aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/mimalloc/src/segment.c
blob: 1d59be9d06e62c29cd572e49c9399ff79e829957 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"

#include <string.h>  // memset
#include <stdio.h>

#define MI_PAGE_HUGE_ALIGN  (256*1024)

static uint8_t* mi_segment_raw_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size);

/* --------------------------------------------------------------------------------
  Segment allocation
  We allocate pages inside bigger "segments" (4mb on 64-bit). This is to avoid
  splitting VMA's on Linux and reduce fragmentation on other OS's.
  Each thread owns its own segments.

  Currently we have:
  - small pages (64kb), 64 in one segment
  - medium pages (512kb), 8 in one segment
  - large pages (4mb), 1 in one segment
  - huge blocks > MI_LARGE_OBJ_SIZE_MAX become large segment with 1 page

  In any case the memory for a segment is virtual and usually committed on demand.
  (i.e. we are careful to not touch the memory until we actually allocate a block there)

  If a  thread ends, it "abandons" pages with used blocks
  and there is an abandoned segment list whose segments can
  be reclaimed by still running threads, much like work-stealing.
-------------------------------------------------------------------------------- */


/* -----------------------------------------------------------
  Queue of segments containing free pages
----------------------------------------------------------- */

#if (MI_DEBUG>=3)
static bool mi_segment_queue_contains(const mi_segment_queue_t* queue, const mi_segment_t* segment) {
  mi_assert_internal(segment != NULL);
  mi_segment_t* list = queue->first;
  while (list != NULL) {
    if (list == segment) break;
    mi_assert_internal(list->next==NULL || list->next->prev == list);
    mi_assert_internal(list->prev==NULL || list->prev->next == list);
    list = list->next;
  }
  return (list == segment);
}
#endif

static bool mi_segment_queue_is_empty(const mi_segment_queue_t* queue) {
  return (queue->first == NULL);
}

static void mi_segment_queue_remove(mi_segment_queue_t* queue, mi_segment_t* segment) {
  mi_assert_expensive(mi_segment_queue_contains(queue, segment));
  if (segment->prev != NULL) segment->prev->next = segment->next;
  if (segment->next != NULL) segment->next->prev = segment->prev;
  if (segment == queue->first) queue->first = segment->next;
  if (segment == queue->last)  queue->last = segment->prev;
  segment->next = NULL;
  segment->prev = NULL;
}

static void mi_segment_enqueue(mi_segment_queue_t* queue, mi_segment_t* segment) {
  mi_assert_expensive(!mi_segment_queue_contains(queue, segment));
  segment->next = NULL;
  segment->prev = queue->last;
  if (queue->last != NULL) {
    mi_assert_internal(queue->last->next == NULL);
    queue->last->next = segment;
    queue->last = segment;
  }
  else {
    queue->last = queue->first = segment;
  }
}

static mi_segment_queue_t* mi_segment_free_queue_of_kind(mi_page_kind_t kind, mi_segments_tld_t* tld) {
  if (kind == MI_PAGE_SMALL) return &tld->small_free;
  else if (kind == MI_PAGE_MEDIUM) return &tld->medium_free;
  else return NULL;
}

static mi_segment_queue_t* mi_segment_free_queue(const mi_segment_t* segment, mi_segments_tld_t* tld) {
  return mi_segment_free_queue_of_kind(segment->page_kind, tld);
}

// remove from free queue if it is in one
static void mi_segment_remove_from_free_queue(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_segment_queue_t* queue = mi_segment_free_queue(segment, tld); // may be NULL
  bool in_queue = (queue!=NULL && (segment->next != NULL || segment->prev != NULL || queue->first == segment));
  if (in_queue) {
    mi_segment_queue_remove(queue, segment);
  }
}

static void mi_segment_insert_in_free_queue(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_segment_enqueue(mi_segment_free_queue(segment, tld), segment);
}


/* -----------------------------------------------------------
 Invariant checking
----------------------------------------------------------- */

#if (MI_DEBUG>=2)
static bool mi_segment_is_in_free_queue(const mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_segment_queue_t* queue = mi_segment_free_queue(segment, tld);
  bool in_queue = (queue!=NULL && (segment->next != NULL || segment->prev != NULL || queue->first == segment));
  if (in_queue) {
    mi_assert_expensive(mi_segment_queue_contains(queue, segment));
  }
  return in_queue;
}
#endif

static size_t mi_segment_page_size(const mi_segment_t* segment) {
  if (segment->capacity > 1) {
    mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM);
    return ((size_t)1 << segment->page_shift);
  }
  else {
    mi_assert_internal(segment->page_kind >= MI_PAGE_LARGE);
    return segment->segment_size;
  }
}


#if (MI_DEBUG>=2)
static bool mi_pages_reset_contains(const mi_page_t* page, mi_segments_tld_t* tld) {
  mi_page_t* p = tld->pages_reset.first;
  while (p != NULL) {
    if (p == page) return true;
    p = p->next;
  }
  return false;
}
#endif

#if (MI_DEBUG>=3)
static bool mi_segment_is_valid(const mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(segment != NULL);
  mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
  mi_assert_internal(segment->used <= segment->capacity);
  mi_assert_internal(segment->abandoned <= segment->used);
  size_t nfree = 0;
  for (size_t i = 0; i < segment->capacity; i++) {
    const mi_page_t* const page = &segment->pages[i];
    if (!page->segment_in_use) {
      nfree++;
    }
    if (page->segment_in_use || page->is_reset) {
      mi_assert_expensive(!mi_pages_reset_contains(page, tld));
    }
  }
  mi_assert_internal(nfree + segment->used == segment->capacity);
  // mi_assert_internal(segment->thread_id == _mi_thread_id() || (segment->thread_id==0)); // or 0
  mi_assert_internal(segment->page_kind == MI_PAGE_HUGE ||
                     (mi_segment_page_size(segment) * segment->capacity == segment->segment_size));
  return true;
}
#endif

static bool mi_page_not_in_queue(const mi_page_t* page, mi_segments_tld_t* tld) {
  mi_assert_internal(page != NULL);
  if (page->next != NULL || page->prev != NULL) {
    mi_assert_internal(mi_pages_reset_contains(page, tld));
    return false;
  }
  else {
    // both next and prev are NULL, check for singleton list
    return (tld->pages_reset.first != page && tld->pages_reset.last != page);
  }
}


/* -----------------------------------------------------------
  Guard pages
----------------------------------------------------------- */

static void mi_segment_protect_range(void* p, size_t size, bool protect) {
  if (protect) {
    _mi_mem_protect(p, size);
  }
  else {
    _mi_mem_unprotect(p, size);
  }
}

static void mi_segment_protect(mi_segment_t* segment, bool protect, mi_os_tld_t* tld) {
  // add/remove guard pages
  if (MI_SECURE != 0) {
    // in secure mode, we set up a protected page in between the segment info and the page data
    const size_t os_psize = _mi_os_page_size();
    mi_assert_internal((segment->segment_info_size - os_psize) >= (sizeof(mi_segment_t) + ((segment->capacity - 1) * sizeof(mi_page_t))));
    mi_assert_internal(((uintptr_t)segment + segment->segment_info_size) % os_psize == 0);
    mi_segment_protect_range((uint8_t*)segment + segment->segment_info_size - os_psize, os_psize, protect);
    if (MI_SECURE <= 1 || segment->capacity == 1) {
      // and protect the last (or only) page too
      mi_assert_internal(MI_SECURE <= 1 || segment->page_kind >= MI_PAGE_LARGE);
      uint8_t* start = (uint8_t*)segment + segment->segment_size - os_psize;
      if (protect && !segment->mem_is_committed) {
        if (protect) {
          // ensure secure page is committed
          if (_mi_mem_commit(start, os_psize, NULL, tld)) {  // if this fails that is ok (as it is an unaccessible page)
            mi_segment_protect_range(start, os_psize, protect);
          }
        }
      }
      else {
        mi_segment_protect_range(start, os_psize, protect);
      }
    }
    else {
      // or protect every page
      const size_t page_size = mi_segment_page_size(segment);
      for (size_t i = 0; i < segment->capacity; i++) {
        if (segment->pages[i].is_committed) {
          mi_segment_protect_range((uint8_t*)segment + (i+1)*page_size - os_psize, os_psize, protect);
        }
      }
    }
  }
}

/* -----------------------------------------------------------
  Page reset
----------------------------------------------------------- */

static void mi_page_reset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld) {
  mi_assert_internal(page->is_committed);
  if (!mi_option_is_enabled(mi_option_page_reset)) return;
  if (segment->mem_is_pinned || page->segment_in_use || !page->is_committed || page->is_reset) return;
  size_t psize;
  void* start = mi_segment_raw_page_start(segment, page, &psize);
  page->is_reset = true;
  mi_assert_internal(size <= psize);
  size_t reset_size = ((size == 0 || size > psize) ? psize : size);
  if (reset_size > 0) _mi_mem_reset(start, reset_size, tld->os);
}

static bool mi_page_unreset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld)
{
  mi_assert_internal(page->is_reset);
  mi_assert_internal(page->is_committed);
  mi_assert_internal(!segment->mem_is_pinned);
  if (segment->mem_is_pinned || !page->is_committed || !page->is_reset) return true;
  page->is_reset = false;
  size_t psize;
  uint8_t* start = mi_segment_raw_page_start(segment, page, &psize);
  size_t unreset_size = (size == 0 || size > psize ? psize : size);
  bool is_zero = false;
  bool ok = true;
  if (unreset_size > 0) {
    ok = _mi_mem_unreset(start, unreset_size, &is_zero, tld->os);
  }
  if (is_zero) page->is_zero_init = true;
  return ok;
}


/* -----------------------------------------------------------
  The free page queue
----------------------------------------------------------- */

// we re-use the `used` field for the expiration counter. Since this is a
// a 32-bit field while the clock is always 64-bit we need to guard
// against overflow, we use substraction to check for expiry which work
// as long as the reset delay is under (2^30 - 1) milliseconds (~12 days)
static void mi_page_reset_set_expire(mi_page_t* page) {
  uint32_t expire = (uint32_t)_mi_clock_now() + mi_option_get(mi_option_reset_delay);
  page->used = expire;
}

static bool mi_page_reset_is_expired(mi_page_t* page, mi_msecs_t now) {
  int32_t expire = (int32_t)(page->used);
  return (((int32_t)now - expire) >= 0);
}

static void mi_pages_reset_add(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) {
  mi_assert_internal(!page->segment_in_use || !page->is_committed);
  mi_assert_internal(mi_page_not_in_queue(page,tld));
  mi_assert_expensive(!mi_pages_reset_contains(page, tld));
  mi_assert_internal(_mi_page_segment(page)==segment);
  if (!mi_option_is_enabled(mi_option_page_reset)) return;
  if (segment->mem_is_pinned || page->segment_in_use || !page->is_committed || page->is_reset) return;

  if (mi_option_get(mi_option_reset_delay) == 0) {
    // reset immediately?
    mi_page_reset(segment, page, 0, tld);
  }
  else {
    // otherwise push on the delayed page reset queue
    mi_page_queue_t* pq = &tld->pages_reset;
    // push on top
    mi_page_reset_set_expire(page);
    page->next = pq->first;
    page->prev = NULL;
    if (pq->first == NULL) {
      mi_assert_internal(pq->last == NULL);
      pq->first = pq->last = page;
    }
    else {
      pq->first->prev = page;
      pq->first = page;
    }
  }
}

static void mi_pages_reset_remove(mi_page_t* page, mi_segments_tld_t* tld) {
  if (mi_page_not_in_queue(page,tld)) return;

  mi_page_queue_t* pq = &tld->pages_reset;
  mi_assert_internal(pq!=NULL);
  mi_assert_internal(!page->segment_in_use);
  mi_assert_internal(mi_pages_reset_contains(page, tld));
  if (page->prev != NULL) page->prev->next = page->next;
  if (page->next != NULL) page->next->prev = page->prev;
  if (page == pq->last)  pq->last = page->prev;
  if (page == pq->first) pq->first = page->next;
  page->next = page->prev = NULL;
  page->used = 0;
}

static void mi_pages_reset_remove_all_in_segment(mi_segment_t* segment, bool force_reset, mi_segments_tld_t* tld) {
  if (segment->mem_is_pinned) return; // never reset in huge OS pages
  for (size_t i = 0; i < segment->capacity; i++) {
    mi_page_t* page = &segment->pages[i];
    if (!page->segment_in_use && page->is_committed && !page->is_reset) {
      mi_pages_reset_remove(page, tld);
      if (force_reset) {
        mi_page_reset(segment, page, 0, tld);
      }
    }
    else {
      mi_assert_internal(mi_page_not_in_queue(page,tld));
    }
  }
}

static void mi_reset_delayed(mi_segments_tld_t* tld) {
  if (!mi_option_is_enabled(mi_option_page_reset)) return;
  mi_msecs_t now = _mi_clock_now();
  mi_page_queue_t* pq = &tld->pages_reset;
  // from oldest up to the first that has not expired yet
  mi_page_t* page = pq->last;
  while (page != NULL && mi_page_reset_is_expired(page,now)) {
    mi_page_t* const prev = page->prev; // save previous field
    mi_page_reset(_mi_page_segment(page), page, 0, tld);
    page->used = 0;
    page->prev = page->next = NULL;
    page = prev;
  }
  // discard the reset pages from the queue
  pq->last = page;
  if (page != NULL){
    page->next = NULL;
  }
  else {
    pq->first = NULL;
  }
}


/* -----------------------------------------------------------
 Segment size calculations
----------------------------------------------------------- */

// Raw start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set)
// The raw start is not taking aligned block allocation into consideration.
static uint8_t* mi_segment_raw_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
  size_t   psize = (segment->page_kind == MI_PAGE_HUGE ? segment->segment_size : (size_t)1 << segment->page_shift);
  uint8_t* p = (uint8_t*)segment + page->segment_idx * psize;

  if (page->segment_idx == 0) {
    // the first page starts after the segment info (and possible guard page)
    p += segment->segment_info_size;
    psize -= segment->segment_info_size;
  }

#if (MI_SECURE > 1)  // every page has an os guard page
  psize -= _mi_os_page_size();
#elif (MI_SECURE==1) // the last page has an os guard page at the end
  if (page->segment_idx == segment->capacity - 1) {
    psize -= _mi_os_page_size();
  }
#endif

  if (page_size != NULL) *page_size = psize;
  mi_assert_internal(page->xblock_size == 0 || _mi_ptr_page(p) == page);
  mi_assert_internal(_mi_ptr_segment(p) == segment);
  return p;
}

// Start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set)
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size)
{
  size_t   psize;
  uint8_t* p = mi_segment_raw_page_start(segment, page, &psize);
  if (pre_size != NULL) *pre_size = 0;
  if (page->segment_idx == 0 && block_size > 0 && segment->page_kind <= MI_PAGE_MEDIUM) {
    // for small and medium objects, ensure the page start is aligned with the block size (PR#66 by kickunderscore)
    size_t adjust = block_size - ((uintptr_t)p % block_size);
    if (adjust < block_size) {
      p += adjust;
      psize -= adjust;
      if (pre_size != NULL) *pre_size = adjust;
    }
    mi_assert_internal((uintptr_t)p % block_size == 0);
  }

  if (page_size != NULL) *page_size = psize;
  mi_assert_internal(page->xblock_size==0 || _mi_ptr_page(p) == page);
  mi_assert_internal(_mi_ptr_segment(p) == segment);
  return p;
}

static size_t mi_segment_size(size_t capacity, size_t required, size_t* pre_size, size_t* info_size)
{
  const size_t minsize   = sizeof(mi_segment_t) + ((capacity - 1) * sizeof(mi_page_t)) + 16 /* padding */;
  size_t guardsize = 0;
  size_t isize     = 0;

  if (MI_SECURE == 0) {
    // normally no guard pages
    isize = _mi_align_up(minsize, 16 * MI_MAX_ALIGN_SIZE);
  }
  else {
    // in secure mode, we set up a protected page in between the segment info
    // and the page data (and one at the end of the segment)
    const size_t page_size = _mi_os_page_size();
    isize = _mi_align_up(minsize, page_size);
    guardsize = page_size;
    required = _mi_align_up(required, page_size);
  }

  if (info_size != NULL) *info_size = isize;
  if (pre_size != NULL)  *pre_size  = isize + guardsize;
  return (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + 2*guardsize, MI_PAGE_HUGE_ALIGN) );
}


/* ----------------------------------------------------------------------------
Segment caches
We keep a small segment cache per thread to increase local
reuse and avoid setting/clearing guard pages in secure mode.
------------------------------------------------------------------------------- */

static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
  if (segment_size>=0) _mi_stat_increase(&tld->stats->segments,1);
                  else _mi_stat_decrease(&tld->stats->segments,1);
  tld->count += (segment_size >= 0 ? 1 : -1);
  if (tld->count > tld->peak_count) tld->peak_count = tld->count;
  tld->current_size += segment_size;
  if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
}

static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) {
  segment->thread_id = 0;
  mi_segments_track_size(-((long)segment_size),tld);
  if (MI_SECURE != 0) {
    mi_assert_internal(!segment->mem_is_pinned);
    mi_segment_protect(segment, false, tld->os); // ensure no more guard pages are set
  }

  bool any_reset = false;
  bool fully_committed = true;
  for (size_t i = 0; i < segment->capacity; i++) {
    mi_page_t* page = &segment->pages[i];
    if (!page->is_committed) { fully_committed = false; }
    if (page->is_reset)      { any_reset = true; }
  }
  if (any_reset && mi_option_is_enabled(mi_option_reset_decommits)) {
    fully_committed = false;
  }
  _mi_mem_free(segment, segment_size, segment->memid, fully_committed, any_reset, tld->os);
}


// The thread local segment cache is limited to be at most 1/8 of the peak size of segments in use,
#define MI_SEGMENT_CACHE_FRACTION (8)

// note: returned segment may be partially reset
static mi_segment_t* mi_segment_cache_pop(size_t segment_size, mi_segments_tld_t* tld) {
  if (segment_size != 0 && segment_size != MI_SEGMENT_SIZE) return NULL;
  mi_segment_t* segment = tld->cache;
  if (segment == NULL) return NULL;
  tld->cache_count--;
  tld->cache = segment->next;
  segment->next = NULL;
  mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE);
  _mi_stat_decrease(&tld->stats->segments_cache, 1);
  return segment;
}

static bool mi_segment_cache_full(mi_segments_tld_t* tld)
{
  // if (tld->count == 1 && tld->cache_count==0) return false; // always cache at least the final segment of a thread
  size_t max_cache = mi_option_get(mi_option_segment_cache);
  if (tld->cache_count < max_cache
       && tld->cache_count < (1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION)) // at least allow a 1 element cache
     ) {
    return false;
  }
  // take the opportunity to reduce the segment cache if it is too large (now)
  // TODO: this never happens as we check against peak usage, should we use current usage instead?
  while (tld->cache_count > max_cache) { //(1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION))) {
    mi_segment_t* segment = mi_segment_cache_pop(0,tld);
    mi_assert_internal(segment != NULL);
    if (segment != NULL) mi_segment_os_free(segment, segment->segment_size, tld);
  }
  return true;
}

static bool mi_segment_cache_push(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(!mi_segment_is_in_free_queue(segment, tld));
  mi_assert_internal(segment->next == NULL);
  if (segment->segment_size != MI_SEGMENT_SIZE || mi_segment_cache_full(tld)) {
    return false;
  }
  mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE);
  segment->next = tld->cache;
  tld->cache = segment;
  tld->cache_count++;
  _mi_stat_increase(&tld->stats->segments_cache,1);
  return true;
}

// called by threads that are terminating to free cached segments
void _mi_segment_thread_collect(mi_segments_tld_t* tld) {
  mi_segment_t* segment;
  while ((segment = mi_segment_cache_pop(0,tld)) != NULL) {
    mi_segment_os_free(segment, segment->segment_size, tld);
  }
  mi_assert_internal(tld->cache_count == 0);
  mi_assert_internal(tld->cache == NULL);
#if MI_DEBUG>=2
  if (!_mi_is_main_thread()) {
    mi_assert_internal(tld->pages_reset.first == NULL);
    mi_assert_internal(tld->pages_reset.last == NULL);
  }
#endif
}


/* -----------------------------------------------------------
   Segment allocation
----------------------------------------------------------- */

// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
  // the segment parameter is non-null if it came from our cache
  mi_assert_internal(segment==NULL || (required==0 && page_kind <= MI_PAGE_LARGE));

  // calculate needed sizes first
  size_t capacity;
  if (page_kind == MI_PAGE_HUGE) {
    mi_assert_internal(page_shift == MI_SEGMENT_SHIFT && required > 0);
    capacity = 1;
  }
  else {
    mi_assert_internal(required == 0);
    size_t page_size = (size_t)1 << page_shift;
    capacity = MI_SEGMENT_SIZE / page_size;
    mi_assert_internal(MI_SEGMENT_SIZE % page_size == 0);
    mi_assert_internal(capacity >= 1 && capacity <= MI_SMALL_PAGES_PER_SEGMENT);
  }
  size_t info_size;
  size_t pre_size;
  size_t segment_size = mi_segment_size(capacity, required, &pre_size, &info_size);
  mi_assert_internal(segment_size >= required);

  // Initialize parameters
  const bool eager_delayed = (page_kind <= MI_PAGE_MEDIUM && tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay));
  const bool eager  = !eager_delayed && mi_option_is_enabled(mi_option_eager_commit);
  bool commit = eager; // || (page_kind >= MI_PAGE_LARGE);
  bool pages_still_good = false;
  bool is_zero = false;

  // Try to get it from our thread local cache first
  if (segment != NULL) {
    // came from cache
    mi_assert_internal(segment->segment_size == segment_size);
    if (page_kind <= MI_PAGE_MEDIUM && segment->page_kind == page_kind && segment->segment_size == segment_size) {
      pages_still_good = true;
    }
    else
    {
      if (MI_SECURE!=0) {
        mi_assert_internal(!segment->mem_is_pinned);
        mi_segment_protect(segment, false, tld->os); // reset protection if the page kind differs
      }
      // different page kinds; unreset any reset pages, and unprotect
      // TODO: optimize cache pop to return fitting pages if possible?
      for (size_t i = 0; i < segment->capacity; i++) {
        mi_page_t* page = &segment->pages[i];
        if (page->is_reset) {
          if (!commit && mi_option_is_enabled(mi_option_reset_decommits)) {
            page->is_reset = false;
          }
          else {
            mi_page_unreset(segment, page, 0, tld);  // todo: only unreset the part that was reset? (instead of the full page)
          }
        }
      }
      // ensure the initial info is committed
      if (segment->capacity < capacity) {
        bool commit_zero = false;
        bool ok = _mi_mem_commit(segment, pre_size, &commit_zero, tld->os);
        if (commit_zero) is_zero = true;
        if (!ok) {
          return NULL;
        }
      }
    }
  }
  else {
    // Allocate the segment from the OS
    size_t memid;
    bool   mem_large = (!eager_delayed && (MI_SECURE==0)); // only allow large OS pages once we are no longer lazy
    bool   is_pinned = false;
    segment = (mi_segment_t*)_mi_mem_alloc_aligned(segment_size, MI_SEGMENT_SIZE, &commit, &mem_large, &is_pinned, &is_zero, &memid, os_tld);
    if (segment == NULL) return NULL;  // failed to allocate
    if (!commit) {
      // ensure the initial info is committed
      mi_assert_internal(!mem_large && !is_pinned);
      bool commit_zero = false;
      bool ok = _mi_mem_commit(segment, pre_size, &commit_zero, tld->os);
      if (commit_zero) is_zero = true;
      if (!ok) {
        // commit failed; we cannot touch the memory: free the segment directly and return `NULL`
        _mi_mem_free(segment, MI_SEGMENT_SIZE, memid, false, false, os_tld);
        return NULL;  
      }
    }
    segment->memid = memid;
    segment->mem_is_pinned = (mem_large || is_pinned);
    segment->mem_is_committed = commit;    
    mi_segments_track_size((long)segment_size, tld);
  }
  mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0);
  mi_assert_internal(segment->mem_is_pinned ? segment->mem_is_committed : true);  
  mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);  // tsan
  if (!pages_still_good) {
    // zero the segment info (but not the `mem` fields)
    ptrdiff_t ofs = offsetof(mi_segment_t, next);
    memset((uint8_t*)segment + ofs, 0, info_size - ofs);

    // initialize pages info
    for (uint8_t i = 0; i < capacity; i++) {
      segment->pages[i].segment_idx = i;
      segment->pages[i].is_reset = false;
      segment->pages[i].is_committed = commit;
      segment->pages[i].is_zero_init = is_zero;
    }
  }
  else {
    // zero the segment info but not the pages info (and mem fields)
    ptrdiff_t ofs = offsetof(mi_segment_t, next);
    memset((uint8_t*)segment + ofs, 0, offsetof(mi_segment_t,pages) - ofs);
  }

  // initialize
  segment->page_kind  = page_kind;
  segment->capacity   = capacity;
  segment->page_shift = page_shift;
  segment->segment_size = segment_size;
  segment->segment_info_size = pre_size;
  segment->thread_id  = _mi_thread_id();
  segment->cookie = _mi_ptr_cookie(segment);
  // _mi_stat_increase(&tld->stats->page_committed, segment->segment_info_size);

  // set protection
  mi_segment_protect(segment, true, tld->os);

  // insert in free lists for small and medium pages
  if (page_kind <= MI_PAGE_MEDIUM) {
    mi_segment_insert_in_free_queue(segment, tld);
  }

  //fprintf(stderr,"mimalloc: alloc segment at %p\n", (void*)segment);
  return segment;
}

static mi_segment_t* mi_segment_alloc(size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  return mi_segment_init(NULL, required, page_kind, page_shift, tld, os_tld);
}

static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
  UNUSED(force);
  mi_assert(segment != NULL);
  // note: don't reset pages even on abandon as the whole segment is freed? (and ready for reuse)
  bool force_reset = (force && mi_option_is_enabled(mi_option_abandoned_page_reset));
  mi_pages_reset_remove_all_in_segment(segment, force_reset, tld);
  mi_segment_remove_from_free_queue(segment,tld);

  mi_assert_expensive(!mi_segment_queue_contains(&tld->small_free, segment));
  mi_assert_expensive(!mi_segment_queue_contains(&tld->medium_free, segment));
  mi_assert(segment->next == NULL);
  mi_assert(segment->prev == NULL);
  _mi_stat_decrease(&tld->stats->page_committed, segment->segment_info_size);

  if (!force && mi_segment_cache_push(segment, tld)) {
    // it is put in our cache
  }
  else {
    // otherwise return it to the OS
    mi_segment_os_free(segment, segment->segment_size, tld);
  }
}

/* -----------------------------------------------------------
  Free page management inside a segment
----------------------------------------------------------- */


static bool mi_segment_has_free(const mi_segment_t* segment) {
  return (segment->used < segment->capacity);
}

static bool mi_segment_page_claim(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) {
  mi_assert_internal(_mi_page_segment(page) == segment);
  mi_assert_internal(!page->segment_in_use);
  mi_pages_reset_remove(page, tld);
  // check commit
  if (!page->is_committed) {
    mi_assert_internal(!segment->mem_is_pinned);
    mi_assert_internal(!page->is_reset);    
    size_t psize;
    uint8_t* start = mi_segment_raw_page_start(segment, page, &psize);
    bool is_zero = false;
    const size_t gsize = (MI_SECURE >= 2 ? _mi_os_page_size() : 0);
    bool ok = _mi_mem_commit(start, psize + gsize, &is_zero, tld->os);
    if (!ok) return false; // failed to commit!
    if (gsize > 0) { mi_segment_protect_range(start + psize, gsize, true); }
    if (is_zero) { page->is_zero_init = true; }
    page->is_committed = true;
  }
  // set in-use before doing unreset to prevent delayed reset
  page->segment_in_use = true;
  segment->used++;
  // check reset
  if (page->is_reset) {
    mi_assert_internal(!segment->mem_is_pinned);
    bool ok = mi_page_unreset(segment, page, 0, tld); 
    if (!ok) {
      page->segment_in_use = false;
      segment->used--;
      return false;
    }
  }
  mi_assert_internal(page->segment_in_use);
  mi_assert_internal(segment->used <= segment->capacity);
  if (segment->used == segment->capacity && segment->page_kind <= MI_PAGE_MEDIUM) {
    // if no more free pages, remove from the queue
    mi_assert_internal(!mi_segment_has_free(segment));
    mi_segment_remove_from_free_queue(segment, tld);
  }
  return true;
}


/* -----------------------------------------------------------
   Free
----------------------------------------------------------- */

static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld);

// clear page data; can be called on abandoned segments
static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, bool allow_reset, mi_segments_tld_t* tld)
{
  mi_assert_internal(page->segment_in_use);
  mi_assert_internal(mi_page_all_free(page));
  mi_assert_internal(page->is_committed);
  mi_assert_internal(mi_page_not_in_queue(page, tld));

  size_t inuse = page->capacity * mi_page_block_size(page);
  _mi_stat_decrease(&tld->stats->page_committed, inuse);
  _mi_stat_decrease(&tld->stats->pages, 1);

  // calculate the used size from the raw (non-aligned) start of the page
  //size_t pre_size;
  //_mi_segment_page_start(segment, page, page->block_size, NULL, &pre_size);
  //size_t used_size = pre_size + (page->capacity * page->block_size);

  page->is_zero_init = false;
  page->segment_in_use = false;

  // reset the page memory to reduce memory pressure?
  // note: must come after setting `segment_in_use` to false but before block_size becomes 0
  //mi_page_reset(segment, page, 0 /*used_size*/, tld);

  // zero the page data, but not the segment fields and capacity, and block_size (for page size calculations)
  uint32_t block_size = page->xblock_size;
  uint16_t capacity = page->capacity;
  uint16_t reserved = page->reserved;
  ptrdiff_t ofs = offsetof(mi_page_t,capacity);
  memset((uint8_t*)page + ofs, 0, sizeof(*page) - ofs);
  page->capacity = capacity;
  page->reserved = reserved;
  page->xblock_size = block_size;
  segment->used--;

  // add to the free page list for reuse/reset
  if (allow_reset) {
    mi_pages_reset_add(segment, page, tld);
  }

  page->capacity = 0;  // after reset these can be zero'd now
  page->reserved = 0;
}

void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
{
  mi_assert(page != NULL);
  mi_segment_t* segment = _mi_page_segment(page);
  mi_assert_expensive(mi_segment_is_valid(segment,tld));
  mi_reset_delayed(tld);

  // mark it as free now
  mi_segment_page_clear(segment, page, true, tld);

  if (segment->used == 0) {
    // no more used pages; remove from the free list and free the segment
    mi_segment_free(segment, force, tld);
  }
  else {
    if (segment->used == segment->abandoned) {
      // only abandoned pages; remove from free list and abandon
      mi_segment_abandon(segment,tld);
    }
    else if (segment->used + 1 == segment->capacity) {
      mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM); // for now we only support small and medium pages
      // move back to segments  free list
      mi_segment_insert_in_free_queue(segment,tld);
    }
  }
}


/* -----------------------------------------------------------
Abandonment

When threads terminate, they can leave segments with
live blocks (reached through other threads). Such segments
are "abandoned" and will be reclaimed by other threads to
reuse their pages and/or free them eventually

We maintain a global list of abandoned segments that are
reclaimed on demand. Since this is shared among threads
the implementation needs to avoid the A-B-A problem on
popping abandoned segments: <https://en.wikipedia.org/wiki/ABA_problem>
We use tagged pointers to avoid accidentially identifying
reused segments, much like stamped references in Java.
Secondly, we maintain a reader counter to avoid resetting
or decommitting segments that have a pending read operation.

Note: the current implementation is one possible design;
another way might be to keep track of abandoned segments
in the regions. This would have the advantage of keeping
all concurrent code in one place and not needing to deal
with ABA issues. The drawback is that it is unclear how to
scan abandoned segments efficiently in that case as they
would be spread among all other segments in the regions.
----------------------------------------------------------- */

// Use the bottom 20-bits (on 64-bit) of the aligned segment pointers
// to put in a tag that increments on update to avoid the A-B-A problem.
#define MI_TAGGED_MASK   MI_SEGMENT_MASK
typedef uintptr_t        mi_tagged_segment_t;

static mi_segment_t* mi_tagged_segment_ptr(mi_tagged_segment_t ts) {
  return (mi_segment_t*)(ts & ~MI_TAGGED_MASK);
}

static mi_tagged_segment_t mi_tagged_segment(mi_segment_t* segment, mi_tagged_segment_t ts) {
  mi_assert_internal(((uintptr_t)segment & MI_TAGGED_MASK) == 0);
  uintptr_t tag = ((ts & MI_TAGGED_MASK) + 1) & MI_TAGGED_MASK;
  return ((uintptr_t)segment | tag);
}

// This is a list of visited abandoned pages that were full at the time.
// this list migrates to `abandoned` when that becomes NULL. The use of
// this list reduces contention and the rate at which segments are visited.
static mi_decl_cache_align _Atomic(mi_segment_t*)       abandoned_visited; // = NULL

// The abandoned page list (tagged as it supports pop)
static mi_decl_cache_align _Atomic(mi_tagged_segment_t) abandoned;         // = NULL

// Maintain these for debug purposes (these counts may be a bit off)
static mi_decl_cache_align _Atomic(uintptr_t)           abandoned_count; 
static mi_decl_cache_align _Atomic(uintptr_t)           abandoned_visited_count;

// We also maintain a count of current readers of the abandoned list
// in order to prevent resetting/decommitting segment memory if it might
// still be read.
static mi_decl_cache_align _Atomic(uintptr_t)           abandoned_readers; // = 0

// Push on the visited list
static void mi_abandoned_visited_push(mi_segment_t* segment) {
  mi_assert_internal(segment->thread_id == 0);
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t,&segment->abandoned_next) == NULL);
  mi_assert_internal(segment->next == NULL && segment->prev == NULL);
  mi_assert_internal(segment->used > 0);
  mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited);
  do {
    mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, anext);
  } while (!mi_atomic_cas_ptr_weak_release(mi_segment_t, &abandoned_visited, &anext, segment));
  mi_atomic_increment_relaxed(&abandoned_visited_count);
}

// Move the visited list to the abandoned list.
static bool mi_abandoned_visited_revisit(void)
{
  // quick check if the visited list is empty
  if (mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited) == NULL) return false;

  // grab the whole visited list
  mi_segment_t* first = mi_atomic_exchange_ptr_acq_rel(mi_segment_t, &abandoned_visited, NULL);
  if (first == NULL) return false;

  // first try to swap directly if the abandoned list happens to be NULL
  mi_tagged_segment_t afirst;
  mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
  if (mi_tagged_segment_ptr(ts)==NULL) {
    uintptr_t count = mi_atomic_load_relaxed(&abandoned_visited_count);
    afirst = mi_tagged_segment(first, ts);
    if (mi_atomic_cas_strong_acq_rel(&abandoned, &ts, afirst)) {
      mi_atomic_add_relaxed(&abandoned_count, count);
      mi_atomic_sub_relaxed(&abandoned_visited_count, count);
      return true;
    }
  }

  // find the last element of the visited list: O(n)
  mi_segment_t* last = first;
  mi_segment_t* next;
  while ((next = mi_atomic_load_ptr_relaxed(mi_segment_t, &last->abandoned_next)) != NULL) {
    last = next;
  }

  // and atomically prepend to the abandoned list
  // (no need to increase the readers as we don't access the abandoned segments)
  mi_tagged_segment_t anext = mi_atomic_load_relaxed(&abandoned);
  uintptr_t count;
  do {
    count = mi_atomic_load_relaxed(&abandoned_visited_count);
    mi_atomic_store_ptr_release(mi_segment_t, &last->abandoned_next, mi_tagged_segment_ptr(anext));
    afirst = mi_tagged_segment(first, anext);
  } while (!mi_atomic_cas_weak_release(&abandoned, &anext, afirst));
  mi_atomic_add_relaxed(&abandoned_count, count);
  mi_atomic_sub_relaxed(&abandoned_visited_count, count);
  return true;
}

// Push on the abandoned list.
static void mi_abandoned_push(mi_segment_t* segment) {
  mi_assert_internal(segment->thread_id == 0);
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
  mi_assert_internal(segment->next == NULL && segment->prev == NULL);
  mi_assert_internal(segment->used > 0);
  mi_tagged_segment_t next;
  mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
  do {
    mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, mi_tagged_segment_ptr(ts));
    next = mi_tagged_segment(segment, ts);
  } while (!mi_atomic_cas_weak_release(&abandoned, &ts, next));
  mi_atomic_increment_relaxed(&abandoned_count);
}

// Wait until there are no more pending reads on segments that used to be in the abandoned list
void _mi_abandoned_await_readers(void) {
  uintptr_t n;
  do {
    n = mi_atomic_load_acquire(&abandoned_readers);
    if (n != 0) mi_atomic_yield();
  } while (n != 0);
}

// Pop from the abandoned list
static mi_segment_t* mi_abandoned_pop(void) {
  mi_segment_t* segment;
  // Check efficiently if it is empty (or if the visited list needs to be moved)
  mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
  segment = mi_tagged_segment_ptr(ts);
  if (mi_likely(segment == NULL)) {
    if (mi_likely(!mi_abandoned_visited_revisit())) { // try to swap in the visited list on NULL
      return NULL;
    }
  }

  // Do a pop. We use a reader count to prevent
  // a segment to be decommitted while a read is still pending,
  // and a tagged pointer to prevent A-B-A link corruption.
  // (this is called from `region.c:_mi_mem_free` for example)
  mi_atomic_increment_relaxed(&abandoned_readers);  // ensure no segment gets decommitted
  mi_tagged_segment_t next = 0;
  ts = mi_atomic_load_acquire(&abandoned);
  do {
    segment = mi_tagged_segment_ptr(ts);
    if (segment != NULL) {
      mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next);
      next = mi_tagged_segment(anext, ts); // note: reads the segment's `abandoned_next` field so should not be decommitted
    }
  } while (segment != NULL && !mi_atomic_cas_weak_acq_rel(&abandoned, &ts, next));
  mi_atomic_decrement_relaxed(&abandoned_readers);  // release reader lock
  if (segment != NULL) {
    mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
    mi_atomic_decrement_relaxed(&abandoned_count);
  }
  return segment;
}

/* -----------------------------------------------------------
   Abandon segment/page
----------------------------------------------------------- */

static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(segment->used == segment->abandoned);
  mi_assert_internal(segment->used > 0);
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
  mi_assert_expensive(mi_segment_is_valid(segment, tld));

  // remove the segment from the free page queue if needed
  mi_reset_delayed(tld);
  mi_pages_reset_remove_all_in_segment(segment, mi_option_is_enabled(mi_option_abandoned_page_reset), tld);
  mi_segment_remove_from_free_queue(segment, tld);
  mi_assert_internal(segment->next == NULL && segment->prev == NULL);

  // all pages in the segment are abandoned; add it to the abandoned list
  _mi_stat_increase(&tld->stats->segments_abandoned, 1);
  mi_segments_track_size(-((long)segment->segment_size), tld);
  segment->thread_id = 0;
  segment->abandoned_visits = 0;
  mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
  mi_abandoned_push(segment);
}

void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) {
  mi_assert(page != NULL);
  mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
  mi_assert_internal(mi_page_heap(page) == NULL);
  mi_segment_t* segment = _mi_page_segment(page);
  mi_assert_expensive(!mi_pages_reset_contains(page, tld));
  mi_assert_expensive(mi_segment_is_valid(segment, tld));
  segment->abandoned++;
  _mi_stat_increase(&tld->stats->pages_abandoned, 1);
  mi_assert_internal(segment->abandoned <= segment->used);
  if (segment->used == segment->abandoned) {
    // all pages are abandoned, abandon the entire segment
    mi_segment_abandon(segment, tld);
  }
}

/* -----------------------------------------------------------
  Reclaim abandoned pages
----------------------------------------------------------- */

// Possibly clear pages and check if free space is available
static bool mi_segment_check_free(mi_segment_t* segment, size_t block_size, bool* all_pages_free)
{
  mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
  bool has_page = false;
  size_t pages_used = 0;
  size_t pages_used_empty = 0;
  for (size_t i = 0; i < segment->capacity; i++) {
    mi_page_t* page = &segment->pages[i];
    if (page->segment_in_use) {
      pages_used++;
      // ensure used count is up to date and collect potential concurrent frees
      _mi_page_free_collect(page, false);
      if (mi_page_all_free(page)) {
        // if everything free already, page can be reused for some block size
        // note: don't clear the page yet as we can only OS reset it once it is reclaimed
        pages_used_empty++;
        has_page = true;
      }
      else if (page->xblock_size == block_size && mi_page_has_any_available(page)) {
        // a page has available free blocks of the right size
        has_page = true;
      }
    }
    else {
      // whole empty page
      has_page = true;
    }
  }
  mi_assert_internal(pages_used == segment->used && pages_used >= pages_used_empty);
  if (all_pages_free != NULL) {
    *all_pages_free = ((pages_used - pages_used_empty) == 0);
  }
  return has_page;
}


// Reclaim a segment; returns NULL if the segment was freed
// set `right_page_reclaimed` to `true` if it reclaimed a page of the right `block_size` that was not full.
static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, size_t requested_block_size, bool* right_page_reclaimed, mi_segments_tld_t* tld) {
  mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
  if (right_page_reclaimed != NULL) { *right_page_reclaimed = false; }

  segment->thread_id = _mi_thread_id();
  segment->abandoned_visits = 0;
  mi_segments_track_size((long)segment->segment_size, tld);
  mi_assert_internal(segment->next == NULL && segment->prev == NULL);
  mi_assert_expensive(mi_segment_is_valid(segment, tld));
  _mi_stat_decrease(&tld->stats->segments_abandoned, 1);

  for (size_t i = 0; i < segment->capacity; i++) {
    mi_page_t* page = &segment->pages[i];
    if (page->segment_in_use) {
      mi_assert_internal(!page->is_reset);
      mi_assert_internal(page->is_committed);
      mi_assert_internal(mi_page_not_in_queue(page, tld));
      mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
      mi_assert_internal(mi_page_heap(page) == NULL);
      segment->abandoned--;
      mi_assert(page->next == NULL);
      _mi_stat_decrease(&tld->stats->pages_abandoned, 1);
      // set the heap again and allow heap thread delayed free again.
      mi_page_set_heap(page, heap);
      _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, true); // override never (after heap is set)
      // TODO: should we not collect again given that we just collected in `check_free`?
      _mi_page_free_collect(page, false); // ensure used count is up to date
      if (mi_page_all_free(page)) {
        // if everything free already, clear the page directly
        mi_segment_page_clear(segment, page, true, tld);  // reset is ok now
      }
      else {
        // otherwise reclaim it into the heap
        _mi_page_reclaim(heap, page);
        if (requested_block_size == page->xblock_size && mi_page_has_any_available(page)) {
          if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; }
        }
      }
    }
    else if (page->is_committed && !page->is_reset) {  // not in-use, and not reset yet
      // note: do not reset as this includes pages that were not touched before
      // mi_pages_reset_add(segment, page, tld);
    }
  }
  mi_assert_internal(segment->abandoned == 0);
  if (segment->used == 0) {
    mi_assert_internal(right_page_reclaimed == NULL || !(*right_page_reclaimed));
    mi_segment_free(segment, false, tld);
    return NULL;
  }
  else {
    if (segment->page_kind <= MI_PAGE_MEDIUM && mi_segment_has_free(segment)) {
      mi_segment_insert_in_free_queue(segment, tld);
    }
    return segment;
  }
}


void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) {
  mi_segment_t* segment;
  while ((segment = mi_abandoned_pop()) != NULL) {
    mi_segment_reclaim(segment, heap, 0, NULL, tld);
  }
}

static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size, mi_page_kind_t page_kind, bool* reclaimed, mi_segments_tld_t* tld)
{
  *reclaimed = false;
  mi_segment_t* segment;
  int max_tries = 8;     // limit the work to bound allocation times
  while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) {
    segment->abandoned_visits++;
    bool all_pages_free;
    bool has_page = mi_segment_check_free(segment,block_size,&all_pages_free); // try to free up pages (due to concurrent frees)
    if (all_pages_free) {
      // free the segment (by forced reclaim) to make it available to other threads.
      // note1: we prefer to free a segment as that might lead to reclaiming another
      // segment that is still partially used.
      // note2: we could in principle optimize this by skipping reclaim and directly
      // freeing but that would violate some invariants temporarily)
      mi_segment_reclaim(segment, heap, 0, NULL, tld);
    }
    else if (has_page && segment->page_kind == page_kind) {
      // found a free page of the right kind, or page of the right block_size with free space
      // we return the result of reclaim (which is usually `segment`) as it might free
      // the segment due to concurrent frees (in which case `NULL` is returned).
      return mi_segment_reclaim(segment, heap, block_size, reclaimed, tld);
    }
    else if (segment->abandoned_visits >= 3) {
      // always reclaim on 3rd visit to limit the list length.
      mi_segment_reclaim(segment, heap, 0, NULL, tld);
    }
    else {
      // otherwise, push on the visited list so it gets not looked at too quickly again
      mi_abandoned_visited_push(segment);
    }
  }
  return NULL;
}


/* -----------------------------------------------------------
   Reclaim or allocate
----------------------------------------------------------- */

static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t block_size, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
  mi_assert_internal(page_kind <= MI_PAGE_LARGE);
  mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
  // 1. try to get a segment from our cache
  mi_segment_t* segment = mi_segment_cache_pop(MI_SEGMENT_SIZE, tld);
  if (segment != NULL) {
    mi_segment_init(segment, 0, page_kind, page_shift, tld, os_tld);
    return segment;
  }
  // 2. try to reclaim an abandoned segment
  bool reclaimed;
  segment = mi_segment_try_reclaim(heap, block_size, page_kind, &reclaimed, tld);
  if (reclaimed) {
    // reclaimed the right page right into the heap
    mi_assert_internal(segment != NULL && segment->page_kind == page_kind && page_kind <= MI_PAGE_LARGE);
    return NULL; // pretend out-of-memory as the page will be in the page queue of the heap with available blocks
  }
  else if (segment != NULL) {
    // reclaimed a segment with empty pages (of `page_kind`) in it
    return segment;
  }
  // 3. otherwise allocate a fresh segment
  return mi_segment_alloc(0, page_kind, page_shift, tld, os_tld);
}


/* -----------------------------------------------------------
   Small page allocation
----------------------------------------------------------- */

static mi_page_t* mi_segment_find_free(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(mi_segment_has_free(segment));
  mi_assert_expensive(mi_segment_is_valid(segment, tld));
  for (size_t i = 0; i < segment->capacity; i++) {  // TODO: use a bitmap instead of search?
    mi_page_t* page = &segment->pages[i];
    if (!page->segment_in_use) {
      bool ok = mi_segment_page_claim(segment, page, tld);
      if (ok) return page;
    }
  }
  mi_assert(false);
  return NULL;
}

// Allocate a page inside a segment. Requires that the page has free pages
static mi_page_t* mi_segment_page_alloc_in(mi_segment_t* segment, mi_segments_tld_t* tld) {
  mi_assert_internal(mi_segment_has_free(segment));
  return mi_segment_find_free(segment, tld);
}

static mi_page_t* mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_page_kind_t kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  // find an available segment the segment free queue
  mi_segment_queue_t* const free_queue = mi_segment_free_queue_of_kind(kind, tld);
  if (mi_segment_queue_is_empty(free_queue)) {
    // possibly allocate or reclaim a fresh segment
    mi_segment_t* const segment = mi_segment_reclaim_or_alloc(heap, block_size, kind, page_shift, tld, os_tld);
    if (segment == NULL) return NULL;  // return NULL if out-of-memory (or reclaimed)
    mi_assert_internal(free_queue->first == segment);
    mi_assert_internal(segment->page_kind==kind);
    mi_assert_internal(segment->used < segment->capacity);
  }
  mi_assert_internal(free_queue->first != NULL);
  mi_page_t* const page = mi_segment_page_alloc_in(free_queue->first, tld);
  mi_assert_internal(page != NULL);
#if MI_DEBUG>=2
  // verify it is committed
  _mi_segment_page_start(_mi_page_segment(page), page, sizeof(void*), NULL, NULL)[0] = 0;
#endif
  return page;
}

static mi_page_t* mi_segment_small_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  return mi_segment_page_alloc(heap, block_size, MI_PAGE_SMALL,MI_SMALL_PAGE_SHIFT,tld,os_tld);
}

static mi_page_t* mi_segment_medium_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  return mi_segment_page_alloc(heap, block_size, MI_PAGE_MEDIUM, MI_MEDIUM_PAGE_SHIFT, tld, os_tld);
}

/* -----------------------------------------------------------
   large page allocation
----------------------------------------------------------- */

static mi_page_t* mi_segment_large_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  mi_segment_t* segment = mi_segment_reclaim_or_alloc(heap,block_size,MI_PAGE_LARGE,MI_LARGE_PAGE_SHIFT,tld,os_tld);
  if (segment == NULL) return NULL;
  mi_page_t* page = mi_segment_find_free(segment, tld);
  mi_assert_internal(page != NULL);
#if MI_DEBUG>=2
  _mi_segment_page_start(segment, page, sizeof(void*), NULL, NULL)[0] = 0;
#endif
  return page;
}

static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
  mi_segment_t* segment = mi_segment_alloc(size, MI_PAGE_HUGE, MI_SEGMENT_SHIFT,tld,os_tld);
  if (segment == NULL) return NULL;
  mi_assert_internal(mi_segment_page_size(segment) - segment->segment_info_size - (2*(MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= size);
  segment->thread_id = 0; // huge pages are immediately abandoned
  mi_segments_track_size(-(long)segment->segment_size, tld);
  mi_page_t* page = mi_segment_find_free(segment, tld);
  mi_assert_internal(page != NULL);
  return page;
}

// free huge block from another thread
void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) {
  // huge page segments are always abandoned and can be freed immediately by any thread
  mi_assert_internal(segment->page_kind==MI_PAGE_HUGE);
  mi_assert_internal(segment == _mi_page_segment(page));
  mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id)==0);

  // claim it and free
  mi_heap_t* heap = mi_heap_get_default(); // issue #221; don't use the internal get_default_heap as we need to ensure the thread is initialized.
  // paranoia: if this it the last reference, the cas should always succeed
  uintptr_t expected_tid = 0;
  if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected_tid, heap->thread_id)) {
    mi_block_set_next(page, block, page->free);
    page->free = block;
    page->used--;
    page->is_zero = false;
    mi_assert(page->used == 0);
    mi_tld_t* tld = heap->tld;
    mi_segments_track_size((long)segment->segment_size, &tld->segments);
    _mi_segment_page_free(page, true, &tld->segments);
  }
#if (MI_DEBUG!=0)
  else {
    mi_assert_internal(false);
  }
#endif
}

/* -----------------------------------------------------------
   Page allocation
----------------------------------------------------------- */

mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
  mi_page_t* page;
  if (block_size <= MI_SMALL_OBJ_SIZE_MAX) {
    page = mi_segment_small_page_alloc(heap, block_size, tld, os_tld);
  }
  else if (block_size <= MI_MEDIUM_OBJ_SIZE_MAX) {
    page = mi_segment_medium_page_alloc(heap, block_size, tld, os_tld);
  }
  else if (block_size <= MI_LARGE_OBJ_SIZE_MAX) {
    page = mi_segment_large_page_alloc(heap, block_size, tld, os_tld);
  }
  else {
    page = mi_segment_huge_page_alloc(block_size,tld,os_tld);
  }
  mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
  mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size);
  mi_reset_delayed(tld);
  mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld));
  return page;
}