1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
/*
* Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include <openssl/asn1t.h>
#include <openssl/bn.h>
#include "asn1_local.h"
/*
* Custom primitive types for handling int32_t, int64_t, uint32_t, uint64_t.
* This converts between an ASN1_INTEGER and those types directly.
* This is preferred to using the LONG / ZLONG primitives.
*/
/*
* We abuse the ASN1_ITEM fields |size| as a flags field
*/
#define INTxx_FLAG_ZERO_DEFAULT (1<<0)
#define INTxx_FLAG_SIGNED (1<<1)
static int uint64_new(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
if ((*pval = (ASN1_VALUE *)OPENSSL_zalloc(sizeof(uint64_t))) == NULL) {
ASN1err(ASN1_F_UINT64_NEW, ERR_R_MALLOC_FAILURE);
return 0;
}
return 1;
}
static void uint64_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
OPENSSL_free(*pval);
*pval = NULL;
}
static void uint64_clear(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
**(uint64_t **)pval = 0;
}
static int uint64_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype,
const ASN1_ITEM *it)
{
uint64_t utmp;
int neg = 0;
/* this exists to bypass broken gcc optimization */
char *cp = (char *)*pval;
/* use memcpy, because we may not be uint64_t aligned */
memcpy(&utmp, cp, sizeof(utmp));
if ((it->size & INTxx_FLAG_ZERO_DEFAULT) == INTxx_FLAG_ZERO_DEFAULT
&& utmp == 0)
return -1;
if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED
&& (int64_t)utmp < 0) {
/* i2c_uint64_int() assumes positive values */
utmp = 0 - utmp;
neg = 1;
}
return i2c_uint64_int(cont, utmp, neg);
}
static int uint64_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
int utype, char *free_cont, const ASN1_ITEM *it)
{
uint64_t utmp = 0;
char *cp;
int neg = 0;
if (*pval == NULL && !uint64_new(pval, it))
return 0;
cp = (char *)*pval;
/*
* Strictly speaking, zero length is malformed. However, long_c2i
* (x_long.c) encodes 0 as a zero length INTEGER (wrongly, of course),
* so for the sake of backward compatibility, we still decode zero
* length INTEGERs as the number zero.
*/
if (len == 0)
goto long_compat;
if (!c2i_uint64_int(&utmp, &neg, &cont, len))
return 0;
if ((it->size & INTxx_FLAG_SIGNED) == 0 && neg) {
ASN1err(ASN1_F_UINT64_C2I, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
return 0;
}
if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED
&& !neg && utmp > INT64_MAX) {
ASN1err(ASN1_F_UINT64_C2I, ASN1_R_TOO_LARGE);
return 0;
}
if (neg)
/* c2i_uint64_int() returns positive values */
utmp = 0 - utmp;
long_compat:
memcpy(cp, &utmp, sizeof(utmp));
return 1;
}
static int uint64_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it,
int indent, const ASN1_PCTX *pctx)
{
if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED)
return BIO_printf(out, "%jd\n", **(int64_t **)pval);
return BIO_printf(out, "%ju\n", **(uint64_t **)pval);
}
/* 32-bit variants */
static int uint32_new(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
if ((*pval = (ASN1_VALUE *)OPENSSL_zalloc(sizeof(uint32_t))) == NULL) {
ASN1err(ASN1_F_UINT32_NEW, ERR_R_MALLOC_FAILURE);
return 0;
}
return 1;
}
static void uint32_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
OPENSSL_free(*pval);
*pval = NULL;
}
static void uint32_clear(ASN1_VALUE **pval, const ASN1_ITEM *it)
{
**(uint32_t **)pval = 0;
}
static int uint32_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype,
const ASN1_ITEM *it)
{
uint32_t utmp;
int neg = 0;
/* this exists to bypass broken gcc optimization */
char *cp = (char *)*pval;
/* use memcpy, because we may not be uint32_t aligned */
memcpy(&utmp, cp, sizeof(utmp));
if ((it->size & INTxx_FLAG_ZERO_DEFAULT) == INTxx_FLAG_ZERO_DEFAULT
&& utmp == 0)
return -1;
if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED
&& (int32_t)utmp < 0) {
/* i2c_uint64_int() assumes positive values */
utmp = 0 - utmp;
neg = 1;
}
return i2c_uint64_int(cont, (uint64_t)utmp, neg);
}
/*
* Absolute value of INT32_MIN: we can't just use -INT32_MIN as it produces
* overflow warnings.
*/
#define ABS_INT32_MIN ((uint32_t)INT32_MAX + 1)
static int uint32_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
int utype, char *free_cont, const ASN1_ITEM *it)
{
uint64_t utmp = 0;
uint32_t utmp2 = 0;
char *cp;
int neg = 0;
if (*pval == NULL && !uint64_new(pval, it))
return 0;
cp = (char *)*pval;
/*
* Strictly speaking, zero length is malformed. However, long_c2i
* (x_long.c) encodes 0 as a zero length INTEGER (wrongly, of course),
* so for the sake of backward compatibility, we still decode zero
* length INTEGERs as the number zero.
*/
if (len == 0)
goto long_compat;
if (!c2i_uint64_int(&utmp, &neg, &cont, len))
return 0;
if ((it->size & INTxx_FLAG_SIGNED) == 0 && neg) {
ASN1err(ASN1_F_UINT32_C2I, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
return 0;
}
if (neg) {
if (utmp > ABS_INT32_MIN) {
ASN1err(ASN1_F_UINT32_C2I, ASN1_R_TOO_SMALL);
return 0;
}
utmp = 0 - utmp;
} else {
if (((it->size & INTxx_FLAG_SIGNED) != 0 && utmp > INT32_MAX)
|| ((it->size & INTxx_FLAG_SIGNED) == 0 && utmp > UINT32_MAX)) {
ASN1err(ASN1_F_UINT32_C2I, ASN1_R_TOO_LARGE);
return 0;
}
}
long_compat:
utmp2 = (uint32_t)utmp;
memcpy(cp, &utmp2, sizeof(utmp2));
return 1;
}
static int uint32_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it,
int indent, const ASN1_PCTX *pctx)
{
if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED)
return BIO_printf(out, "%d\n", **(int32_t **)pval);
return BIO_printf(out, "%u\n", **(uint32_t **)pval);
}
/* Define the primitives themselves */
static ASN1_PRIMITIVE_FUNCS uint32_pf = {
NULL, 0,
uint32_new,
uint32_free,
uint32_clear,
uint32_c2i,
uint32_i2c,
uint32_print
};
static ASN1_PRIMITIVE_FUNCS uint64_pf = {
NULL, 0,
uint64_new,
uint64_free,
uint64_clear,
uint64_c2i,
uint64_i2c,
uint64_print
};
ASN1_ITEM_start(INT32)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf,
INTxx_FLAG_SIGNED, "INT32"
ASN1_ITEM_end(INT32)
ASN1_ITEM_start(UINT32)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf, 0, "UINT32"
ASN1_ITEM_end(UINT32)
ASN1_ITEM_start(INT64)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf,
INTxx_FLAG_SIGNED, "INT64"
ASN1_ITEM_end(INT64)
ASN1_ITEM_start(UINT64)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf, 0, "UINT64"
ASN1_ITEM_end(UINT64)
ASN1_ITEM_start(ZINT32)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf,
INTxx_FLAG_ZERO_DEFAULT|INTxx_FLAG_SIGNED, "ZINT32"
ASN1_ITEM_end(ZINT32)
ASN1_ITEM_start(ZUINT32)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf,
INTxx_FLAG_ZERO_DEFAULT, "ZUINT32"
ASN1_ITEM_end(ZUINT32)
ASN1_ITEM_start(ZINT64)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf,
INTxx_FLAG_ZERO_DEFAULT|INTxx_FLAG_SIGNED, "ZINT64"
ASN1_ITEM_end(ZINT64)
ASN1_ITEM_start(ZUINT64)
ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf,
INTxx_FLAG_ZERO_DEFAULT, "ZUINT64"
ASN1_ITEM_end(ZUINT64)
|