aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/mimalloc/src/os.c
blob: 85415232d7b58bab1c966394c71b1efe6a42525d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE   // ensure mmap flags are defined
#endif

#if defined(__sun)
// illumos provides new mman.h api when any of these are defined
// otherwise the old api based on caddr_t which predates the void pointers one.
// stock solaris provides only the former, chose to atomically to discard those
// flags only here rather than project wide tough.
#undef _XOPEN_SOURCE
#undef _POSIX_C_SOURCE
#endif
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"

#include <string.h>  // strerror

#ifdef _MSC_VER
#pragma warning(disable:4996)  // strerror
#endif


#if defined(_WIN32)
#include <windows.h>
#elif defined(__wasi__)
// stdlib.h is all we need, and has already been included in mimalloc.h
#else
#include <sys/mman.h>  // mmap
#include <unistd.h>    // sysconf
#if defined(__linux__)
#include <features.h>
#if defined(__GLIBC__)
#include <linux/mman.h> // linux mmap flags
#else
#include <sys/mman.h>
#endif
#endif
#if defined(__APPLE__)
#include <TargetConditionals.h>
#if !TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR
#include <mach/vm_statistics.h>
#endif
#endif
#if defined(__HAIKU__)
#define madvise posix_madvise
#define MADV_DONTNEED POSIX_MADV_DONTNEED
#endif
#endif

/* -----------------------------------------------------------
  Initialization.
  On windows initializes support for aligned allocation and
  large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
----------------------------------------------------------- */
bool    _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);

static void* mi_align_up_ptr(void* p, size_t alignment) {
  return (void*)_mi_align_up((uintptr_t)p, alignment);
}

static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) {
  mi_assert_internal(alignment != 0);
  uintptr_t mask = alignment - 1;
  if ((alignment & mask) == 0) { // power of two?
    return (sz & ~mask);
  }
  else {
    return ((sz / alignment) * alignment);
  }
}

static void* mi_align_down_ptr(void* p, size_t alignment) {
  return (void*)_mi_align_down((uintptr_t)p, alignment);
}

// page size (initialized properly in `os_init`)
static size_t os_page_size = 4096;

// minimal allocation granularity
static size_t os_alloc_granularity = 4096;

// if non-zero, use large page allocation
static size_t large_os_page_size = 0;

// OS (small) page size
size_t _mi_os_page_size() {
  return os_page_size;
}

// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
size_t _mi_os_large_page_size() {
  return (large_os_page_size != 0 ? large_os_page_size : _mi_os_page_size());
}

static bool use_large_os_page(size_t size, size_t alignment) {
  // if we have access, check the size and alignment requirements
  if (large_os_page_size == 0 || !mi_option_is_enabled(mi_option_large_os_pages)) return false;
  return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0);
}

// round to a good OS allocation size (bounded by max 12.5% waste)
size_t _mi_os_good_alloc_size(size_t size) {
  size_t align_size;
  if (size < 512*KiB) align_size = _mi_os_page_size();
  else if (size < 2*MiB) align_size = 64*KiB;
  else if (size < 8*MiB) align_size = 256*KiB;
  else if (size < 32*MiB) align_size = 1*MiB;
  else align_size = 4*MiB;
  if (mi_unlikely(size >= (SIZE_MAX - align_size))) return size; // possible overflow?
  return _mi_align_up(size, align_size);
}

#if defined(_WIN32)
// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
// So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility)
// NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB)
//
// We hide MEM_EXTENDED_PARAMETER to compile with older SDK's.
#include <winternl.h>
typedef PVOID    (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, /* MEM_EXTENDED_PARAMETER* */ void*, ULONG);
typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, /* MEM_EXTENDED_PARAMETER* */ PVOID, ULONG);
static PVirtualAlloc2 pVirtualAlloc2 = NULL;
static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL;

// Similarly, GetNumaProcesorNodeEx is only supported since Windows 7
#if (_WIN32_WINNT < 0x601)  // before Win7
typedef struct _PROCESSOR_NUMBER { WORD Group; BYTE Number; BYTE Reserved; } PROCESSOR_NUMBER, *PPROCESSOR_NUMBER;
#endif
typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(PPROCESSOR_NUMBER ProcNumber);
typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(PPROCESSOR_NUMBER Processor, PUSHORT NodeNumber);
typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask);
static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL;
static PGetNumaProcessorNodeEx      pGetNumaProcessorNodeEx = NULL;
static PGetNumaNodeProcessorMaskEx  pGetNumaNodeProcessorMaskEx = NULL;

static bool mi_win_enable_large_os_pages()
{
  if (large_os_page_size > 0) return true;

  // Try to see if large OS pages are supported
  // To use large pages on Windows, we first need access permission
  // Set "Lock pages in memory" permission in the group policy editor
  // <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
  unsigned long err = 0;
  HANDLE token = NULL;
  BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
  if (ok) {
    TOKEN_PRIVILEGES tp;
    ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid);
    if (ok) {
      tp.PrivilegeCount = 1;
      tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
      ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
      if (ok) {
        err = GetLastError();
        ok = (err == ERROR_SUCCESS);
        if (ok) {
          large_os_page_size = GetLargePageMinimum();
        }
      }
    }
    CloseHandle(token);
  }
  if (!ok) {
    if (err == 0) err = GetLastError();
    _mi_warning_message("cannot enable large OS page support, error %lu\n", err);
  }
  return (ok!=0);
}

void _mi_os_init(void) {
  // get the page size
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  if (si.dwPageSize > 0) os_page_size = si.dwPageSize;
  if (si.dwAllocationGranularity > 0) os_alloc_granularity = si.dwAllocationGranularity;
  // get the VirtualAlloc2 function
  HINSTANCE  hDll;
  hDll = LoadLibrary(TEXT("kernelbase.dll"));
  if (hDll != NULL) {
    // use VirtualAlloc2FromApp if possible as it is available to Windows store apps
    pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp");
    if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2");
    FreeLibrary(hDll);
  }
  // NtAllocateVirtualMemoryEx is used for huge page allocation
  hDll = LoadLibrary(TEXT("ntdll.dll"));
  if (hDll != NULL) {
    pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
    FreeLibrary(hDll);
  }
  // Try to use Win7+ numa API
  hDll = LoadLibrary(TEXT("kernel32.dll"));
  if (hDll != NULL) {
    pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx");
    pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx");
    pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx");
    FreeLibrary(hDll);
  }
  if (mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
    mi_win_enable_large_os_pages();
  }
}
#elif defined(__wasi__)
void _mi_os_init() {
  os_page_size = 0x10000; // WebAssembly has a fixed page size: 64KB
  os_alloc_granularity = 16;
}
#else
void _mi_os_init() {
  // get the page size
  long result = sysconf(_SC_PAGESIZE);
  if (result > 0) {
    os_page_size = (size_t)result;
    os_alloc_granularity = os_page_size;
  }
  large_os_page_size = 2*MiB; // TODO: can we query the OS for this?
}
#endif


/* -----------------------------------------------------------
  Raw allocation on Windows (VirtualAlloc) and Unix's (mmap).
----------------------------------------------------------- */

static bool mi_os_mem_free(void* addr, size_t size, bool was_committed, mi_stats_t* stats)
{
  if (addr == NULL || size == 0) return true; // || _mi_os_is_huge_reserved(addr)
  bool err = false;
#if defined(_WIN32)
  err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
#elif defined(__wasi__)
  err = 0; // WebAssembly's heap cannot be shrunk
#else
  err = (munmap(addr, size) == -1);
#endif
  if (was_committed) _mi_stat_decrease(&stats->committed, size);
  _mi_stat_decrease(&stats->reserved, size);
  if (err) {
    _mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size);
    return false;
  }
  else {
    return true;
  }
}

static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size);

#ifdef _WIN32
static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment, DWORD flags) {
#if (MI_INTPTR_SIZE >= 8)
  // on 64-bit systems, try to use the virtual address area after 4TiB for 4MiB aligned allocations
  void* hint;
  if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment,size)) != NULL) {
    void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE);
    if (p != NULL) return p;
    DWORD err = GetLastError();
    if (err != ERROR_INVALID_ADDRESS &&   // If linked with multiple instances, we may have tried to allocate at an already allocated area (#210)
        err != ERROR_INVALID_PARAMETER) { // Windows7 instability (#230)
      return NULL;
    }
    // fall through
  } 
#endif
#if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
  // on modern Windows try use VirtualAlloc2 for aligned allocation
  if (try_alignment > 0 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
    MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 };
    reqs.Alignment = try_alignment;
    MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} };
    param.Type = MemExtendedParameterAddressRequirements;
    param.Pointer = &reqs;
    return (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, &param, 1);
  }
#endif
  // last resort
  return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}

static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) {
  mi_assert_internal(!(large_only && !allow_large));
  static _Atomic(uintptr_t) large_page_try_ok; // = 0;
  void* p = NULL;
  if ((large_only || use_large_os_page(size, try_alignment))
      && allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) {
    uintptr_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
    if (!large_only && try_ok > 0) {
      // if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
      // therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times.
      mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
    }
    else {
      // large OS pages must always reserve and commit.
      *is_large = true;
      p = mi_win_virtual_allocx(addr, size, try_alignment, flags | MEM_LARGE_PAGES);
      if (large_only) return p;
      // fall back to non-large page allocation on error (`p == NULL`).
      if (p == NULL) {
        mi_atomic_store_release(&large_page_try_ok,10UL);  // on error, don't try again for the next N allocations
      }
    }
  }
  if (p == NULL) {
    *is_large = ((flags&MEM_LARGE_PAGES) != 0);
    p = mi_win_virtual_allocx(addr, size, try_alignment, flags);
  }
  if (p == NULL) {
    _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: %i, address: %p, large only: %d, allow large: %d)\n", size, GetLastError(), addr, large_only, allow_large);
  }
  return p;
}

#elif defined(__wasi__)
static void* mi_wasm_heap_grow(size_t size, size_t try_alignment) {
  uintptr_t base = __builtin_wasm_memory_size(0) * _mi_os_page_size();
  uintptr_t aligned_base = _mi_align_up(base, (uintptr_t) try_alignment);
  size_t alloc_size = _mi_align_up( aligned_base - base + size, _mi_os_page_size());
  mi_assert(alloc_size >= size && (alloc_size % _mi_os_page_size()) == 0);
  if (alloc_size < size) return NULL;
  if (__builtin_wasm_memory_grow(0, alloc_size / _mi_os_page_size()) == SIZE_MAX) {
    errno = ENOMEM;
    return NULL;
  }
  return (void*)aligned_base;
}
#else
#define MI_OS_USE_MMAP
static void* mi_unix_mmapx(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) {
  void* p = NULL;
  #if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED)
  // on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations
  void* hint;
  if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment, size)) != NULL) {
    p = mmap(hint,size,protect_flags,flags,fd,0);
    if (p==MAP_FAILED) p = NULL; // fall back to regular mmap
  }
  #else
  UNUSED(try_alignment);
  UNUSED(mi_os_get_aligned_hint);
  #endif
  if (p==NULL) {
    p = mmap(addr,size,protect_flags,flags,fd,0);
    if (p==MAP_FAILED) p = NULL;
  }
  return p;
}

static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) {
  void* p = NULL;
  #if !defined(MAP_ANONYMOUS)
  #define MAP_ANONYMOUS  MAP_ANON
  #endif
  #if !defined(MAP_NORESERVE)
  #define MAP_NORESERVE  0
  #endif
  int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
  int fd = -1;
  #if defined(MAP_ALIGNED)  // BSD
  if (try_alignment > 0) {
    size_t n = mi_bsr(try_alignment);
    if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) {  // alignment is a power of 2 and 4096 <= alignment <= 1GiB
      flags |= MAP_ALIGNED(n);
    }
  }
  #endif
  #if defined(PROT_MAX)
  protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD
  #endif
  #if defined(VM_MAKE_TAG)
  // macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99)
  int os_tag = (int)mi_option_get(mi_option_os_tag);
  if (os_tag < 100 || os_tag > 255) os_tag = 100;
  fd = VM_MAKE_TAG(os_tag);
  #endif
  if ((large_only || use_large_os_page(size, try_alignment)) && allow_large) {
    static _Atomic(uintptr_t) large_page_try_ok; // = 0;
    uintptr_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
    if (!large_only && try_ok > 0) {
      // If the OS is not configured for large OS pages, or the user does not have
      // enough permission, the `mmap` will always fail (but it might also fail for other reasons).
      // Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times
      // to avoid too many failing calls to mmap.
      mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
    }
    else {
      int lflags = flags & ~MAP_NORESERVE;  // using NORESERVE on huge pages seems to fail on Linux
      int lfd = fd;
      #ifdef MAP_ALIGNED_SUPER
      lflags |= MAP_ALIGNED_SUPER;
      #endif
      #ifdef MAP_HUGETLB
      lflags |= MAP_HUGETLB;
      #endif
      #ifdef MAP_HUGE_1GB
      static bool mi_huge_pages_available = true;
      if ((size % GiB) == 0 && mi_huge_pages_available) {
        lflags |= MAP_HUGE_1GB;
      }
      else
      #endif
      {
        #ifdef MAP_HUGE_2MB
        lflags |= MAP_HUGE_2MB;
        #endif
      }
      #ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB
      lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
      #endif
      if (large_only || lflags != flags) {
        // try large OS page allocation
        *is_large = true;
        p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd);
        #ifdef MAP_HUGE_1GB
        if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) {
          mi_huge_pages_available = false; // don't try huge 1GiB pages again
          _mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (error %i)\n", errno);
          lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB);
          p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd);
        }
        #endif
        if (large_only) return p;
        if (p == NULL) {
          mi_atomic_store_release(&large_page_try_ok, (uintptr_t)10);  // on error, don't try again for the next N allocations
        }
      }
    }
  }
  if (p == NULL) {
    *is_large = false;
    p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, flags, fd);
    #if defined(MADV_HUGEPAGE)
    // Many Linux systems don't allow MAP_HUGETLB but they support instead
    // transparent huge pages (THP). It is not required to call `madvise` with MADV_HUGE
    // though since properly aligned allocations will already use large pages if available
    // in that case -- in particular for our large regions (in `memory.c`).
    // However, some systems only allow THP if called with explicit `madvise`, so
    // when large OS pages are enabled for mimalloc, we call `madvise` anyways.
    if (allow_large && use_large_os_page(size, try_alignment)) {
      if (madvise(p, size, MADV_HUGEPAGE) == 0) {
        *is_large = true; // possibly
      };
    }
    #endif
    #if defined(__sun)
    if (allow_large && use_large_os_page(size, try_alignment)) {
      struct memcntl_mha cmd = {0};
      cmd.mha_pagesize = large_os_page_size;
      cmd.mha_cmd = MHA_MAPSIZE_VA;
      if (memcntl(p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) {
        *is_large = true;
      }
    }
    #endif
  }
  if (p == NULL) {
    _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: %i, address: %p, large only: %d, allow large: %d)\n", size, errno, addr, large_only, allow_large);
  }
  return p;
}
#endif

// On 64-bit systems, we can do efficient aligned allocation by using
// the 4TiB to 30TiB area to allocate them.
#if (MI_INTPTR_SIZE >= 8) && (defined(_WIN32) || (defined(MI_OS_USE_MMAP) && !defined(MAP_ALIGNED)))
static mi_decl_cache_align _Atomic(uintptr_t) aligned_base;

// Return a 4MiB aligned address that is probably available.
// If this returns NULL, the OS will determine the address but on some OS's that may not be 
// properly aligned which can be more costly as it needs to be adjusted afterwards.
// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization; 
// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses 
//  in the middle of the 2TiB - 6TiB address range (see issue #372))

#define KK_HINT_BASE ((uintptr_t)2 << 40)  // 2TiB start
#define KK_HINT_AREA ((uintptr_t)4 << 40)  // upto 6TiB   (since before win8 there is "only" 8TiB available to processes)
#define KK_HINT_MAX  ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages)

static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) 
{
  if (try_alignment == 0 || try_alignment > MI_SEGMENT_SIZE) return NULL;
  if ((size%MI_SEGMENT_SIZE) != 0) return NULL;
  if (size > 1*GiB) return NULL;  // guarantee the chance of fixed valid address is at most 1/(KK_HINT_AREA / 1<<30) = 1/4096.
  #if (MI_SECURE>0)
  size += MI_SEGMENT_SIZE;        // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas.
  #endif

  uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size);
  if (hint == 0 || hint > KK_HINT_MAX) {   // wrap or initialize
    uintptr_t init = KK_HINT_BASE;
    #if (MI_SECURE>0 || MI_DEBUG==0)       // security: randomize start of aligned allocations unless in debug mode
    uintptr_t r = _mi_heap_random_next(mi_get_default_heap());
    init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % KK_HINT_AREA);  // (randomly 20 bits)*4MiB == 0 to 4TiB
    #endif
    uintptr_t expected = hint + size;
    mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init);
    hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > KK_HINT_MAX but that is ok, it is a hint after all
  }
  if (hint%try_alignment != 0) return NULL;
  return (void*)hint;
}
#else
static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
  UNUSED(try_alignment); UNUSED(size);
  return NULL;
}
#endif


// Primitive allocation from the OS.
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) {
  mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
  if (size == 0) return NULL;
  if (!commit) allow_large = false;

  void* p = NULL;
  /*
  if (commit && allow_large) {
    p = _mi_os_try_alloc_from_huge_reserved(size, try_alignment);
    if (p != NULL) {
      *is_large = true;
      return p;
    }
  }
  */

  #if defined(_WIN32)
    int flags = MEM_RESERVE;
    if (commit) flags |= MEM_COMMIT;
    p = mi_win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large);
  #elif defined(__wasi__)
    *is_large = false;
    p = mi_wasm_heap_grow(size, try_alignment);
  #else
    int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE);
    p = mi_unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large);
  #endif
  mi_stat_counter_increase(stats->mmap_calls, 1);
  if (p != NULL) {
    _mi_stat_increase(&stats->reserved, size);
    if (commit) { _mi_stat_increase(&stats->committed, size); }
  }
  return p;
}


// Primitive aligned allocation from the OS.
// This function guarantees the allocated memory is aligned.
static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) {
  mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0));
  mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
  if (!commit) allow_large = false;
  if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
  size = _mi_align_up(size, _mi_os_page_size());

  // try first with a hint (this will be aligned directly on Win 10+ or BSD)
  void* p = mi_os_mem_alloc(size, alignment, commit, allow_large, is_large, stats);
  if (p == NULL) return NULL;

  // if not aligned, free it, overallocate, and unmap around it
  if (((uintptr_t)p % alignment != 0)) {
    mi_os_mem_free(p, size, commit, stats);
    if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
    size_t over_size = size + alignment;

#if _WIN32
    // over-allocate and than re-allocate exactly at an aligned address in there.
    // this may fail due to threads allocating at the same time so we
    // retry this at most 3 times before giving up.
    // (we can not decommit around the overallocation on Windows, because we can only
    //  free the original pointer, not one pointing inside the area)
    int flags = MEM_RESERVE;
    if (commit) flags |= MEM_COMMIT;
    for (int tries = 0; tries < 3; tries++) {
      // over-allocate to determine a virtual memory range
      p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats);
      if (p == NULL) return NULL; // error
      if (((uintptr_t)p % alignment) == 0) {
        // if p happens to be aligned, just decommit the left-over area
        _mi_os_decommit((uint8_t*)p + size, over_size - size, stats);
        break;
      }
      else {
        // otherwise free and allocate at an aligned address in there
        mi_os_mem_free(p, over_size, commit, stats);
        void* aligned_p = mi_align_up_ptr(p, alignment);
        p = mi_win_virtual_alloc(aligned_p, size, alignment, flags, false, allow_large, is_large);
        if (p == aligned_p) break; // success!
        if (p != NULL) { // should not happen?
          mi_os_mem_free(p, size, commit, stats);
          p = NULL;
        }
      }
    }
#else
    // overallocate...
    p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats);
    if (p == NULL) return NULL;
    // and selectively unmap parts around the over-allocated area.
    void* aligned_p = mi_align_up_ptr(p, alignment);
    size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
    size_t mid_size = _mi_align_up(size, _mi_os_page_size());
    size_t post_size = over_size - pre_size - mid_size;
    mi_assert_internal(pre_size < over_size && post_size < over_size && mid_size >= size);
    if (pre_size > 0)  mi_os_mem_free(p, pre_size, commit, stats);
    if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats);
    // we can return the aligned pointer on `mmap` systems
    p = aligned_p;
#endif
  }

  mi_assert_internal(p == NULL || (p != NULL && ((uintptr_t)p % alignment) == 0));
  return p;
}

/* -----------------------------------------------------------
  OS API: alloc, free, alloc_aligned
----------------------------------------------------------- */

void* _mi_os_alloc(size_t size, mi_stats_t* tld_stats) {
  UNUSED(tld_stats);
  mi_stats_t* stats = &_mi_stats_main;
  if (size == 0) return NULL;
  size = _mi_os_good_alloc_size(size);
  bool is_large = false;
  return mi_os_mem_alloc(size, 0, true, false, &is_large, stats);
}

void  _mi_os_free_ex(void* p, size_t size, bool was_committed, mi_stats_t* tld_stats) {
  UNUSED(tld_stats);
  mi_stats_t* stats = &_mi_stats_main;
  if (size == 0 || p == NULL) return;
  size = _mi_os_good_alloc_size(size);
  mi_os_mem_free(p, size, was_committed, stats);
}

void  _mi_os_free(void* p, size_t size, mi_stats_t* stats) {
  _mi_os_free_ex(p, size, true, stats);
}

void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool* large, mi_stats_t* tld_stats)
{
  UNUSED(tld_stats);
  if (size == 0) return NULL;
  size = _mi_os_good_alloc_size(size);
  alignment = _mi_align_up(alignment, _mi_os_page_size());
  bool allow_large = false;
  if (large != NULL) {
    allow_large = *large;
    *large = false;
  }
  return mi_os_mem_alloc_aligned(size, alignment, commit, allow_large, (large!=NULL?large:&allow_large), &_mi_stats_main /*tld->stats*/ );
}



/* -----------------------------------------------------------
  OS memory API: reset, commit, decommit, protect, unprotect.
----------------------------------------------------------- */


// OS page align within a given area, either conservative (pages inside the area only),
// or not (straddling pages outside the area is possible)
static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) {
  mi_assert(addr != NULL && size > 0);
  if (newsize != NULL) *newsize = 0;
  if (size == 0 || addr == NULL) return NULL;

  // page align conservatively within the range
  void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size())
    : mi_align_down_ptr(addr, _mi_os_page_size()));
  void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size())
    : mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size()));
  ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start;
  if (diff <= 0) return NULL;

  mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size));
  if (newsize != NULL) *newsize = (size_t)diff;
  return start;
}

static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) {
  return mi_os_page_align_areax(true, addr, size, newsize);
}

static void mi_mprotect_hint(int err) {
#if defined(MI_OS_USE_MMAP) && (MI_SECURE>=2) // guard page around every mimalloc page
  if (err == ENOMEM) {
    _mi_warning_message("the previous warning may have been caused by a low memory map limit.\n"
                        "  On Linux this is controlled by the vm.max_map_count. For example:\n"
                        "  > sudo sysctl -w vm.max_map_count=262144\n");
  }
#else
  UNUSED(err);
#endif
}

// Commit/Decommit memory.
// Usually commit is aligned liberal, while decommit is aligned conservative.
// (but not for the reset version where we want commit to be conservative as well)
static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservative, bool* is_zero, mi_stats_t* stats) {
  // page align in the range, commit liberally, decommit conservative
  if (is_zero != NULL) { *is_zero = false; }
  size_t csize;
  void* start = mi_os_page_align_areax(conservative, addr, size, &csize);
  if (csize == 0) return true;  // || _mi_os_is_huge_reserved(addr))
  int err = 0;
  if (commit) {
    _mi_stat_increase(&stats->committed, size);  // use size for precise commit vs. decommit
    _mi_stat_counter_increase(&stats->commit_calls, 1);
  }
  else {
    _mi_stat_decrease(&stats->committed, size);
  }

  #if defined(_WIN32)
  if (commit) {
    // if the memory was already committed, the call succeeds but it is not zero'd
    // *is_zero = true;
    void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE);
    err = (p == start ? 0 : GetLastError());
  }
  else {
    BOOL ok = VirtualFree(start, csize, MEM_DECOMMIT);
    err = (ok ? 0 : GetLastError());
  }
  #elif defined(__wasi__)
  // WebAssembly guests can't control memory protection
  #elif defined(MAP_FIXED)
  if (!commit) {
    // use mmap with MAP_FIXED to discard the existing memory (and reduce commit charge)
    void* p = mmap(start, csize, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), -1, 0);
    if (p != start) { err = errno; }
  }
  else {
    // for commit, just change the protection
    err = mprotect(start, csize, (PROT_READ | PROT_WRITE));
    if (err != 0) { err = errno; }
    #if defined(MADV_FREE_REUSE)
      while ((err = madvise(start, csize, MADV_FREE_REUSE)) != 0 && errno == EAGAIN) { errno = 0; }
    #endif
  }
  #else
  err = mprotect(start, csize, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE));
  if (err != 0) { err = errno; }
  #endif
  if (err != 0) {
    _mi_warning_message("%s error: start: %p, csize: 0x%x, err: %i\n", commit ? "commit" : "decommit", start, csize, err);
    mi_mprotect_hint(err);
  }
  mi_assert_internal(err == 0);
  return (err == 0);
}

bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) {
  UNUSED(tld_stats);
  mi_stats_t* stats = &_mi_stats_main;
  return mi_os_commitx(addr, size, true, false /* liberal */, is_zero, stats);
}

bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) {
  UNUSED(tld_stats);
  mi_stats_t* stats = &_mi_stats_main;
  bool is_zero;
  return mi_os_commitx(addr, size, false, true /* conservative */, &is_zero, stats);
}

static bool mi_os_commit_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* stats) {  
  return mi_os_commitx(addr, size, true, true /* conservative */, is_zero, stats);
}

// Signal to the OS that the address range is no longer in use
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
static bool mi_os_resetx(void* addr, size_t size, bool reset, mi_stats_t* stats) {
  // page align conservatively within the range
  size_t csize;
  void* start = mi_os_page_align_area_conservative(addr, size, &csize);
  if (csize == 0) return true;  // || _mi_os_is_huge_reserved(addr)
  if (reset) _mi_stat_increase(&stats->reset, csize);
        else _mi_stat_decrease(&stats->reset, csize);
  if (!reset) return true; // nothing to do on unreset!

  #if (MI_DEBUG>1)
  if (MI_SECURE==0) {
    memset(start, 0, csize); // pretend it is eagerly reset
  }
  #endif

#if defined(_WIN32)
  // Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory
  void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
  mi_assert_internal(p == start);
  #if 1
  if (p == start && start != NULL) {
    VirtualUnlock(start,csize); // VirtualUnlock after MEM_RESET removes the memory from the working set
  }
  #endif
  if (p != start) return false;
#else
#if defined(MADV_FREE)
  #if defined(MADV_FREE_REUSABLE)
    #define KK_MADV_FREE_INITIAL  MADV_FREE_REUSABLE
  #else
    #define KK_MADV_FREE_INITIAL  MADV_FREE
  #endif
  static _Atomic(uintptr_t) advice = ATOMIC_VAR_INIT(KK_MADV_FREE_INITIAL);
  int oadvice = (int)mi_atomic_load_relaxed(&advice);
  int err;
  while ((err = madvise(start, csize, oadvice)) != 0 && errno == EAGAIN) { errno = 0;  };
  if (err != 0 && errno == EINVAL && oadvice == KK_MADV_FREE_INITIAL) {  
    // if MADV_FREE/MADV_FREE_REUSABLE is not supported, fall back to MADV_DONTNEED from now on
    mi_atomic_store_release(&advice, (uintptr_t)MADV_DONTNEED);
    err = madvise(start, csize, MADV_DONTNEED);
  }
#elif defined(__wasi__)
  int err = 0;
#else
  int err = madvise(start, csize, MADV_DONTNEED);
#endif
  if (err != 0) {
    _mi_warning_message("madvise reset error: start: %p, csize: 0x%x, errno: %i\n", start, csize, errno);
  }
  //mi_assert(err == 0);
  if (err != 0) return false;
#endif
  return true;
}

// Signal to the OS that the address range is no longer in use
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats) {
  UNUSED(tld_stats);
  mi_stats_t* stats = &_mi_stats_main;
  if (mi_option_is_enabled(mi_option_reset_decommits)) {
    return _mi_os_decommit(addr, size, stats);
  }
  else {
    return mi_os_resetx(addr, size, true, stats);
  }
}

bool _mi_os_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) {
  UNUSED(tld_stats);
  mi_stats_t* stats = &_mi_stats_main;
  if (mi_option_is_enabled(mi_option_reset_decommits)) {
    return mi_os_commit_unreset(addr, size, is_zero, stats);  // re-commit it (conservatively!)
  }
  else {
    *is_zero = false;
    return mi_os_resetx(addr, size, false, stats);
  }
}


// Protect a region in memory to be not accessible.
static  bool mi_os_protectx(void* addr, size_t size, bool protect) {
  // page align conservatively within the range
  size_t csize = 0;
  void* start = mi_os_page_align_area_conservative(addr, size, &csize);
  if (csize == 0) return false;
  /*
  if (_mi_os_is_huge_reserved(addr)) {
	  _mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
  }
  */
  int err = 0;
#ifdef _WIN32
  DWORD oldprotect = 0;
  BOOL ok = VirtualProtect(start, csize, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect);
  err = (ok ? 0 : GetLastError());
#elif defined(__wasi__)
  err = 0;
#else
  err = mprotect(start, csize, protect ? PROT_NONE : (PROT_READ | PROT_WRITE));
  if (err != 0) { err = errno; }
#endif
  if (err != 0) {
    _mi_warning_message("mprotect error: start: %p, csize: 0x%x, err: %i\n", start, csize, err);
    mi_mprotect_hint(err);
  }
  return (err == 0);
}

bool _mi_os_protect(void* addr, size_t size) {
  return mi_os_protectx(addr, size, true);
}

bool _mi_os_unprotect(void* addr, size_t size) {
  return mi_os_protectx(addr, size, false);
}



bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize, mi_stats_t* stats) {
  // page align conservatively within the range
  mi_assert_internal(oldsize > newsize && p != NULL);
  if (oldsize < newsize || p == NULL) return false;
  if (oldsize == newsize) return true;

  // oldsize and newsize should be page aligned or we cannot shrink precisely
  void* addr = (uint8_t*)p + newsize;
  size_t size = 0;
  void* start = mi_os_page_align_area_conservative(addr, oldsize - newsize, &size);
  if (size == 0 || start != addr) return false;

#ifdef _WIN32
  // we cannot shrink on windows, but we can decommit
  return _mi_os_decommit(start, size, stats);
#else
  return mi_os_mem_free(start, size, true, stats);
#endif
}


/* ----------------------------------------------------------------------------
Support for allocating huge OS pages (1Gib) that are reserved up-front
and possibly associated with a specific NUMA node. (use `numa_node>=0`)
-----------------------------------------------------------------------------*/
#define MI_HUGE_OS_PAGE_SIZE  (GiB)

#if defined(_WIN32) && (MI_INTPTR_SIZE >= 8)
static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node)
{
  mi_assert_internal(size%GiB == 0);
  mi_assert_internal(addr != NULL);
  const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE;

  mi_win_enable_large_os_pages();

  #if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
  MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} };
  // on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages
  static bool mi_huge_pages_available = true;
  if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) {
    #ifndef MEM_EXTENDED_PARAMETER_NONPAGED_HUGE
    #define MEM_EXTENDED_PARAMETER_NONPAGED_HUGE  (0x10)
    #endif
    params[0].Type = 5; // == MemExtendedParameterAttributeFlags;
    params[0].ULong64 = MEM_EXTENDED_PARAMETER_NONPAGED_HUGE;
    ULONG param_count = 1;
    if (numa_node >= 0) {
      param_count++;
      params[1].Type = MemExtendedParameterNumaNode;
      params[1].ULong = (unsigned)numa_node;
    }
    SIZE_T psize = size;
    void* base = addr;
    NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count);
    if (err == 0 && base != NULL) {
      return base;
    }
    else {
      // fall back to regular large pages
      mi_huge_pages_available = false; // don't try further huge pages
      _mi_warning_message("unable to allocate using huge (1gb) pages, trying large (2mb) pages instead (status 0x%lx)\n", err);
    }
  }
  // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation
  if (pVirtualAlloc2 != NULL && numa_node >= 0) {
    params[0].Type = MemExtendedParameterNumaNode;
    params[0].ULong = (unsigned)numa_node;
    return (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, params, 1);
  }
  #else
    UNUSED(numa_node);
  #endif
  // otherwise use regular virtual alloc on older windows
  return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}

#elif defined(MI_OS_USE_MMAP) && (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__)
#include <sys/syscall.h>
#ifndef MPOL_PREFERRED
#define MPOL_PREFERRED 1
#endif
#if defined(SYS_mbind)
static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
  return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags);
}
#else
static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
  UNUSED(start); UNUSED(len); UNUSED(mode); UNUSED(nmask); UNUSED(maxnode); UNUSED(flags);
  return 0;
}
#endif
static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) {
  mi_assert_internal(size%GiB == 0);
  bool is_large = true;
  void* p = mi_unix_mmap(addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large);
  if (p == NULL) return NULL;
  if (numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes
    uintptr_t numa_mask = (1UL << numa_node);
    // TODO: does `mbind` work correctly for huge OS pages? should we
    // use `set_mempolicy` before calling mmap instead?
    // see: <https://lkml.org/lkml/2017/2/9/875>
    long err = mi_os_mbind(p, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0);
    if (err != 0) {
      _mi_warning_message("failed to bind huge (1gb) pages to numa node %d: %s\n", numa_node, strerror(errno));
    }
  }
  return p;
}
#else
static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) {
  UNUSED(addr); UNUSED(size); UNUSED(numa_node);
  return NULL;
}
#endif

#if (MI_INTPTR_SIZE >= 8)
// To ensure proper alignment, use our own area for huge OS pages
static mi_decl_cache_align _Atomic(uintptr_t)  mi_huge_start; // = 0

// Claim an aligned address range for huge pages
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
  if (total_size != NULL) *total_size = 0;
  const size_t size = pages * MI_HUGE_OS_PAGE_SIZE;

  uintptr_t start = 0;
  uintptr_t end = 0;
  uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start);
  do {
    start = huge_start;
    if (start == 0) {
      // Initialize the start address after the 32TiB area
      start = ((uintptr_t)32 << 40);  // 32TiB virtual start address
#if (MI_SECURE>0 || MI_DEBUG==0)      // security: randomize start of huge pages unless in debug mode
      uintptr_t r = _mi_heap_random_next(mi_get_default_heap());
      start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF));  // (randomly 12bits)*1GiB == between 0 to 4TiB
#endif
    }
    end = start + size;
    mi_assert_internal(end % MI_SEGMENT_SIZE == 0);
  } while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end));

  if (total_size != NULL) *total_size = size;
  return (uint8_t*)start;
}
#else
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
  UNUSED(pages);
  if (total_size != NULL) *total_size = 0;
  return NULL;
}
#endif

// Allocate MI_SEGMENT_SIZE aligned huge pages
void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize) {
  if (psize != NULL) *psize = 0;
  if (pages_reserved != NULL) *pages_reserved = 0;
  size_t size = 0;
  uint8_t* start = mi_os_claim_huge_pages(pages, &size);
  if (start == NULL) return NULL; // or 32-bit systems

  // Allocate one page at the time but try to place them contiguously
  // We allocate one page at the time to be able to abort if it takes too long
  // or to at least allocate as many as available on the system.
  mi_msecs_t start_t = _mi_clock_start();
  size_t page;
  for (page = 0; page < pages; page++) {
    // allocate a page
    void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE);
    void* p = mi_os_alloc_huge_os_pagesx(addr, MI_HUGE_OS_PAGE_SIZE, numa_node);

    // Did we succeed at a contiguous address?
    if (p != addr) {
      // no success, issue a warning and break
      if (p != NULL) {
        _mi_warning_message("could not allocate contiguous huge page %zu at %p\n", page, addr);
        _mi_os_free(p, MI_HUGE_OS_PAGE_SIZE, &_mi_stats_main);
      }
      break;
    }

    // success, record it
    _mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
    _mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);

    // check for timeout
    if (max_msecs > 0) {
      mi_msecs_t elapsed = _mi_clock_end(start_t);
      if (page >= 1) {
        mi_msecs_t estimate = ((elapsed / (page+1)) * pages);
        if (estimate > 2*max_msecs) { // seems like we are going to timeout, break
          elapsed = max_msecs + 1;
        }
      }
      if (elapsed > max_msecs) {
        _mi_warning_message("huge page allocation timed out\n");
        break;
      }
    }
  }
  mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size);
  if (pages_reserved != NULL) *pages_reserved = page;
  if (psize != NULL) *psize = page * MI_HUGE_OS_PAGE_SIZE;
  return (page == 0 ? NULL : start);
}

// free every huge page in a range individually (as we allocated per page)
// note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems.
void _mi_os_free_huge_pages(void* p, size_t size, mi_stats_t* stats) {
  if (p==NULL || size==0) return;
  uint8_t* base = (uint8_t*)p;
  while (size >= MI_HUGE_OS_PAGE_SIZE) {
    _mi_os_free(base, MI_HUGE_OS_PAGE_SIZE, stats);
    size -= MI_HUGE_OS_PAGE_SIZE;
  }
}

/* ----------------------------------------------------------------------------
Support NUMA aware allocation
-----------------------------------------------------------------------------*/
#ifdef _WIN32  
static size_t mi_os_numa_nodex() {
  USHORT numa_node = 0;
  if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) {
    // Extended API is supported
    PROCESSOR_NUMBER pnum;
    (*pGetCurrentProcessorNumberEx)(&pnum);
    USHORT nnode = 0;
    BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode);
    if (ok) numa_node = nnode;
  }
  else {
    // Vista or earlier, use older API that is limited to 64 processors. Issue #277
    DWORD pnum = GetCurrentProcessorNumber();
    UCHAR nnode = 0;
    BOOL ok = GetNumaProcessorNode((UCHAR)pnum, &nnode);
    if (ok) numa_node = nnode;    
  }
  return numa_node;
}

static size_t mi_os_numa_node_countx(void) {
  ULONG numa_max = 0;
  GetNumaHighestNodeNumber(&numa_max);
  // find the highest node number that has actual processors assigned to it. Issue #282
  while(numa_max > 0) {
    if (pGetNumaNodeProcessorMaskEx != NULL) {
      // Extended API is supported
      GROUP_AFFINITY affinity;
      if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) {
        if (affinity.Mask != 0) break;  // found the maximum non-empty node
      }
    }
    else {
      // Vista or earlier, use older API that is limited to 64 processors.
      ULONGLONG mask;
      if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) {
        if (mask != 0) break; // found the maximum non-empty node
      };
    }
    // max node was invalid or had no processor assigned, try again
    numa_max--;
  }
  return ((size_t)numa_max + 1);
}
#elif defined(__linux__)
#include <sys/syscall.h>  // getcpu
#include <stdio.h>        // access

static size_t mi_os_numa_nodex(void) {
#ifdef SYS_getcpu
  unsigned long node = 0;
  unsigned long ncpu = 0;
  long err = syscall(SYS_getcpu, &ncpu, &node, NULL);
  if (err != 0) return 0;
  return node;
#else
  return 0;
#endif
}
static size_t mi_os_numa_node_countx(void) {
  char buf[128];
  unsigned node = 0;
  for(node = 0; node < 256; node++) {
    // enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation)
    snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1);
    if (access(buf,R_OK) != 0) break;
  }
  return (node+1);
}
#else
static size_t mi_os_numa_nodex(void) {
  return 0;
}
static size_t mi_os_numa_node_countx(void) {
  return 1;
}
#endif

_Atomic(size_t)  _mi_numa_node_count; // = 0   // cache the node count

size_t _mi_os_numa_node_count_get(void) {
  size_t count = mi_atomic_load_acquire(&_mi_numa_node_count);
  if (count <= 0) {
    long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly?
    if (ncount > 0) {
      count = (size_t)ncount;
    }
    else {
      count = mi_os_numa_node_countx(); // or detect dynamically
      if (count == 0) count = 1;
    }    
    mi_atomic_store_release(&_mi_numa_node_count, count); // save it
    _mi_verbose_message("using %zd numa regions\n", count);
  }
  return count;
}

int _mi_os_numa_node_get(mi_os_tld_t* tld) {
  UNUSED(tld);
  size_t numa_count = _mi_os_numa_node_count();
  if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0
  // never more than the node count and >= 0
  size_t numa_node = mi_os_numa_nodex();
  if (numa_node >= numa_count) { numa_node = numa_node % numa_count; }
  return (int)numa_node;
}