aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/mimalloc/src/alloc.c
blob: 8acff78327c3070674062a3706f725c555a91820 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"

#include <string.h>  // memset, strlen
#include <stdlib.h>  // malloc, exit

#define MI_IN_ALLOC_C
#include "alloc-override.c"
#undef MI_IN_ALLOC_C

// ------------------------------------------------------
// Allocation
// ------------------------------------------------------

// Fast allocation in a page: just pop from the free list.
// Fall back to generic allocation only if the list is empty.
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept {
  mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
  mi_block_t* const block = page->free;
  if (mi_unlikely(block == NULL)) {
    return _mi_malloc_generic(heap, size); 
  }
  mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
  // pop from the free list
  page->used++;
  page->free = mi_block_next(page, block);
  mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);

#if (MI_DEBUG>0)
  if (!page->is_zero) { memset(block, MI_DEBUG_UNINIT, size); }
#elif (MI_SECURE!=0)
  block->next = 0;  // don't leak internal data
#endif

#if (MI_STAT>0)
  const size_t bsize = mi_page_usable_block_size(page);
  if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
    mi_heap_stat_increase(heap, normal, bsize);
    mi_heap_stat_counter_increase(heap, normal_count, 1);
#if (MI_STAT>1)
    const size_t bin = _mi_bin(bsize);
    mi_heap_stat_increase(heap, normal_bins[bin], 1);
#endif
  }
#endif

#if (MI_PADDING > 0) && defined(MI_ENCODE_FREELIST)
  mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
  ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
  mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
  padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
  padding->delta  = (uint32_t)(delta);
  uint8_t* fill = (uint8_t*)padding - delta;
  const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
  for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
#endif

  return block;
}

// allocate a small block
extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  mi_assert(heap!=NULL);
  mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
  mi_assert(size <= MI_SMALL_SIZE_MAX);
  #if (MI_PADDING)
  if (size == 0) {
    size = sizeof(void*);
  }
  #endif
  mi_page_t* page = _mi_heap_get_free_small_page(heap,size + MI_PADDING_SIZE);
  void* p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE);
  mi_assert_internal(p==NULL || mi_usable_size(p) >= size);
  #if MI_STAT>1
  if (p != NULL) {
    if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); }
    mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
  }
  #endif
  return p;
}

extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept {
  return mi_heap_malloc_small(mi_get_default_heap(), size);
}

// The main allocation function
extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  if (mi_likely(size <= MI_SMALL_SIZE_MAX)) {
    return mi_heap_malloc_small(heap, size);
  }
  else {
    mi_assert(heap!=NULL);
    mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
    void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE);      // note: size can overflow but it is detected in malloc_generic
    mi_assert_internal(p == NULL || mi_usable_size(p) >= size);
    #if MI_STAT>1
    if (p != NULL) {
      if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); }
      mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
    }
    #endif
    return p;
  }
}

extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept {
  return mi_heap_malloc(mi_get_default_heap(), size);
}


void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) {
  // note: we need to initialize the whole usable block size to zero, not just the requested size,
  // or the recalloc/rezalloc functions cannot safely expand in place (see issue #63)
  UNUSED(size);
  mi_assert_internal(p != NULL);
  mi_assert_internal(mi_usable_size(p) >= size); // size can be zero
  mi_assert_internal(_mi_ptr_page(p)==page);
  if (page->is_zero && size > sizeof(mi_block_t)) {
    // already zero initialized memory
    ((mi_block_t*)p)->next = 0;  // clear the free list pointer
    mi_assert_expensive(mi_mem_is_zero(p, mi_usable_size(p)));
  }
  else {
    // otherwise memset
    memset(p, 0, mi_usable_size(p));
  }
}

// zero initialized small block
mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept {
  void* p = mi_malloc_small(size);
  if (p != NULL) {
    _mi_block_zero_init(_mi_ptr_page(p), p, size);  // todo: can we avoid getting the page again?
  }
  return p;
}

void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) {
  void* p = mi_heap_malloc(heap,size);
  if (zero && p != NULL) {
    _mi_block_zero_init(_mi_ptr_page(p),p,size);  // todo: can we avoid getting the page again?
  }
  return p;
}

extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  return _mi_heap_malloc_zero(heap, size, true);
}

mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept {
  return mi_heap_zalloc(mi_get_default_heap(),size);
}


// ------------------------------------------------------
// Check for double free in secure and debug mode
// This is somewhat expensive so only enabled for secure mode 4
// ------------------------------------------------------

#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
// linear check if the free list contains a specific element
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
  while (list != NULL) {
    if (elem==list) return true;
    list = mi_block_next(page, list);
  }
  return false;
}

static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
  // The decoded value is in the same page (or NULL).
  // Walk the free lists to verify positively if it is already freed
  if (mi_list_contains(page, page->free, block) ||
      mi_list_contains(page, page->local_free, block) ||
      mi_list_contains(page, mi_page_thread_free(page), block))
  {
    _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
    return true;
  }
  return false;
}

static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
  mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
  if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 &&  // quick check: aligned pointer?
      (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
  {
    // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
    // (continue in separate function to improve code generation)
    return mi_check_is_double_freex(page, block);
  }
  return false;
}
#else
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
  UNUSED(page);
  UNUSED(block);
  return false;
}
#endif

// ---------------------------------------------------------------------------
// Check for heap block overflow by setting up padding at the end of the block
// ---------------------------------------------------------------------------

#if (MI_PADDING>0) && defined(MI_ENCODE_FREELIST)
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
  *bsize = mi_page_usable_block_size(page);
  const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
  *delta = padding->delta;
  return ((uint32_t)mi_ptr_encode(page,block,page->keys) == padding->canary && *delta <= *bsize);
}

// Return the exact usable size of a block.
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
  size_t bsize;
  size_t delta;
  bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
  mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
  return (ok ? bsize - delta : 0);
}

static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
  size_t bsize;
  size_t delta;
  bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
  *size = *wrong = bsize;
  if (!ok) return false;
  mi_assert_internal(bsize >= delta);
  *size = bsize - delta;
  uint8_t* fill = (uint8_t*)block + bsize - delta;
  const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
  for (size_t i = 0; i < maxpad; i++) {
    if (fill[i] != MI_DEBUG_PADDING) {
      *wrong = bsize - delta + i;
      return false;
    }
  }
  return true;
}

static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
  size_t size;
  size_t wrong;
  if (!mi_verify_padding(page,block,&size,&wrong)) {
    _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
  }
}

// When a non-thread-local block is freed, it becomes part of the thread delayed free
// list that is freed later by the owning heap. If the exact usable size is too small to
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
// so it will later not trigger an overflow error in `mi_free_block`.
static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
  size_t bsize;
  size_t delta;
  bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
  mi_assert_internal(ok);
  if (!ok || (bsize - delta) >= min_size) return;  // usually already enough space
  mi_assert_internal(bsize >= min_size);
  if (bsize < min_size) return;  // should never happen
  size_t new_delta = (bsize - min_size);
  mi_assert_internal(new_delta < bsize);
  mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
  padding->delta = (uint32_t)new_delta;
}
#else
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
  UNUSED(page);
  UNUSED(block);
}

static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
  UNUSED(block);
  return mi_page_usable_block_size(page);
}

static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
  UNUSED(page);
  UNUSED(block);
  UNUSED(min_size);
}
#endif

// only maintain stats for smaller objects if requested
#if (MI_STAT>0)
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
#if (MI_STAT < 2)  
  UNUSED(block);
#endif
  mi_heap_t* const heap = mi_heap_get_default();
  const size_t bsize = mi_page_usable_block_size(page);  
#if (MI_STAT>1)
  const size_t usize = mi_page_usable_size_of(page, block);
  mi_heap_stat_decrease(heap, malloc, usize);
#endif  
  if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
    mi_heap_stat_decrease(heap, normal, bsize);
#if (MI_STAT > 1)
    mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
#endif
  }
}
#else
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
  UNUSED(page); UNUSED(block);
}
#endif

#if (MI_STAT>0)
// maintain stats for huge objects
static void mi_stat_huge_free(const mi_page_t* page) {
  mi_heap_t* const heap = mi_heap_get_default();
  const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
  if (bsize <= MI_HUGE_OBJ_SIZE_MAX) {
    mi_heap_stat_decrease(heap, huge, bsize);
  }
  else {
    mi_heap_stat_decrease(heap, giant, bsize);
  }
}
#else
static void mi_stat_huge_free(const mi_page_t* page) {
  UNUSED(page);
}
#endif

// ------------------------------------------------------
// Free
// ------------------------------------------------------

// multi-threaded free
static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
{
  // The padding check may access the non-thread-owned page for the key values.
  // that is safe as these are constant and the page won't be freed (as the block is not freed yet).
  mi_check_padding(page, block);
  mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
  #if (MI_DEBUG!=0)
  memset(block, MI_DEBUG_FREED, mi_usable_size(block));
  #endif

  // huge page segments are always abandoned and can be freed immediately
  mi_segment_t* const segment = _mi_page_segment(page);
  if (segment->page_kind==MI_PAGE_HUGE) {
    mi_stat_huge_free(page);
    _mi_segment_huge_page_free(segment, page, block);
    return;
  }

  // Try to put the block on either the page-local thread free list, or the heap delayed free list.
  mi_thread_free_t tfreex;
  bool use_delayed;
  mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
  do {
    use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
    if (mi_unlikely(use_delayed)) {
      // unlikely: this only happens on the first concurrent free in a page that is in the full list
      tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
    }
    else {
      // usual: directly add to page thread_free list
      mi_block_set_next(page, block, mi_tf_block(tfree));
      tfreex = mi_tf_set_block(tfree,block);
    }
  } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));

  if (mi_unlikely(use_delayed)) {
    // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
    mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
    mi_assert_internal(heap != NULL);
    if (heap != NULL) {
      // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
      mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
      do {
        mi_block_set_nextx(heap,block,dfree, heap->keys);
      } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
    }

    // and reset the MI_DELAYED_FREEING flag
    tfree = mi_atomic_load_relaxed(&page->xthread_free);
    do {
      tfreex = tfree;
      mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
      tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
    } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
  }
}

// regular free
static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
{
  // and push it on the free list
  if (mi_likely(local)) {
    // owning thread can free a block directly
    if (mi_unlikely(mi_check_is_double_free(page, block))) return;
    mi_check_padding(page, block);
    #if (MI_DEBUG!=0)
    memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
    #endif
    mi_block_set_next(page, block, page->local_free);
    page->local_free = block;
    page->used--;
    if (mi_unlikely(mi_page_all_free(page))) {
      _mi_page_retire(page);
    }
    else if (mi_unlikely(mi_page_is_in_full(page))) {
      _mi_page_unfull(page);
    }
  }
  else {
    _mi_free_block_mt(page,block);
  }
}


// Adjust a block that was allocated aligned, to the actual start of the block in the page.
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
  mi_assert_internal(page!=NULL && p!=NULL);
  const size_t diff   = (uint8_t*)p - _mi_page_start(segment, page, NULL);
  const size_t adjust = (diff % mi_page_block_size(page));
  return (mi_block_t*)((uintptr_t)p - adjust);
}


static void mi_decl_noinline mi_free_generic(const mi_segment_t* segment, bool local, void* p) {
  mi_page_t* const page = _mi_segment_page_of(segment, p);
  mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
  mi_stat_free(page, block);
  _mi_free_block(page, local, block);
}

// Get the segment data belonging to a pointer
// This is just a single `and` in assembly but does further checks in debug mode
// (and secure mode) if this was a valid pointer.
static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg) 
{
  UNUSED(msg);
#if (MI_DEBUG>0)
  if (mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0)) {
    _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
    return NULL;
  }
#endif

  mi_segment_t* const segment = _mi_ptr_segment(p);
  if (mi_unlikely(segment == NULL)) return NULL;  // checks also for (p==NULL)

#if (MI_DEBUG>0)
  if (mi_unlikely(!mi_is_in_heap_region(p))) {
    _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
      "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
    if (mi_likely(_mi_ptr_cookie(segment) == segment->cookie)) {
      _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
    }
  }
#endif
#if (MI_DEBUG>0 || MI_SECURE>=4)
  if (mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie)) {
    _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", p);
  }
#endif
  return segment;
}


// Free a block
void mi_free(void* p) mi_attr_noexcept
{
  const mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
  if (mi_unlikely(segment == NULL)) return; 

  const uintptr_t tid = _mi_thread_id();
  mi_page_t* const page = _mi_segment_page_of(segment, p);
  mi_block_t* const block = (mi_block_t*)p;

  if (mi_likely(tid == segment->thread_id && page->flags.full_aligned == 0)) {  // the thread id matches and it is not a full page, nor has aligned blocks
    // local, and not full or aligned
    if (mi_unlikely(mi_check_is_double_free(page,block))) return;
    mi_check_padding(page, block);
    mi_stat_free(page, block);
    #if (MI_DEBUG!=0)
    memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
    #endif
    mi_block_set_next(page, block, page->local_free);
    page->local_free = block;
    if (mi_unlikely(--page->used == 0)) {   // using this expression generates better code than: page->used--; if (mi_page_all_free(page))    
      _mi_page_retire(page);
    }
  }
  else {
    // non-local, aligned blocks, or a full page; use the more generic path
    // note: recalc page in generic to improve code generation
    mi_free_generic(segment, tid == segment->thread_id, p);
  }
}

bool _mi_free_delayed_block(mi_block_t* block) {
  // get segment and page
  const mi_segment_t* const segment = _mi_ptr_segment(block);
  mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
  mi_assert_internal(_mi_thread_id() == segment->thread_id);
  mi_page_t* const page = _mi_segment_page_of(segment, block);

  // Clear the no-delayed flag so delayed freeing is used again for this page.
  // This must be done before collecting the free lists on this page -- otherwise
  // some blocks may end up in the page `thread_free` list with no blocks in the
  // heap `thread_delayed_free` list which may cause the page to be never freed!
  // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
  _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */);

  // collect all other non-local frees to ensure up-to-date `used` count
  _mi_page_free_collect(page, false);

  // and free the block (possibly freeing the page as well since used is updated)
  _mi_free_block(page, true, block);
  return true;
}

// Bytes available in a block
static size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
  const mi_segment_t* const segment = mi_checked_ptr_segment(p,msg);
  if (segment==NULL) return 0;
  const mi_page_t* const page = _mi_segment_page_of(segment, p);
  const mi_block_t* block = (const mi_block_t*)p;
  if (mi_unlikely(mi_page_has_aligned(page))) {
    block = _mi_page_ptr_unalign(segment, page, p);
    size_t size = mi_page_usable_size_of(page, block);
    ptrdiff_t const adjust = (uint8_t*)p - (uint8_t*)block;
    mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
    return (size - adjust);
  }
  else {
    return mi_page_usable_size_of(page, block);
  }
}

size_t mi_usable_size(const void* p) mi_attr_noexcept {
  return _mi_usable_size(p, "mi_usable_size");
}


// ------------------------------------------------------
// ensure explicit external inline definitions are emitted!
// ------------------------------------------------------

#ifdef __cplusplus
void* _mi_externs[] = {
  (void*)&_mi_page_malloc,
  (void*)&mi_malloc,
  (void*)&mi_malloc_small,
  (void*)&mi_zalloc_small,
  (void*)&mi_heap_malloc,
  (void*)&mi_heap_zalloc,
  (void*)&mi_heap_malloc_small
};
#endif


// ------------------------------------------------------
// Allocation extensions
// ------------------------------------------------------

void mi_free_size(void* p, size_t size) mi_attr_noexcept {
  UNUSED_RELEASE(size);
  mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
  mi_free(p);
}

void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
  UNUSED_RELEASE(alignment);
  mi_assert(((uintptr_t)p % alignment) == 0);
  mi_free_size(p,size);
}

void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
  UNUSED_RELEASE(alignment);
  mi_assert(((uintptr_t)p % alignment) == 0);
  mi_free(p);
}

extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count,size,&total)) return NULL;
  return mi_heap_zalloc(heap,total);
}

mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_calloc(mi_get_default_heap(),count,size);
}

// Uninitialized `calloc`
extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_malloc(heap, total);
}

mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_mallocn(mi_get_default_heap(),count,size);
}

// Expand in place or fail
void* mi_expand(void* p, size_t newsize) mi_attr_noexcept {
  if (p == NULL) return NULL;
  size_t size = _mi_usable_size(p,"mi_expand");
  if (newsize > size) return NULL;
  return p; // it fits
}

void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) {
  if (p == NULL) return _mi_heap_malloc_zero(heap,newsize,zero);
  size_t size = _mi_usable_size(p,"mi_realloc");
  if (newsize <= size && newsize >= (size / 2)) {
    return p;  // reallocation still fits and not more than 50% waste
  }
  void* newp = mi_heap_malloc(heap,newsize);
  if (mi_likely(newp != NULL)) {
    if (zero && newsize > size) {
      // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
      size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
      memset((uint8_t*)newp + start, 0, newsize - start);
    }
    _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize));
    mi_free(p); // only free if successful
  }
  return newp;
}

void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  return _mi_heap_realloc_zero(heap, p, newsize, false);
}

void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_realloc(heap, p, total);
}


// Reallocate but free `p` on errors
void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  void* newp = mi_heap_realloc(heap, p, newsize);
  if (newp==NULL && p!=NULL) mi_free(p);
  return newp;
}

void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  return _mi_heap_realloc_zero(heap, p, newsize, true);
}

void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_rezalloc(heap, p, total);
}


void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_realloc(mi_get_default_heap(),p,newsize);
}

void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_reallocn(mi_get_default_heap(),p,count,size);
}

// Reallocate but free `p` on errors
void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_reallocf(mi_get_default_heap(),p,newsize);
}

void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_rezalloc(mi_get_default_heap(), p, newsize);
}

void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_recalloc(mi_get_default_heap(), p, count, size);
}



// ------------------------------------------------------
// strdup, strndup, and realpath
// ------------------------------------------------------

// `strdup` using mi_malloc
mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept {
  if (s == NULL) return NULL;
  size_t n = strlen(s);
  char* t = (char*)mi_heap_malloc(heap,n+1);
  if (t != NULL) _mi_memcpy(t, s, n + 1);
  return t;
}

mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept {
  return mi_heap_strdup(mi_get_default_heap(), s);
}

// `strndup` using mi_malloc
mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept {
  if (s == NULL) return NULL;
  const char* end = (const char*)memchr(s, 0, n);  // find end of string in the first `n` characters (returns NULL if not found)
  const size_t m = (end != NULL ? (size_t)(end - s) : n);  // `m` is the minimum of `n` or the end-of-string
  mi_assert_internal(m <= n);
  char* t = (char*)mi_heap_malloc(heap, m+1);
  if (t == NULL) return NULL;
  _mi_memcpy(t, s, m);
  t[m] = 0;
  return t;
}

mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept {
  return mi_heap_strndup(mi_get_default_heap(),s,n);
}

#ifndef __wasi__
// `realpath` using mi_malloc
#ifdef _WIN32
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <windows.h>
mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
  // todo: use GetFullPathNameW to allow longer file names
  char buf[PATH_MAX];
  DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL);
  if (res == 0) {
    errno = GetLastError(); return NULL;
  }
  else if (res > PATH_MAX) {
    errno = EINVAL; return NULL;
  }
  else if (resolved_name != NULL) {
    return resolved_name;
  }
  else {
    return mi_heap_strndup(heap, buf, PATH_MAX);
  }
}
#else
#include <unistd.h>  // pathconf
static size_t mi_path_max() {
  static size_t path_max = 0;
  if (path_max <= 0) {
    long m = pathconf("/",_PC_PATH_MAX);
    if (m <= 0) path_max = 4096;      // guess
    else if (m < 256) path_max = 256; // at least 256
    else path_max = m;
  }
  return path_max;
}

char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
  if (resolved_name != NULL) {
    return realpath(fname,resolved_name);
  }
  else {
    size_t n  = mi_path_max();
    char* buf = (char*)mi_malloc(n+1);
    if (buf==NULL) return NULL;
    char* rname  = realpath(fname,buf);
    char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL`
    mi_free(buf);
    return result;
  }
}
#endif

mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept {
  return mi_heap_realpath(mi_get_default_heap(),fname,resolved_name);
}
#endif

/*-------------------------------------------------------
C++ new and new_aligned
The standard requires calling into `get_new_handler` and
throwing the bad_alloc exception on failure. If we compile
with a C++ compiler we can implement this precisely. If we
use a C compiler we cannot throw a `bad_alloc` exception
but we call `exit` instead (i.e. not returning).
-------------------------------------------------------*/

#ifdef __cplusplus
#include <new>
static bool mi_try_new_handler(bool nothrow) {
  #if defined(_MSC_VER) || (__cplusplus >= 201103L)
    std::new_handler h = std::get_new_handler();
  #else
    std::new_handler h = std::set_new_handler();
    std::set_new_handler(h);
  #endif  
  if (h==NULL) {
    if (!nothrow) throw std::bad_alloc();
    return false;
  }
  else {
    h();
    return true;
  }
}
#else
typedef void (*std_new_handler_t)();

#if (defined(__GNUC__) || defined(__clang__))
std_new_handler_t __attribute((weak)) _ZSt15get_new_handlerv() {
  return NULL;
}
static std_new_handler_t mi_get_new_handler() {
  return _ZSt15get_new_handlerv();
}
#else
// note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`.
static std_new_handler_t mi_get_new_handler() {
  return NULL;
}
#endif

static bool mi_try_new_handler(bool nothrow) {
  std_new_handler_t h = mi_get_new_handler();
  if (h==NULL) {
    if (!nothrow) exit(ENOMEM);  // cannot throw in plain C, use exit as we are out of memory anyway.
    return false;
  }
  else {
    h();
    return true;
  }
}
#endif

static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow ) {
  void* p = NULL;
  while(p == NULL && mi_try_new_handler(nothrow)) {
    p = mi_malloc(size);
  }
  return p;
}

mi_decl_restrict void* mi_new(size_t size) {
  void* p = mi_malloc(size);
  if (mi_unlikely(p == NULL)) return mi_try_new(size,false);
  return p;
}

mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept {
  void* p = mi_malloc(size);
  if (mi_unlikely(p == NULL)) return mi_try_new(size, true);
  return p;
}

mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) {
  void* p;
  do {
    p = mi_malloc_aligned(size, alignment);
  }
  while(p == NULL && mi_try_new_handler(false));
  return p;
}

mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept {
  void* p;
  do {
    p = mi_malloc_aligned(size, alignment);
  }
  while(p == NULL && mi_try_new_handler(true));
  return p;
}

mi_decl_restrict void* mi_new_n(size_t count, size_t size) {
  size_t total;
  if (mi_unlikely(mi_count_size_overflow(count, size, &total))) {
    mi_try_new_handler(false);  // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
    return NULL;
  }
  else {
    return mi_new(total);
  }
}

void* mi_new_realloc(void* p, size_t newsize) {
  void* q;
  do {
    q = mi_realloc(p, newsize);
  } while (q == NULL && mi_try_new_handler(false));
  return q;
}

void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
  size_t total;
  if (mi_unlikely(mi_count_size_overflow(newcount, size, &total))) {
    mi_try_new_handler(false);  // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
    return NULL;
  }
  else {
    return mi_new_realloc(p, total);
  }
}