1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
|
.text
.globl _bn_mul_mont
.align 5
_bn_mul_mont:
tst x5,#7
b.eq __bn_sqr8x_mont
tst x5,#3
b.eq __bn_mul4x_mont
Lmul_mont:
stp x29,x30,[sp,#-64]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
ldr x9,[x2],#8 // bp[0]
sub x22,sp,x5,lsl#3
ldp x7,x8,[x1],#16 // ap[0..1]
lsl x5,x5,#3
ldr x4,[x4] // *n0
and x22,x22,#-16 // ABI says so
ldp x13,x14,[x3],#16 // np[0..1]
mul x6,x7,x9 // ap[0]*bp[0]
sub x21,x5,#16 // j=num-2
umulh x7,x7,x9
mul x10,x8,x9 // ap[1]*bp[0]
umulh x11,x8,x9
mul x15,x6,x4 // "tp[0]"*n0
mov sp,x22 // alloca
// (*) mul x12,x13,x15 // np[0]*m1
umulh x13,x13,x15
mul x16,x14,x15 // np[1]*m1
// (*) adds x12,x12,x6 // discarded
// (*) As for removal of first multiplication and addition
// instructions. The outcome of first addition is
// guaranteed to be zero, which leaves two computationally
// significant outcomes: it either carries or not. Then
// question is when does it carry? Is there alternative
// way to deduce it? If you follow operations, you can
// observe that condition for carry is quite simple:
// x6 being non-zero. So that carry can be calculated
// by adding -1 to x6. That's what next instruction does.
subs xzr,x6,#1 // (*)
umulh x17,x14,x15
adc x13,x13,xzr
cbz x21,L1st_skip
L1st:
ldr x8,[x1],#8
adds x6,x10,x7
sub x21,x21,#8 // j--
adc x7,x11,xzr
ldr x14,[x3],#8
adds x12,x16,x13
mul x10,x8,x9 // ap[j]*bp[0]
adc x13,x17,xzr
umulh x11,x8,x9
adds x12,x12,x6
mul x16,x14,x15 // np[j]*m1
adc x13,x13,xzr
umulh x17,x14,x15
str x12,[x22],#8 // tp[j-1]
cbnz x21,L1st
L1st_skip:
adds x6,x10,x7
sub x1,x1,x5 // rewind x1
adc x7,x11,xzr
adds x12,x16,x13
sub x3,x3,x5 // rewind x3
adc x13,x17,xzr
adds x12,x12,x6
sub x20,x5,#8 // i=num-1
adcs x13,x13,x7
adc x19,xzr,xzr // upmost overflow bit
stp x12,x13,[x22]
Louter:
ldr x9,[x2],#8 // bp[i]
ldp x7,x8,[x1],#16
ldr x23,[sp] // tp[0]
add x22,sp,#8
mul x6,x7,x9 // ap[0]*bp[i]
sub x21,x5,#16 // j=num-2
umulh x7,x7,x9
ldp x13,x14,[x3],#16
mul x10,x8,x9 // ap[1]*bp[i]
adds x6,x6,x23
umulh x11,x8,x9
adc x7,x7,xzr
mul x15,x6,x4
sub x20,x20,#8 // i--
// (*) mul x12,x13,x15 // np[0]*m1
umulh x13,x13,x15
mul x16,x14,x15 // np[1]*m1
// (*) adds x12,x12,x6
subs xzr,x6,#1 // (*)
umulh x17,x14,x15
cbz x21,Linner_skip
Linner:
ldr x8,[x1],#8
adc x13,x13,xzr
ldr x23,[x22],#8 // tp[j]
adds x6,x10,x7
sub x21,x21,#8 // j--
adc x7,x11,xzr
adds x12,x16,x13
ldr x14,[x3],#8
adc x13,x17,xzr
mul x10,x8,x9 // ap[j]*bp[i]
adds x6,x6,x23
umulh x11,x8,x9
adc x7,x7,xzr
mul x16,x14,x15 // np[j]*m1
adds x12,x12,x6
umulh x17,x14,x15
str x12,[x22,#-16] // tp[j-1]
cbnz x21,Linner
Linner_skip:
ldr x23,[x22],#8 // tp[j]
adc x13,x13,xzr
adds x6,x10,x7
sub x1,x1,x5 // rewind x1
adc x7,x11,xzr
adds x12,x16,x13
sub x3,x3,x5 // rewind x3
adcs x13,x17,x19
adc x19,xzr,xzr
adds x6,x6,x23
adc x7,x7,xzr
adds x12,x12,x6
adcs x13,x13,x7
adc x19,x19,xzr // upmost overflow bit
stp x12,x13,[x22,#-16]
cbnz x20,Louter
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
ldr x23,[sp] // tp[0]
add x22,sp,#8
ldr x14,[x3],#8 // np[0]
subs x21,x5,#8 // j=num-1 and clear borrow
mov x1,x0
Lsub:
sbcs x8,x23,x14 // tp[j]-np[j]
ldr x23,[x22],#8
sub x21,x21,#8 // j--
ldr x14,[x3],#8
str x8,[x1],#8 // rp[j]=tp[j]-np[j]
cbnz x21,Lsub
sbcs x8,x23,x14
sbcs x19,x19,xzr // did it borrow?
str x8,[x1],#8 // rp[num-1]
ldr x23,[sp] // tp[0]
add x22,sp,#8
ldr x8,[x0],#8 // rp[0]
sub x5,x5,#8 // num--
nop
Lcond_copy:
sub x5,x5,#8 // num--
csel x14,x23,x8,lo // did it borrow?
ldr x23,[x22],#8
ldr x8,[x0],#8
str xzr,[x22,#-16] // wipe tp
str x14,[x0,#-16]
cbnz x5,Lcond_copy
csel x14,x23,x8,lo
str xzr,[x22,#-8] // wipe tp
str x14,[x0,#-8]
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldr x29,[sp],#64
ret
.align 5
__bn_sqr8x_mont:
cmp x1,x2
b.ne __bn_mul4x_mont
Lsqr8x_mont:
.long 0xd503233f // paciasp
stp x29,x30,[sp,#-128]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
stp x0,x3,[sp,#96] // offload rp and np
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
ldp x10,x11,[x1,#8*4]
ldp x12,x13,[x1,#8*6]
sub x2,sp,x5,lsl#4
lsl x5,x5,#3
ldr x4,[x4] // *n0
mov sp,x2 // alloca
sub x27,x5,#8*8
b Lsqr8x_zero_start
Lsqr8x_zero:
sub x27,x27,#8*8
stp xzr,xzr,[x2,#8*0]
stp xzr,xzr,[x2,#8*2]
stp xzr,xzr,[x2,#8*4]
stp xzr,xzr,[x2,#8*6]
Lsqr8x_zero_start:
stp xzr,xzr,[x2,#8*8]
stp xzr,xzr,[x2,#8*10]
stp xzr,xzr,[x2,#8*12]
stp xzr,xzr,[x2,#8*14]
add x2,x2,#8*16
cbnz x27,Lsqr8x_zero
add x3,x1,x5
add x1,x1,#8*8
mov x19,xzr
mov x20,xzr
mov x21,xzr
mov x22,xzr
mov x23,xzr
mov x24,xzr
mov x25,xzr
mov x26,xzr
mov x2,sp
str x4,[x29,#112] // offload n0
// Multiply everything but a[i]*a[i]
.align 4
Lsqr8x_outer_loop:
// a[1]a[0] (i)
// a[2]a[0]
// a[3]a[0]
// a[4]a[0]
// a[5]a[0]
// a[6]a[0]
// a[7]a[0]
// a[2]a[1] (ii)
// a[3]a[1]
// a[4]a[1]
// a[5]a[1]
// a[6]a[1]
// a[7]a[1]
// a[3]a[2] (iii)
// a[4]a[2]
// a[5]a[2]
// a[6]a[2]
// a[7]a[2]
// a[4]a[3] (iv)
// a[5]a[3]
// a[6]a[3]
// a[7]a[3]
// a[5]a[4] (v)
// a[6]a[4]
// a[7]a[4]
// a[6]a[5] (vi)
// a[7]a[5]
// a[7]a[6] (vii)
mul x14,x7,x6 // lo(a[1..7]*a[0]) (i)
mul x15,x8,x6
mul x16,x9,x6
mul x17,x10,x6
adds x20,x20,x14 // t[1]+lo(a[1]*a[0])
mul x14,x11,x6
adcs x21,x21,x15
mul x15,x12,x6
adcs x22,x22,x16
mul x16,x13,x6
adcs x23,x23,x17
umulh x17,x7,x6 // hi(a[1..7]*a[0])
adcs x24,x24,x14
umulh x14,x8,x6
adcs x25,x25,x15
umulh x15,x9,x6
adcs x26,x26,x16
umulh x16,x10,x6
stp x19,x20,[x2],#8*2 // t[0..1]
adc x19,xzr,xzr // t[8]
adds x21,x21,x17 // t[2]+lo(a[1]*a[0])
umulh x17,x11,x6
adcs x22,x22,x14
umulh x14,x12,x6
adcs x23,x23,x15
umulh x15,x13,x6
adcs x24,x24,x16
mul x16,x8,x7 // lo(a[2..7]*a[1]) (ii)
adcs x25,x25,x17
mul x17,x9,x7
adcs x26,x26,x14
mul x14,x10,x7
adc x19,x19,x15
mul x15,x11,x7
adds x22,x22,x16
mul x16,x12,x7
adcs x23,x23,x17
mul x17,x13,x7
adcs x24,x24,x14
umulh x14,x8,x7 // hi(a[2..7]*a[1])
adcs x25,x25,x15
umulh x15,x9,x7
adcs x26,x26,x16
umulh x16,x10,x7
adcs x19,x19,x17
umulh x17,x11,x7
stp x21,x22,[x2],#8*2 // t[2..3]
adc x20,xzr,xzr // t[9]
adds x23,x23,x14
umulh x14,x12,x7
adcs x24,x24,x15
umulh x15,x13,x7
adcs x25,x25,x16
mul x16,x9,x8 // lo(a[3..7]*a[2]) (iii)
adcs x26,x26,x17
mul x17,x10,x8
adcs x19,x19,x14
mul x14,x11,x8
adc x20,x20,x15
mul x15,x12,x8
adds x24,x24,x16
mul x16,x13,x8
adcs x25,x25,x17
umulh x17,x9,x8 // hi(a[3..7]*a[2])
adcs x26,x26,x14
umulh x14,x10,x8
adcs x19,x19,x15
umulh x15,x11,x8
adcs x20,x20,x16
umulh x16,x12,x8
stp x23,x24,[x2],#8*2 // t[4..5]
adc x21,xzr,xzr // t[10]
adds x25,x25,x17
umulh x17,x13,x8
adcs x26,x26,x14
mul x14,x10,x9 // lo(a[4..7]*a[3]) (iv)
adcs x19,x19,x15
mul x15,x11,x9
adcs x20,x20,x16
mul x16,x12,x9
adc x21,x21,x17
mul x17,x13,x9
adds x26,x26,x14
umulh x14,x10,x9 // hi(a[4..7]*a[3])
adcs x19,x19,x15
umulh x15,x11,x9
adcs x20,x20,x16
umulh x16,x12,x9
adcs x21,x21,x17
umulh x17,x13,x9
stp x25,x26,[x2],#8*2 // t[6..7]
adc x22,xzr,xzr // t[11]
adds x19,x19,x14
mul x14,x11,x10 // lo(a[5..7]*a[4]) (v)
adcs x20,x20,x15
mul x15,x12,x10
adcs x21,x21,x16
mul x16,x13,x10
adc x22,x22,x17
umulh x17,x11,x10 // hi(a[5..7]*a[4])
adds x20,x20,x14
umulh x14,x12,x10
adcs x21,x21,x15
umulh x15,x13,x10
adcs x22,x22,x16
mul x16,x12,x11 // lo(a[6..7]*a[5]) (vi)
adc x23,xzr,xzr // t[12]
adds x21,x21,x17
mul x17,x13,x11
adcs x22,x22,x14
umulh x14,x12,x11 // hi(a[6..7]*a[5])
adc x23,x23,x15
umulh x15,x13,x11
adds x22,x22,x16
mul x16,x13,x12 // lo(a[7]*a[6]) (vii)
adcs x23,x23,x17
umulh x17,x13,x12 // hi(a[7]*a[6])
adc x24,xzr,xzr // t[13]
adds x23,x23,x14
sub x27,x3,x1 // done yet?
adc x24,x24,x15
adds x24,x24,x16
sub x14,x3,x5 // rewinded ap
adc x25,xzr,xzr // t[14]
add x25,x25,x17
cbz x27,Lsqr8x_outer_break
mov x4,x6
ldp x6,x7,[x2,#8*0]
ldp x8,x9,[x2,#8*2]
ldp x10,x11,[x2,#8*4]
ldp x12,x13,[x2,#8*6]
adds x19,x19,x6
adcs x20,x20,x7
ldp x6,x7,[x1,#8*0]
adcs x21,x21,x8
adcs x22,x22,x9
ldp x8,x9,[x1,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x1,#8*4]
adcs x25,x25,x12
mov x0,x1
adcs x26,xzr,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
//adc x28,xzr,xzr // moved below
mov x27,#-8*8
// a[8]a[0]
// a[9]a[0]
// a[a]a[0]
// a[b]a[0]
// a[c]a[0]
// a[d]a[0]
// a[e]a[0]
// a[f]a[0]
// a[8]a[1]
// a[f]a[1]........................
// a[8]a[2]
// a[f]a[2]........................
// a[8]a[3]
// a[f]a[3]........................
// a[8]a[4]
// a[f]a[4]........................
// a[8]a[5]
// a[f]a[5]........................
// a[8]a[6]
// a[f]a[6]........................
// a[8]a[7]
// a[f]a[7]........................
Lsqr8x_mul:
mul x14,x6,x4
adc x28,xzr,xzr // carry bit, modulo-scheduled
mul x15,x7,x4
add x27,x27,#8
mul x16,x8,x4
mul x17,x9,x4
adds x19,x19,x14
mul x14,x10,x4
adcs x20,x20,x15
mul x15,x11,x4
adcs x21,x21,x16
mul x16,x12,x4
adcs x22,x22,x17
mul x17,x13,x4
adcs x23,x23,x14
umulh x14,x6,x4
adcs x24,x24,x15
umulh x15,x7,x4
adcs x25,x25,x16
umulh x16,x8,x4
adcs x26,x26,x17
umulh x17,x9,x4
adc x28,x28,xzr
str x19,[x2],#8
adds x19,x20,x14
umulh x14,x10,x4
adcs x20,x21,x15
umulh x15,x11,x4
adcs x21,x22,x16
umulh x16,x12,x4
adcs x22,x23,x17
umulh x17,x13,x4
ldr x4,[x0,x27]
adcs x23,x24,x14
adcs x24,x25,x15
adcs x25,x26,x16
adcs x26,x28,x17
//adc x28,xzr,xzr // moved above
cbnz x27,Lsqr8x_mul
// note that carry flag is guaranteed
// to be zero at this point
cmp x1,x3 // done yet?
b.eq Lsqr8x_break
ldp x6,x7,[x2,#8*0]
ldp x8,x9,[x2,#8*2]
ldp x10,x11,[x2,#8*4]
ldp x12,x13,[x2,#8*6]
adds x19,x19,x6
ldr x4,[x0,#-8*8]
adcs x20,x20,x7
ldp x6,x7,[x1,#8*0]
adcs x21,x21,x8
adcs x22,x22,x9
ldp x8,x9,[x1,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x1,#8*4]
adcs x25,x25,x12
mov x27,#-8*8
adcs x26,x26,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
//adc x28,xzr,xzr // moved above
b Lsqr8x_mul
.align 4
Lsqr8x_break:
ldp x6,x7,[x0,#8*0]
add x1,x0,#8*8
ldp x8,x9,[x0,#8*2]
sub x14,x3,x1 // is it last iteration?
ldp x10,x11,[x0,#8*4]
sub x15,x2,x14
ldp x12,x13,[x0,#8*6]
cbz x14,Lsqr8x_outer_loop
stp x19,x20,[x2,#8*0]
ldp x19,x20,[x15,#8*0]
stp x21,x22,[x2,#8*2]
ldp x21,x22,[x15,#8*2]
stp x23,x24,[x2,#8*4]
ldp x23,x24,[x15,#8*4]
stp x25,x26,[x2,#8*6]
mov x2,x15
ldp x25,x26,[x15,#8*6]
b Lsqr8x_outer_loop
.align 4
Lsqr8x_outer_break:
// Now multiply above result by 2 and add a[n-1]*a[n-1]|...|a[0]*a[0]
ldp x7,x9,[x14,#8*0] // recall that x14 is &a[0]
ldp x15,x16,[sp,#8*1]
ldp x11,x13,[x14,#8*2]
add x1,x14,#8*4
ldp x17,x14,[sp,#8*3]
stp x19,x20,[x2,#8*0]
mul x19,x7,x7
stp x21,x22,[x2,#8*2]
umulh x7,x7,x7
stp x23,x24,[x2,#8*4]
mul x8,x9,x9
stp x25,x26,[x2,#8*6]
mov x2,sp
umulh x9,x9,x9
adds x20,x7,x15,lsl#1
extr x15,x16,x15,#63
sub x27,x5,#8*4
Lsqr4x_shift_n_add:
adcs x21,x8,x15
extr x16,x17,x16,#63
sub x27,x27,#8*4
adcs x22,x9,x16
ldp x15,x16,[x2,#8*5]
mul x10,x11,x11
ldp x7,x9,[x1],#8*2
umulh x11,x11,x11
mul x12,x13,x13
umulh x13,x13,x13
extr x17,x14,x17,#63
stp x19,x20,[x2,#8*0]
adcs x23,x10,x17
extr x14,x15,x14,#63
stp x21,x22,[x2,#8*2]
adcs x24,x11,x14
ldp x17,x14,[x2,#8*7]
extr x15,x16,x15,#63
adcs x25,x12,x15
extr x16,x17,x16,#63
adcs x26,x13,x16
ldp x15,x16,[x2,#8*9]
mul x6,x7,x7
ldp x11,x13,[x1],#8*2
umulh x7,x7,x7
mul x8,x9,x9
umulh x9,x9,x9
stp x23,x24,[x2,#8*4]
extr x17,x14,x17,#63
stp x25,x26,[x2,#8*6]
add x2,x2,#8*8
adcs x19,x6,x17
extr x14,x15,x14,#63
adcs x20,x7,x14
ldp x17,x14,[x2,#8*3]
extr x15,x16,x15,#63
cbnz x27,Lsqr4x_shift_n_add
ldp x1,x4,[x29,#104] // pull np and n0
adcs x21,x8,x15
extr x16,x17,x16,#63
adcs x22,x9,x16
ldp x15,x16,[x2,#8*5]
mul x10,x11,x11
umulh x11,x11,x11
stp x19,x20,[x2,#8*0]
mul x12,x13,x13
umulh x13,x13,x13
stp x21,x22,[x2,#8*2]
extr x17,x14,x17,#63
adcs x23,x10,x17
extr x14,x15,x14,#63
ldp x19,x20,[sp,#8*0]
adcs x24,x11,x14
extr x15,x16,x15,#63
ldp x6,x7,[x1,#8*0]
adcs x25,x12,x15
extr x16,xzr,x16,#63
ldp x8,x9,[x1,#8*2]
adc x26,x13,x16
ldp x10,x11,[x1,#8*4]
// Reduce by 512 bits per iteration
mul x28,x4,x19 // t[0]*n0
ldp x12,x13,[x1,#8*6]
add x3,x1,x5
ldp x21,x22,[sp,#8*2]
stp x23,x24,[x2,#8*4]
ldp x23,x24,[sp,#8*4]
stp x25,x26,[x2,#8*6]
ldp x25,x26,[sp,#8*6]
add x1,x1,#8*8
mov x30,xzr // initial top-most carry
mov x2,sp
mov x27,#8
Lsqr8x_reduction:
// (*) mul x14,x6,x28 // lo(n[0-7])*lo(t[0]*n0)
mul x15,x7,x28
sub x27,x27,#1
mul x16,x8,x28
str x28,[x2],#8 // put aside t[0]*n0 for tail processing
mul x17,x9,x28
// (*) adds xzr,x19,x14
subs xzr,x19,#1 // (*)
mul x14,x10,x28
adcs x19,x20,x15
mul x15,x11,x28
adcs x20,x21,x16
mul x16,x12,x28
adcs x21,x22,x17
mul x17,x13,x28
adcs x22,x23,x14
umulh x14,x6,x28 // hi(n[0-7])*lo(t[0]*n0)
adcs x23,x24,x15
umulh x15,x7,x28
adcs x24,x25,x16
umulh x16,x8,x28
adcs x25,x26,x17
umulh x17,x9,x28
adc x26,xzr,xzr
adds x19,x19,x14
umulh x14,x10,x28
adcs x20,x20,x15
umulh x15,x11,x28
adcs x21,x21,x16
umulh x16,x12,x28
adcs x22,x22,x17
umulh x17,x13,x28
mul x28,x4,x19 // next t[0]*n0
adcs x23,x23,x14
adcs x24,x24,x15
adcs x25,x25,x16
adc x26,x26,x17
cbnz x27,Lsqr8x_reduction
ldp x14,x15,[x2,#8*0]
ldp x16,x17,[x2,#8*2]
mov x0,x2
sub x27,x3,x1 // done yet?
adds x19,x19,x14
adcs x20,x20,x15
ldp x14,x15,[x2,#8*4]
adcs x21,x21,x16
adcs x22,x22,x17
ldp x16,x17,[x2,#8*6]
adcs x23,x23,x14
adcs x24,x24,x15
adcs x25,x25,x16
adcs x26,x26,x17
//adc x28,xzr,xzr // moved below
cbz x27,Lsqr8x8_post_condition
ldr x4,[x2,#-8*8]
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
ldp x10,x11,[x1,#8*4]
mov x27,#-8*8
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
Lsqr8x_tail:
mul x14,x6,x4
adc x28,xzr,xzr // carry bit, modulo-scheduled
mul x15,x7,x4
add x27,x27,#8
mul x16,x8,x4
mul x17,x9,x4
adds x19,x19,x14
mul x14,x10,x4
adcs x20,x20,x15
mul x15,x11,x4
adcs x21,x21,x16
mul x16,x12,x4
adcs x22,x22,x17
mul x17,x13,x4
adcs x23,x23,x14
umulh x14,x6,x4
adcs x24,x24,x15
umulh x15,x7,x4
adcs x25,x25,x16
umulh x16,x8,x4
adcs x26,x26,x17
umulh x17,x9,x4
adc x28,x28,xzr
str x19,[x2],#8
adds x19,x20,x14
umulh x14,x10,x4
adcs x20,x21,x15
umulh x15,x11,x4
adcs x21,x22,x16
umulh x16,x12,x4
adcs x22,x23,x17
umulh x17,x13,x4
ldr x4,[x0,x27]
adcs x23,x24,x14
adcs x24,x25,x15
adcs x25,x26,x16
adcs x26,x28,x17
//adc x28,xzr,xzr // moved above
cbnz x27,Lsqr8x_tail
// note that carry flag is guaranteed
// to be zero at this point
ldp x6,x7,[x2,#8*0]
sub x27,x3,x1 // done yet?
sub x16,x3,x5 // rewinded np
ldp x8,x9,[x2,#8*2]
ldp x10,x11,[x2,#8*4]
ldp x12,x13,[x2,#8*6]
cbz x27,Lsqr8x_tail_break
ldr x4,[x0,#-8*8]
adds x19,x19,x6
adcs x20,x20,x7
ldp x6,x7,[x1,#8*0]
adcs x21,x21,x8
adcs x22,x22,x9
ldp x8,x9,[x1,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x1,#8*4]
adcs x25,x25,x12
mov x27,#-8*8
adcs x26,x26,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
//adc x28,xzr,xzr // moved above
b Lsqr8x_tail
.align 4
Lsqr8x_tail_break:
ldr x4,[x29,#112] // pull n0
add x27,x2,#8*8 // end of current t[num] window
subs xzr,x30,#1 // "move" top-most carry to carry bit
adcs x14,x19,x6
adcs x15,x20,x7
ldp x19,x20,[x0,#8*0]
adcs x21,x21,x8
ldp x6,x7,[x16,#8*0] // recall that x16 is &n[0]
adcs x22,x22,x9
ldp x8,x9,[x16,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x16,#8*4]
adcs x25,x25,x12
adcs x26,x26,x13
ldp x12,x13,[x16,#8*6]
add x1,x16,#8*8
adc x30,xzr,xzr // top-most carry
mul x28,x4,x19
stp x14,x15,[x2,#8*0]
stp x21,x22,[x2,#8*2]
ldp x21,x22,[x0,#8*2]
stp x23,x24,[x2,#8*4]
ldp x23,x24,[x0,#8*4]
cmp x27,x29 // did we hit the bottom?
stp x25,x26,[x2,#8*6]
mov x2,x0 // slide the window
ldp x25,x26,[x0,#8*6]
mov x27,#8
b.ne Lsqr8x_reduction
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
ldr x0,[x29,#96] // pull rp
add x2,x2,#8*8
subs x14,x19,x6
sbcs x15,x20,x7
sub x27,x5,#8*8
mov x3,x0 // x0 copy
Lsqr8x_sub:
sbcs x16,x21,x8
ldp x6,x7,[x1,#8*0]
sbcs x17,x22,x9
stp x14,x15,[x0,#8*0]
sbcs x14,x23,x10
ldp x8,x9,[x1,#8*2]
sbcs x15,x24,x11
stp x16,x17,[x0,#8*2]
sbcs x16,x25,x12
ldp x10,x11,[x1,#8*4]
sbcs x17,x26,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
ldp x19,x20,[x2,#8*0]
sub x27,x27,#8*8
ldp x21,x22,[x2,#8*2]
ldp x23,x24,[x2,#8*4]
ldp x25,x26,[x2,#8*6]
add x2,x2,#8*8
stp x14,x15,[x0,#8*4]
sbcs x14,x19,x6
stp x16,x17,[x0,#8*6]
add x0,x0,#8*8
sbcs x15,x20,x7
cbnz x27,Lsqr8x_sub
sbcs x16,x21,x8
mov x2,sp
add x1,sp,x5
ldp x6,x7,[x3,#8*0]
sbcs x17,x22,x9
stp x14,x15,[x0,#8*0]
sbcs x14,x23,x10
ldp x8,x9,[x3,#8*2]
sbcs x15,x24,x11
stp x16,x17,[x0,#8*2]
sbcs x16,x25,x12
ldp x19,x20,[x1,#8*0]
sbcs x17,x26,x13
ldp x21,x22,[x1,#8*2]
sbcs xzr,x30,xzr // did it borrow?
ldr x30,[x29,#8] // pull return address
stp x14,x15,[x0,#8*4]
stp x16,x17,[x0,#8*6]
sub x27,x5,#8*4
Lsqr4x_cond_copy:
sub x27,x27,#8*4
csel x14,x19,x6,lo
stp xzr,xzr,[x2,#8*0]
csel x15,x20,x7,lo
ldp x6,x7,[x3,#8*4]
ldp x19,x20,[x1,#8*4]
csel x16,x21,x8,lo
stp xzr,xzr,[x2,#8*2]
add x2,x2,#8*4
csel x17,x22,x9,lo
ldp x8,x9,[x3,#8*6]
ldp x21,x22,[x1,#8*6]
add x1,x1,#8*4
stp x14,x15,[x3,#8*0]
stp x16,x17,[x3,#8*2]
add x3,x3,#8*4
stp xzr,xzr,[x1,#8*0]
stp xzr,xzr,[x1,#8*2]
cbnz x27,Lsqr4x_cond_copy
csel x14,x19,x6,lo
stp xzr,xzr,[x2,#8*0]
csel x15,x20,x7,lo
stp xzr,xzr,[x2,#8*2]
csel x16,x21,x8,lo
csel x17,x22,x9,lo
stp x14,x15,[x3,#8*0]
stp x16,x17,[x3,#8*2]
b Lsqr8x_done
.align 4
Lsqr8x8_post_condition:
adc x28,xzr,xzr
ldr x30,[x29,#8] // pull return address
// x19-7,x28 hold result, x6-7 hold modulus
subs x6,x19,x6
ldr x1,[x29,#96] // pull rp
sbcs x7,x20,x7
stp xzr,xzr,[sp,#8*0]
sbcs x8,x21,x8
stp xzr,xzr,[sp,#8*2]
sbcs x9,x22,x9
stp xzr,xzr,[sp,#8*4]
sbcs x10,x23,x10
stp xzr,xzr,[sp,#8*6]
sbcs x11,x24,x11
stp xzr,xzr,[sp,#8*8]
sbcs x12,x25,x12
stp xzr,xzr,[sp,#8*10]
sbcs x13,x26,x13
stp xzr,xzr,[sp,#8*12]
sbcs x28,x28,xzr // did it borrow?
stp xzr,xzr,[sp,#8*14]
// x6-7 hold result-modulus
csel x6,x19,x6,lo
csel x7,x20,x7,lo
csel x8,x21,x8,lo
csel x9,x22,x9,lo
stp x6,x7,[x1,#8*0]
csel x10,x23,x10,lo
csel x11,x24,x11,lo
stp x8,x9,[x1,#8*2]
csel x12,x25,x12,lo
csel x13,x26,x13,lo
stp x10,x11,[x1,#8*4]
stp x12,x13,[x1,#8*6]
Lsqr8x_done:
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldr x29,[sp],#128
.long 0xd50323bf // autiasp
ret
.align 5
__bn_mul4x_mont:
.long 0xd503233f // paciasp
stp x29,x30,[sp,#-128]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
sub x26,sp,x5,lsl#3
lsl x5,x5,#3
ldr x4,[x4] // *n0
sub sp,x26,#8*4 // alloca
add x10,x2,x5
add x27,x1,x5
stp x0,x10,[x29,#96] // offload rp and &b[num]
ldr x24,[x2,#8*0] // b[0]
ldp x6,x7,[x1,#8*0] // a[0..3]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
mov x19,xzr
mov x20,xzr
mov x21,xzr
mov x22,xzr
ldp x14,x15,[x3,#8*0] // n[0..3]
ldp x16,x17,[x3,#8*2]
adds x3,x3,#8*4 // clear carry bit
mov x0,xzr
mov x28,#0
mov x26,sp
Loop_mul4x_1st_reduction:
mul x10,x6,x24 // lo(a[0..3]*b[0])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[0..3]*b[0])
adcs x20,x20,x11
mul x25,x19,x4 // t[0]*n0
adcs x21,x21,x12
umulh x11,x7,x24
adcs x22,x22,x13
umulh x12,x8,x24
adc x23,xzr,xzr
umulh x13,x9,x24
ldr x24,[x2,x28] // next b[i] (or b[0])
adds x20,x20,x10
// (*) mul x10,x14,x25 // lo(n[0..3]*t[0]*n0)
str x25,[x26],#8 // put aside t[0]*n0 for tail processing
adcs x21,x21,x11
mul x11,x15,x25
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
// (*) adds xzr,x19,x10
subs xzr,x19,#1 // (*)
umulh x10,x14,x25 // hi(n[0..3]*t[0]*n0)
adcs x19,x20,x11
umulh x11,x15,x25
adcs x20,x21,x12
umulh x12,x16,x25
adcs x21,x22,x13
umulh x13,x17,x25
adcs x22,x23,x0
adc x0,xzr,xzr
adds x19,x19,x10
sub x10,x27,x1
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_1st_reduction
cbz x10,Lmul4x4_post_condition
ldp x6,x7,[x1,#8*0] // a[4..7]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
ldr x25,[sp] // a[0]*n0
ldp x14,x15,[x3,#8*0] // n[4..7]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
Loop_mul4x_1st_tail:
mul x10,x6,x24 // lo(a[4..7]*b[i])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[4..7]*b[i])
adcs x20,x20,x11
umulh x11,x7,x24
adcs x21,x21,x12
umulh x12,x8,x24
adcs x22,x22,x13
umulh x13,x9,x24
adc x23,xzr,xzr
ldr x24,[x2,x28] // next b[i] (or b[0])
adds x20,x20,x10
mul x10,x14,x25 // lo(n[4..7]*a[0]*n0)
adcs x21,x21,x11
mul x11,x15,x25
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
adds x19,x19,x10
umulh x10,x14,x25 // hi(n[4..7]*a[0]*n0)
adcs x20,x20,x11
umulh x11,x15,x25
adcs x21,x21,x12
umulh x12,x16,x25
adcs x22,x22,x13
adcs x23,x23,x0
umulh x13,x17,x25
adc x0,xzr,xzr
ldr x25,[sp,x28] // next t[0]*n0
str x19,[x26],#8 // result!!!
adds x19,x20,x10
sub x10,x27,x1 // done yet?
adcs x20,x21,x11
adcs x21,x22,x12
adcs x22,x23,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_1st_tail
sub x11,x27,x5 // rewinded x1
cbz x10,Lmul4x_proceed
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
ldp x14,x15,[x3,#8*0]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
b Loop_mul4x_1st_tail
.align 5
Lmul4x_proceed:
ldr x24,[x2,#8*4]! // *++b
adc x30,x0,xzr
ldp x6,x7,[x11,#8*0] // a[0..3]
sub x3,x3,x5 // rewind np
ldp x8,x9,[x11,#8*2]
add x1,x11,#8*4
stp x19,x20,[x26,#8*0] // result!!!
ldp x19,x20,[sp,#8*4] // t[0..3]
stp x21,x22,[x26,#8*2] // result!!!
ldp x21,x22,[sp,#8*6]
ldp x14,x15,[x3,#8*0] // n[0..3]
mov x26,sp
ldp x16,x17,[x3,#8*2]
adds x3,x3,#8*4 // clear carry bit
mov x0,xzr
.align 4
Loop_mul4x_reduction:
mul x10,x6,x24 // lo(a[0..3]*b[4])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[0..3]*b[4])
adcs x20,x20,x11
mul x25,x19,x4 // t[0]*n0
adcs x21,x21,x12
umulh x11,x7,x24
adcs x22,x22,x13
umulh x12,x8,x24
adc x23,xzr,xzr
umulh x13,x9,x24
ldr x24,[x2,x28] // next b[i]
adds x20,x20,x10
// (*) mul x10,x14,x25
str x25,[x26],#8 // put aside t[0]*n0 for tail processing
adcs x21,x21,x11
mul x11,x15,x25 // lo(n[0..3]*t[0]*n0
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
// (*) adds xzr,x19,x10
subs xzr,x19,#1 // (*)
umulh x10,x14,x25 // hi(n[0..3]*t[0]*n0
adcs x19,x20,x11
umulh x11,x15,x25
adcs x20,x21,x12
umulh x12,x16,x25
adcs x21,x22,x13
umulh x13,x17,x25
adcs x22,x23,x0
adc x0,xzr,xzr
adds x19,x19,x10
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_reduction
adc x0,x0,xzr
ldp x10,x11,[x26,#8*4] // t[4..7]
ldp x12,x13,[x26,#8*6]
ldp x6,x7,[x1,#8*0] // a[4..7]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
adds x19,x19,x10
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
ldr x25,[sp] // t[0]*n0
ldp x14,x15,[x3,#8*0] // n[4..7]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
.align 4
Loop_mul4x_tail:
mul x10,x6,x24 // lo(a[4..7]*b[4])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[4..7]*b[4])
adcs x20,x20,x11
umulh x11,x7,x24
adcs x21,x21,x12
umulh x12,x8,x24
adcs x22,x22,x13
umulh x13,x9,x24
adc x23,xzr,xzr
ldr x24,[x2,x28] // next b[i]
adds x20,x20,x10
mul x10,x14,x25 // lo(n[4..7]*t[0]*n0)
adcs x21,x21,x11
mul x11,x15,x25
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
adds x19,x19,x10
umulh x10,x14,x25 // hi(n[4..7]*t[0]*n0)
adcs x20,x20,x11
umulh x11,x15,x25
adcs x21,x21,x12
umulh x12,x16,x25
adcs x22,x22,x13
umulh x13,x17,x25
adcs x23,x23,x0
ldr x25,[sp,x28] // next a[0]*n0
adc x0,xzr,xzr
str x19,[x26],#8 // result!!!
adds x19,x20,x10
sub x10,x27,x1 // done yet?
adcs x20,x21,x11
adcs x21,x22,x12
adcs x22,x23,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_tail
sub x11,x3,x5 // rewinded np?
adc x0,x0,xzr
cbz x10,Loop_mul4x_break
ldp x10,x11,[x26,#8*4]
ldp x12,x13,[x26,#8*6]
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
adds x19,x19,x10
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
ldp x14,x15,[x3,#8*0]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
b Loop_mul4x_tail
.align 4
Loop_mul4x_break:
ldp x12,x13,[x29,#96] // pull rp and &b[num]
adds x19,x19,x30
add x2,x2,#8*4 // bp++
adcs x20,x20,xzr
sub x1,x1,x5 // rewind ap
adcs x21,x21,xzr
stp x19,x20,[x26,#8*0] // result!!!
adcs x22,x22,xzr
ldp x19,x20,[sp,#8*4] // t[0..3]
adc x30,x0,xzr
stp x21,x22,[x26,#8*2] // result!!!
cmp x2,x13 // done yet?
ldp x21,x22,[sp,#8*6]
ldp x14,x15,[x11,#8*0] // n[0..3]
ldp x16,x17,[x11,#8*2]
add x3,x11,#8*4
b.eq Lmul4x_post
ldr x24,[x2]
ldp x6,x7,[x1,#8*0] // a[0..3]
ldp x8,x9,[x1,#8*2]
adds x1,x1,#8*4 // clear carry bit
mov x0,xzr
mov x26,sp
b Loop_mul4x_reduction
.align 4
Lmul4x_post:
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
mov x0,x12
mov x27,x12 // x0 copy
subs x10,x19,x14
add x26,sp,#8*8
sbcs x11,x20,x15
sub x28,x5,#8*4
Lmul4x_sub:
sbcs x12,x21,x16
ldp x14,x15,[x3,#8*0]
sub x28,x28,#8*4
ldp x19,x20,[x26,#8*0]
sbcs x13,x22,x17
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
ldp x21,x22,[x26,#8*2]
add x26,x26,#8*4
stp x10,x11,[x0,#8*0]
sbcs x10,x19,x14
stp x12,x13,[x0,#8*2]
add x0,x0,#8*4
sbcs x11,x20,x15
cbnz x28,Lmul4x_sub
sbcs x12,x21,x16
mov x26,sp
add x1,sp,#8*4
ldp x6,x7,[x27,#8*0]
sbcs x13,x22,x17
stp x10,x11,[x0,#8*0]
ldp x8,x9,[x27,#8*2]
stp x12,x13,[x0,#8*2]
ldp x19,x20,[x1,#8*0]
ldp x21,x22,[x1,#8*2]
sbcs xzr,x30,xzr // did it borrow?
ldr x30,[x29,#8] // pull return address
sub x28,x5,#8*4
Lmul4x_cond_copy:
sub x28,x28,#8*4
csel x10,x19,x6,lo
stp xzr,xzr,[x26,#8*0]
csel x11,x20,x7,lo
ldp x6,x7,[x27,#8*4]
ldp x19,x20,[x1,#8*4]
csel x12,x21,x8,lo
stp xzr,xzr,[x26,#8*2]
add x26,x26,#8*4
csel x13,x22,x9,lo
ldp x8,x9,[x27,#8*6]
ldp x21,x22,[x1,#8*6]
add x1,x1,#8*4
stp x10,x11,[x27,#8*0]
stp x12,x13,[x27,#8*2]
add x27,x27,#8*4
cbnz x28,Lmul4x_cond_copy
csel x10,x19,x6,lo
stp xzr,xzr,[x26,#8*0]
csel x11,x20,x7,lo
stp xzr,xzr,[x26,#8*2]
csel x12,x21,x8,lo
stp xzr,xzr,[x26,#8*3]
csel x13,x22,x9,lo
stp xzr,xzr,[x26,#8*4]
stp x10,x11,[x27,#8*0]
stp x12,x13,[x27,#8*2]
b Lmul4x_done
.align 4
Lmul4x4_post_condition:
adc x0,x0,xzr
ldr x1,[x29,#96] // pull rp
// x19-3,x0 hold result, x14-7 hold modulus
subs x6,x19,x14
ldr x30,[x29,#8] // pull return address
sbcs x7,x20,x15
stp xzr,xzr,[sp,#8*0]
sbcs x8,x21,x16
stp xzr,xzr,[sp,#8*2]
sbcs x9,x22,x17
stp xzr,xzr,[sp,#8*4]
sbcs xzr,x0,xzr // did it borrow?
stp xzr,xzr,[sp,#8*6]
// x6-3 hold result-modulus
csel x6,x19,x6,lo
csel x7,x20,x7,lo
csel x8,x21,x8,lo
csel x9,x22,x9,lo
stp x6,x7,[x1,#8*0]
stp x8,x9,[x1,#8*2]
Lmul4x_done:
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldr x29,[sp],#128
.long 0xd50323bf // autiasp
ret
.byte 77,111,110,116,103,111,109,101,114,121,32,77,117,108,116,105,112,108,105,99,97,116,105,111,110,32,102,111,114,32,65,82,77,118,56,44,32,67,82,89,80,84,79,71,65,77,83,32,98,121,32,60,97,112,112,114,111,64,111,112,101,110,115,115,108,46,111,114,103,62,0
.align 2
.align 4
|