-padded */ 
    BIGNUM N;                   /* The modulus */ 
    BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only 
                                 * stored for bignum algorithm) */ 
    BN_ULONG n0[2];             /* least significant word(s) of Ni; (type 
                                 * changed with 0.9.9, was "BN_ULONG n0;" 
                                 * before) */ 
    int flags; 
}; 
 
/* 
 * Used for reciprocal division/mod functions It cannot be shared between 
 * threads 
 */ 
struct bn_recp_ctx_st { 
    BIGNUM N;                   /* the divisor */ 
    BIGNUM Nr;                  /* the reciprocal */ 
    int num_bits; 
    int shift; 
    int flags; 
}; 
 
/* Used for slow "generation" functions. */ 
struct bn_gencb_st { 
    unsigned int ver;           /* To handle binary (in)compatibility */ 
    void *arg;                  /* callback-specific data */ 
    union { 
        /* if (ver==1) - handles old style callbacks */ 
        void (*cb_1) (int, int, void *); 
        /* if (ver==2) - new callback style */ 
        int (*cb_2) (int, int, BN_GENCB *); 
    } cb; 
}; 
 
/*- 
 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions 
 * 
 * 
 * For window size 'w' (w >= 2) and a random 'b' bits exponent, 
 * the number of multiplications is a constant plus on average 
 * 
 *    2^(w-1) + (b-w)/(w+1); 
 * 
 * here  2^(w-1)  is for precomputing the table (we actually need 
 * entries only for windows that have the lowest bit set), and 
 * (b-w)/(w+1)  is an approximation for the expected number of 
 * w-bit windows, not counting the first one. 
 * 
 * Thus we should use 
 * 
 *    w >= 6  if        b > 671 
 *     w = 5  if  671 > b > 239 
 *     w = 4  if  239 > b >  79 
 *     w = 3  if   79 > b >  23 
 *    w <= 2  if   23 > b 
 * 
 * (with draws in between).  Very small exponents are often selected 
 * with low Hamming weight, so we use  w = 1  for b <= 23. 
 */ 
# define BN_window_bits_for_exponent_size(b) \ 
                ((b) > 671 ? 6 : \ 
                 (b) > 239 ? 5 : \ 
                 (b) >  79 ? 4 : \ 
                 (b) >  23 ? 3 : 1) 
 
/* 
 * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache 
 * line width of the target processor is at least the following value. 
 */ 
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 ) 
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) 
 
/* 
 * Window sizes optimized for fixed window size modular exponentiation 
 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of 
 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed 
 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are 
 * defined for cache line sizes of 32 and 64, cache line sizes where 
 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be 
 * used on processors that have a 128 byte or greater cache line size. 
 */ 
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 
 
#  define BN_window_bits_for_ctime_exponent_size(b) \ 
                ((b) > 937 ? 6 : \ 
                 (b) > 306 ? 5 : \ 
                 (b) >  89 ? 4 : \ 
                 (b) >  22 ? 3 : 1) 
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6) 
 
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 
 
#  define BN_window_bits_for_ctime_exponent_size(b) \ 
                ((b) > 306 ? 5 : \ 
                 (b) >  89 ? 4 : \ 
                 (b) >  22 ? 3 : 1) 
#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5) 
 
# endif 
 
/* Pentium pro 16,16,16,32,64 */ 
/* Alpha       16,16,16,16.64 */ 
# define BN_MULL_SIZE_NORMAL                     (16)/* 32 */ 
# define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */ 
# define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */ 
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */ 
# define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */ 
 
/* 
 * 2011-02-22 SMS. In various places, a size_t variable or a type cast to 
 * size_t was used to perform integer-only operations on pointers.  This 
 * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t 
 * is still only 32 bits.  What's needed in these cases is an integer type 
 * with the same size as a pointer, which size_t is not certain to be. The 
 * only fix here is VMS-specific. 
 */ 
# if defined(OPENSSL_SYS_VMS) 
#  if __INITIAL_POINTER_SIZE == 64 
#   define PTR_SIZE_INT long long 
#  else                         /* __INITIAL_POINTER_SIZE == 64 */ 
#   define PTR_SIZE_INT int 
#  endif                        /* __INITIAL_POINTER_SIZE == 64 [else] */ 
# elif !defined(PTR_SIZE_INT)   /* defined(OPENSSL_SYS_VMS) */ 
#  define PTR_SIZE_INT size_t 
# endif                         /* defined(OPENSSL_SYS_VMS) [else] */ 
 
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) 
/* 
 * BN_UMULT_HIGH section. 
 * If the compiler doesn't support 2*N integer type, then you have to 
 * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some 
 * shifts and additions which unavoidably results in severe performance 
 * penalties. Of course provided that the hardware is capable of producing 
 * 2*N result... That's when you normally start considering assembler 
 * implementation. However! It should be pointed out that some CPUs (e.g., 
 * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating 
 * the upper half of the product placing the result into a general 
 * purpose register. Now *if* the compiler supports inline assembler, 
 * then it's not impossible to implement the "bignum" routines (and have 
 * the compiler optimize 'em) exhibiting "native" performance in C. That's 
 * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do 
 * support 2*64 integer type, which is also used here. 
 */ 
#  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \ 
      (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) 
#   define BN_UMULT_HIGH(a,b)          (((__uint128_t)(a)*(b))>>64) 
#   define BN_UMULT_LOHI(low,high,a,b) ({       \ 
        __uint128_t ret=(__uint128_t)(a)*(b);   \ 
        (high)=ret>>64; (low)=ret;      }) 
#  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) 
#   if defined(__DECC) 
#    include <c_asm.h> 
#    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) 
#   elif defined(__GNUC__) && __GNUC__>=2 
#    define BN_UMULT_HIGH(a,b)   ({     \ 
        register BN_ULONG ret;          \ 
        asm ("umulh     %1,%2,%0"       \ 
             : "=r"(ret)                \ 
             : "r"(a), "r"(b));         \ 
        ret;                      }) 
#   endif                       /* compiler */ 
#  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG) 
#   if defined(__GNUC__) && __GNUC__>=2 
#    define BN_UMULT_HIGH(a,b)   ({     \ 
        register BN_ULONG ret;          \ 
        asm ("mulhdu    %0,%1,%2"       \ 
             : "=r"(ret)                \ 
             : "r"(a), "r"(b));         \ 
        ret;                      }) 
#   endif                       /* compiler */ 
#  elif (defined(__x86_64) || defined(__x86_64__)) && \ 
       (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) 
#   if defined(__GNUC__) && __GNUC__>=2 
#    define BN_UMULT_HIGH(a,b)   ({     \ 
        register BN_ULONG ret,discard;  \ 
        asm ("mulq      %3"             \ 
             : "=a"(discard),"=d"(ret)  \ 
             : "a"(a), "g"(b)           \ 
             : "cc");                   \ 
        ret;                      }) 
#    define BN_UMULT_LOHI(low,high,a,b) \ 
        asm ("mulq      %3"             \ 
                : "=a"(low),"=d"(high)  \ 
                : "a"(a),"g"(b)         \ 
                : "cc"); 
#   endif 
#  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) 
#   if defined(_MSC_VER) && _MSC_VER>=1400 
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); 
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, 
                          unsigned __int64 *h); 
#    pragma intrinsic(__umulh,_umul128) 
#    define BN_UMULT_HIGH(a,b)           __umulh((a),(b)) 
#    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high))) 
#   endif 
#  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) 
#   if defined(__GNUC__) && __GNUC__>=2 
#    define BN_UMULT_HIGH(a,b) ({       \ 
        register BN_ULONG ret;          \ 
        asm ("dmultu    %1,%2"          \ 
             : "=h"(ret)                \ 
             : "r"(a), "r"(b) : "l");   \ 
        ret;                    }) 
#    define BN_UMULT_LOHI(low,high,a,b) \ 
        asm ("dmultu    %2,%3"          \ 
             : "=l"(low),"=h"(high)     \ 
             : "r"(a), "r"(b)); 
#   endif 
#  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG) 
#   if defined(__GNUC__) && __GNUC__>=2 
#    define BN_UMULT_HIGH(a,b)   ({     \ 
        register BN_ULONG ret;          \ 
        asm ("umulh     %0,%1,%2"       \ 
             : "=r"(ret)                \ 
             : "r"(a), "r"(b));         \ 
        ret;                      }) 
#   endif 
#  endif                        /* cpu */ 
# endif                         /* OPENSSL_NO_ASM */ 
 
# ifdef BN_DEBUG_RAND 
#  define bn_clear_top2max(a) \ 
        { \ 
        int      ind = (a)->dmax - (a)->top; \ 
        BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ 
        for (; ind != 0; ind--) \ 
                *(++ftl) = 0x0; \ 
        } 
# else 
#  define bn_clear_top2max(a) 
# endif 
 
# ifdef BN_LLONG 
/******************************************************************* 
 * Using the long long type, has to be twice as wide as BN_ULONG... 
 */ 
#  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2) 
#  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) 
 
#  define mul_add(r,a,w,c) { \ 
        BN_ULLONG t; \ 
        t=(BN_ULLONG)w * (a) + (r) + (c); \ 
        (r)= Lw(t); \ 
        (c)= Hw(t); \ 
        } 
 
#  define mul(r,a,w,c) { \ 
        BN_ULLONG t; \ 
        t=(BN_ULLONG)w * (a) + (c); \ 
        (r)= Lw(t); \ 
        (c)= Hw(t); \ 
        } 
 
#  define sqr(r0,r1,a) { \ 
        BN_ULLONG t; \ 
        t=(BN_ULLONG)(a)*(a); \ 
        (r0)=Lw(t); \ 
        (r1)=Hw(t); \ 
        } 
 
# elif defined(BN_UMULT_LOHI) 
#  define mul_add(r,a,w,c) {              \ 
        BN_ULONG high,low,ret,tmp=(a);  \ 
        ret =  (r);                     \ 
        BN_UMULT_LOHI(low,high,w,tmp);  \ 
        ret += (c);                     \ 
        (c) =  (ret<(c))?1:0;           \ 
        (c) += high;                    \ 
        ret += low;                     \ 
        (c) += (ret<low)?1:0;           \ 
        (r) =  ret;                     \ 
        } 
 
#  define mul(r,a,w,c)    {               \ 
        BN_ULONG high,low,ret,ta=(a);   \ 
        BN_UMULT_LOHI(low,high,w,ta);   \ 
        ret =  low + (c);               \ 
        (c) =  high;                    \ 
        (c) += (ret<low)?1:0;           \ 
        (r) =  ret;                     \ 
        } 
 
#  define sqr(r0,r1,a)    {               \ 
        BN_ULONG tmp=(a);               \ 
        BN_UMULT_LOHI(r0,r1,tmp,tmp);   \ 
        } 
 
# elif defined(BN_UMULT_HIGH) 
#  define mul_add(r,a,w,c) {              \ 
        BN_ULONG high,low,ret,tmp=(a);  \ 
        ret =  (r);                     \ 
        high=  BN_UMULT_HIGH(w,tmp);    \ 
        ret += (c);                     \ 
        low =  (w) * tmp;               \ 
        (c) =  (ret<(c))?1:0;           \ 
        (c) += high;                    \ 
        ret += low;                     \ 
        (c) += (ret<low)?1:0;           \ 
        (r) =  ret;                     \ 
        } 
 
#  define mul(r,a,w,c)    {               \ 
        BN_ULONG high,low,ret,ta=(a);   \ 
        low =  (w) * ta;                \ 
        high=  BN_UMULT_HIGH(w,ta);     \ 
        ret =  low + (c);               \ 
        (c) =  high;                    \ 
        (c) += (ret<low)?1:0;           \ 
        (r) =  ret;                     \ 
        } 
 
#  define sqr(r0,r1,a)    {               \ 
        BN_ULONG tmp=(a);               \ 
        (r0) = tmp * tmp;               \ 
        (r1) = BN_UMULT_HIGH(tmp,tmp);  \ 
        } 
 
# else 
/************************************************************* 
 * No long long type 
 */ 
 
#  define LBITS(a)        ((a)&BN_MASK2l) 
#  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l) 
#  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2) 
 
#  define LLBITS(a)       ((a)&BN_MASKl) 
#  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl) 
#  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2) 
 
#  define mul64(l,h,bl,bh) \ 
        { \ 
        BN_ULONG m,m1,lt,ht; \ 
 \ 
        lt=l; \ 
        ht=h; \ 
        m =(bh)*(lt); \ 
        lt=(bl)*(lt); \ 
        m1=(bl)*(ht); \ 
        ht =(bh)*(ht); \ 
        m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ 
        ht+=HBITS(m); \ 
        m1=L2HBITS(m); \ 
        lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ 
        (l)=lt; \ 
        (h)=ht; \ 
        } 
 
#  define sqr64(lo,ho,in) \ 
        { \ 
        BN_ULONG l,h,m; \ 
 \ 
        h=(in); \ 
        l=LBITS(h); \ 
        h=HBITS(h); \ 
        m =(l)*(h); \ 
        l*=l; \ 
        h*=h; \ 
        h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ 
        m =(m&BN_MASK2l)<<(BN_BITS4+1); \ 
        l=(l+m)&BN_MASK2; if (l < m) h++; \ 
        (lo)=l; \ 
        (ho)=h; \ 
        } 
 
#  define mul_add(r,a,bl,bh,c) { \ 
        BN_ULONG l,h; \ 
 \ 
        h= (a); \ 
        l=LBITS(h); \ 
        h=HBITS(h); \ 
        mul64(l,h,(bl),(bh)); \ 
 \ 
        /* non-multiply part */ \ 
        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ 
        (c)=(r); \ 
        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ 
        (c)=h&BN_MASK2; \ 
        (r)=l; \ 
        } 
 
#  define mul(r,a,bl,bh,c) { \ 
        BN_ULONG l,h; \ 
 \ 
        h= (a); \ 
        l=LBITS(h); \ 
        h=HBITS(h); \ 
        mul64(l,h,(bl),(bh)); \ 
 \ 
        /* non-multiply part */ \ 
        l+=(c); if ((l&BN_MASK2) < (c)) h++; \ 
        (c)=h&BN_MASK2; \ 
        (r)=l&BN_MASK2; \ 
        } 
# endif                         /* !BN_LLONG */ 
 
void BN_RECP_CTX_init(BN_RECP_CTX *recp); 
void BN_MONT_CTX_init(BN_MONT_CTX *ctx); 
 
void bn_init(BIGNUM *a); 
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); 
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); 
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); 
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); 
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); 
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); 
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); 
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); 
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, 
                      int dna, int dnb, BN_ULONG *t); 
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, 
                           int n, int tna, int tnb, BN_ULONG *t); 
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); 
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); 
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, 
                          BN_ULONG *t); 
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, 
                           int cl, int dl); 
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, 
                const BN_ULONG *np, const BN_ULONG *n0, int num); 
 
BIGNUM *int_bn_mod_inverse(BIGNUM *in, 
                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, 
                           int *noinv); 
 
static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits) 
{ 
    if (bits > (INT_MAX - BN_BITS2 + 1)) 
        return NULL; 
 
    if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax) 
        return a; 
 
    return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2); 
} 
 
#endif