aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/mimalloc/src/alloc.c
blob: 6c9c5baf361820fa59bac7e47df6d807a528e575 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE   // for realpath() on Linux
#endif

#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"   // _mi_prim_thread_id()

#include <string.h>      // memset, strlen (for mi_strdup)
#include <stdlib.h>      // malloc, abort

#define MI_IN_ALLOC_C
#include "alloc-override.c"
#include "free.c"
#undef MI_IN_ALLOC_C

// ------------------------------------------------------
// Allocation
// ------------------------------------------------------

// Fast allocation in a page: just pop from the free list.
// Fall back to generic allocation only if the list is empty.
// Note: in release mode the (inlined) routine is about 7 instructions with a single test.
extern inline void* _mi_page_malloc_zero(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept 
{
  mi_assert_internal(page->block_size == 0 /* empty heap */ || mi_page_block_size(page) >= size);
  mi_block_t* const block = page->free;
  if mi_unlikely(block == NULL) {
    return _mi_malloc_generic(heap, size, zero, 0);
  }
  mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
  // pop from the free list
  page->free = mi_block_next(page, block);
  page->used++;
  mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
  #if MI_DEBUG>3
  if (page->free_is_zero) {
    mi_assert_expensive(mi_mem_is_zero(block+1,size - sizeof(*block)));
  }
  #endif

  // allow use of the block internally
  // note: when tracking we need to avoid ever touching the MI_PADDING since
  // that is tracked by valgrind etc. as non-accessible (through the red-zone, see `mimalloc/track.h`)
  mi_track_mem_undefined(block, mi_page_usable_block_size(page));

  // zero the block? note: we need to zero the full block size (issue #63)
  if mi_unlikely(zero) {
    mi_assert_internal(page->block_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic)
    mi_assert_internal(page->block_size >= MI_PADDING_SIZE);
    if (page->free_is_zero) {
      block->next = 0;
      mi_track_mem_defined(block, page->block_size - MI_PADDING_SIZE);
    }
    else {
      _mi_memzero_aligned(block, page->block_size - MI_PADDING_SIZE);
    }    
  }

  #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
  if (!zero && !mi_page_is_huge(page)) {
    memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page));
  }
  #elif (MI_SECURE!=0)
  if (!zero) { block->next = 0; } // don't leak internal data
  #endif

  #if (MI_STAT>0)
  const size_t bsize = mi_page_usable_block_size(page);
  if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
    mi_heap_stat_increase(heap, normal, bsize);
    mi_heap_stat_counter_increase(heap, normal_count, 1);
    #if (MI_STAT>1)
    const size_t bin = _mi_bin(bsize);
    mi_heap_stat_increase(heap, normal_bins[bin], 1);
    #endif
  }
  #endif

  #if MI_PADDING // && !MI_TRACK_ENABLED
    mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
    ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
    #if (MI_DEBUG>=2)
    mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
    #endif
    mi_track_mem_defined(padding,sizeof(mi_padding_t));  // note: re-enable since mi_page_usable_block_size may set noaccess
    padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
    padding->delta  = (uint32_t)(delta);
    #if MI_PADDING_CHECK
    if (!mi_page_is_huge(page)) {
      uint8_t* fill = (uint8_t*)padding - delta;
      const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
      for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
    }
    #endif
  #endif

  return block;
}

// extra entries for improved efficiency in `alloc-aligned.c`.
extern void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept {
  return _mi_page_malloc_zero(heap,page,size,false);
}
extern void* _mi_page_malloc_zeroed(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept {
  return _mi_page_malloc_zero(heap,page,size,true);
}

static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
  mi_assert(heap != NULL);
  #if MI_DEBUG
  const uintptr_t tid = _mi_thread_id();
  mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local
  #endif
  mi_assert(size <= MI_SMALL_SIZE_MAX);
  #if (MI_PADDING)
  if (size == 0) { size = sizeof(void*); }
  #endif
  
  mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE);
  void* const p = _mi_page_malloc_zero(heap, page, size + MI_PADDING_SIZE, zero);  
  mi_track_malloc(p,size,zero);

  #if MI_STAT>1
  if (p != NULL) {
    if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
    mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
  }
  #endif
  #if MI_DEBUG>3
  if (p != NULL && zero) {
    mi_assert_expensive(mi_mem_is_zero(p, size));
  }
  #endif
  return p;
}

// allocate a small block
mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  return mi_heap_malloc_small_zero(heap, size, false);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept {
  return mi_heap_malloc_small(mi_prim_get_default_heap(), size);
}

// The main allocation function
extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept {
  if mi_likely(size <= MI_SMALL_SIZE_MAX) {
    mi_assert_internal(huge_alignment == 0);
    return mi_heap_malloc_small_zero(heap, size, zero);
  }
  else {
    mi_assert(heap!=NULL);
    mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id());   // heaps are thread local
    void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment);  // note: size can overflow but it is detected in malloc_generic
    mi_track_malloc(p,size,zero);
    #if MI_STAT>1
    if (p != NULL) {
      if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
      mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
    }
    #endif
    #if MI_DEBUG>3
    if (p != NULL && zero) {
      mi_assert_expensive(mi_mem_is_zero(p, size));
    }
    #endif
    return p;
  }
}

extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
  return _mi_heap_malloc_zero_ex(heap, size, zero, 0);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  return _mi_heap_malloc_zero(heap, size, false);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept {
  return mi_heap_malloc(mi_prim_get_default_heap(), size);
}

// zero initialized small block
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept {
  return mi_heap_malloc_small_zero(mi_prim_get_default_heap(), size, true);
}

mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
  return _mi_heap_malloc_zero(heap, size, true);
}

mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept {
  return mi_heap_zalloc(mi_prim_get_default_heap(),size);
}


mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count,size,&total)) return NULL;
  return mi_heap_zalloc(heap,total);
}

mi_decl_nodiscard mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_calloc(mi_prim_get_default_heap(),count,size);
}

// Uninitialized `calloc`
mi_decl_nodiscard extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_malloc(heap, total);
}

mi_decl_nodiscard mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_mallocn(mi_prim_get_default_heap(),count,size);
}

// Expand (or shrink) in place (or fail)
void* mi_expand(void* p, size_t newsize) mi_attr_noexcept {
  #if MI_PADDING
  // we do not shrink/expand with padding enabled
  MI_UNUSED(p); MI_UNUSED(newsize);
  return NULL;
  #else
  if (p == NULL) return NULL;
  const size_t size = _mi_usable_size(p,"mi_expand");
  if (newsize > size) return NULL;
  return p; // it fits
  #endif
}

void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept {
  // if p == NULL then behave as malloc.
  // else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)).
  // (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.)
  const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0)
  if mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0) {  // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0)
    mi_assert_internal(p!=NULL);
    // todo: do not track as the usable size is still the same in the free; adjust potential padding?
    // mi_track_resize(p,size,newsize)
    // if (newsize < size) { mi_track_mem_noaccess((uint8_t*)p + newsize, size - newsize); }
    return p;  // reallocation still fits and not more than 50% waste
  }
  void* newp = mi_heap_malloc(heap,newsize);
  if mi_likely(newp != NULL) {
    if (zero && newsize > size) {
      // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
      const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
      _mi_memzero((uint8_t*)newp + start, newsize - start);
    }
    else if (newsize == 0) {
      ((uint8_t*)newp)[0] = 0; // work around for applications that expect zero-reallocation to be zero initialized (issue #725)
    }
    if mi_likely(p != NULL) {
      const size_t copysize = (newsize > size ? size : newsize);
      mi_track_mem_defined(p,copysize);  // _mi_useable_size may be too large for byte precise memory tracking..
      _mi_memcpy(newp, p, copysize);
      mi_free(p); // only free the original pointer if successful
    }
  }
  return newp;
}

mi_decl_nodiscard void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  return _mi_heap_realloc_zero(heap, p, newsize, false);
}

mi_decl_nodiscard void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_realloc(heap, p, total);
}


// Reallocate but free `p` on errors
mi_decl_nodiscard void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  void* newp = mi_heap_realloc(heap, p, newsize);
  if (newp==NULL && p!=NULL) mi_free(p);
  return newp;
}

mi_decl_nodiscard void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
  return _mi_heap_realloc_zero(heap, p, newsize, true);
}

mi_decl_nodiscard void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
  size_t total;
  if (mi_count_size_overflow(count, size, &total)) return NULL;
  return mi_heap_rezalloc(heap, p, total);
}


mi_decl_nodiscard void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_realloc(mi_prim_get_default_heap(),p,newsize);
}

mi_decl_nodiscard void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_reallocn(mi_prim_get_default_heap(),p,count,size);
}

// Reallocate but free `p` on errors
mi_decl_nodiscard void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_reallocf(mi_prim_get_default_heap(),p,newsize);
}

mi_decl_nodiscard void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept {
  return mi_heap_rezalloc(mi_prim_get_default_heap(), p, newsize);
}

mi_decl_nodiscard void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept {
  return mi_heap_recalloc(mi_prim_get_default_heap(), p, count, size);
}



// ------------------------------------------------------
// strdup, strndup, and realpath
// ------------------------------------------------------

// `strdup` using mi_malloc
mi_decl_nodiscard mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept {
  if (s == NULL) return NULL;
  size_t len = _mi_strlen(s);
  char* t = (char*)mi_heap_malloc(heap,len+1);
  if (t == NULL) return NULL;
  _mi_memcpy(t, s, len);
  t[len] = 0;
  return t;
}

mi_decl_nodiscard mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept {
  return mi_heap_strdup(mi_prim_get_default_heap(), s);
}

// `strndup` using mi_malloc
mi_decl_nodiscard mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept {
  if (s == NULL) return NULL;
  const size_t len = _mi_strnlen(s,n);  // len <= n
  char* t = (char*)mi_heap_malloc(heap, len+1);
  if (t == NULL) return NULL;
  _mi_memcpy(t, s, len);
  t[len] = 0;
  return t;
}

mi_decl_nodiscard mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept {
  return mi_heap_strndup(mi_prim_get_default_heap(),s,n);
}

#ifndef __wasi__
// `realpath` using mi_malloc
#ifdef _WIN32
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <windows.h>
mi_decl_nodiscard mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
  // todo: use GetFullPathNameW to allow longer file names
  char buf[PATH_MAX];
  DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL);
  if (res == 0) {
    errno = GetLastError(); return NULL;
  }
  else if (res > PATH_MAX) {
    errno = EINVAL; return NULL;
  }
  else if (resolved_name != NULL) {
    return resolved_name;
  }
  else {
    return mi_heap_strndup(heap, buf, PATH_MAX);
  }
}
#else
/*
#include <unistd.h>  // pathconf
static size_t mi_path_max(void) {
  static size_t path_max = 0;
  if (path_max <= 0) {
    long m = pathconf("/",_PC_PATH_MAX);
    if (m <= 0) path_max = 4096;      // guess
    else if (m < 256) path_max = 256; // at least 256
    else path_max = m;
  }
  return path_max;
}
*/
char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
  if (resolved_name != NULL) {
    return realpath(fname,resolved_name);
  }
  else {
    char* rname = realpath(fname, NULL);
    if (rname == NULL) return NULL;
    char* result = mi_heap_strdup(heap, rname);
    mi_cfree(rname);  // use checked free (which may be redirected to our free but that's ok)
    // note: with ASAN realpath is intercepted and mi_cfree may leak the returned pointer :-(
    return result;
  }
  /*
    const size_t n  = mi_path_max();
    char* buf = (char*)mi_malloc(n+1);
    if (buf == NULL) {
      errno = ENOMEM;
      return NULL;
    }
    char* rname  = realpath(fname,buf);
    char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL`
    mi_free(buf);
    return result;
  }
  */
}
#endif

mi_decl_nodiscard mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept {
  return mi_heap_realpath(mi_prim_get_default_heap(),fname,resolved_name);
}
#endif

/*-------------------------------------------------------
C++ new and new_aligned
The standard requires calling into `get_new_handler` and
throwing the bad_alloc exception on failure. If we compile
with a C++ compiler we can implement this precisely. If we
use a C compiler we cannot throw a `bad_alloc` exception
but we call `exit` instead (i.e. not returning).
-------------------------------------------------------*/

#ifdef __cplusplus
#include <new>
static bool mi_try_new_handler(bool nothrow) {
  #if defined(_MSC_VER) || (__cplusplus >= 201103L)
    std::new_handler h = std::get_new_handler();
  #else
    std::new_handler h = std::set_new_handler();
    std::set_new_handler(h);
  #endif
  if (h==NULL) {
    _mi_error_message(ENOMEM, "out of memory in 'new'");
    #if defined(_CPPUNWIND) || defined(__cpp_exceptions)  // exceptions are not always enabled
    if (!nothrow) {
      throw std::bad_alloc();
    }
    #else
    MI_UNUSED(nothrow);
    #endif
    return false;
  }
  else {
    h();
    return true;
  }
}
#else
typedef void (*std_new_handler_t)(void);

#if (defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER)))  // exclude clang-cl, see issue #631
std_new_handler_t __attribute__((weak)) _ZSt15get_new_handlerv(void) {
  return NULL;
}
static std_new_handler_t mi_get_new_handler(void) {
  return _ZSt15get_new_handlerv();
}
#else
// note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`.
static std_new_handler_t mi_get_new_handler() {
  return NULL;
}
#endif

static bool mi_try_new_handler(bool nothrow) {
  std_new_handler_t h = mi_get_new_handler();
  if (h==NULL) {
    _mi_error_message(ENOMEM, "out of memory in 'new'");
    if (!nothrow) {
      abort();  // cannot throw in plain C, use abort
    }
    return false;
  }
  else {
    h();
    return true;
  }
}
#endif

mi_decl_export mi_decl_noinline void* mi_heap_try_new(mi_heap_t* heap, size_t size, bool nothrow ) {
  void* p = NULL;
  while(p == NULL && mi_try_new_handler(nothrow)) {
    p = mi_heap_malloc(heap,size);
  }
  return p;
}

static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow) {
  return mi_heap_try_new(mi_prim_get_default_heap(), size, nothrow);
}


mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) {
  void* p = mi_heap_malloc(heap,size);
  if mi_unlikely(p == NULL) return mi_heap_try_new(heap, size, false);
  return p;
}

mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) {
  return mi_heap_alloc_new(mi_prim_get_default_heap(), size);
}


mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) {
  size_t total;
  if mi_unlikely(mi_count_size_overflow(count, size, &total)) {
    mi_try_new_handler(false);  // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
    return NULL;
  }
  else {
    return mi_heap_alloc_new(heap,total);
  }
}

mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) {
  return mi_heap_alloc_new_n(mi_prim_get_default_heap(), size, count);
}


mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept {
  void* p = mi_malloc(size);
  if mi_unlikely(p == NULL) return mi_try_new(size, true);
  return p;
}

mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) {
  void* p;
  do {
    p = mi_malloc_aligned(size, alignment);
  }
  while(p == NULL && mi_try_new_handler(false));
  return p;
}

mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept {
  void* p;
  do {
    p = mi_malloc_aligned(size, alignment);
  }
  while(p == NULL && mi_try_new_handler(true));
  return p;
}

mi_decl_nodiscard void* mi_new_realloc(void* p, size_t newsize) {
  void* q;
  do {
    q = mi_realloc(p, newsize);
  } while (q == NULL && mi_try_new_handler(false));
  return q;
}

mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
  size_t total;
  if mi_unlikely(mi_count_size_overflow(newcount, size, &total)) {
    mi_try_new_handler(false);  // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
    return NULL;
  }
  else {
    return mi_new_realloc(p, total);
  }
}

// ------------------------------------------------------
// ensure explicit external inline definitions are emitted!
// ------------------------------------------------------

#ifdef __cplusplus
void* _mi_externs[] = {
  (void*)&_mi_page_malloc,
  (void*)&_mi_heap_malloc_zero,
  (void*)&_mi_heap_malloc_zero_ex,
  (void*)&mi_malloc,
  (void*)&mi_malloc_small,
  (void*)&mi_zalloc_small,
  (void*)&mi_heap_malloc,
  (void*)&mi_heap_zalloc,
  (void*)&mi_heap_malloc_small
  // (void*)&mi_heap_alloc_new,
  // (void*)&mi_heap_alloc_new_n
};
#endif