1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
|
// SPDX-License-Identifier: 0BSD
///////////////////////////////////////////////////////////////////////////////
//
/// \file range_decoder.h
/// \brief Range Decoder
///
// Authors: Igor Pavlov
// Lasse Collin
//
///////////////////////////////////////////////////////////////////////////////
#ifndef LZMA_RANGE_DECODER_H
#define LZMA_RANGE_DECODER_H
#include "range_common.h"
// Choose the range decoder variants to use using a bitmask.
// If no bits are set, only the basic version is used.
// If more than one version is selected for the same feature,
// the last one on the list below is used.
//
// Bitwise-or of the following enable branchless C versions:
// 0x01 normal bittrees
// 0x02 fixed-sized reverse bittrees
// 0x04 variable-sized reverse bittrees (not faster)
// 0x08 matched literal (not faster)
//
// GCC & Clang compatible x86-64 inline assembly:
// 0x010 normal bittrees
// 0x020 fixed-sized reverse bittrees
// 0x040 variable-sized reverse bittrees
// 0x080 matched literal
// 0x100 direct bits
//
// The default can be overridden at build time by defining
// LZMA_RANGE_DECODER_CONFIG to the desired mask.
//
// 2024-02-22: Feedback from benchmarks:
// - Brancless C (0x003) can be better than basic on x86-64 but often it's
// slightly worse on other archs. Since asm is much better on x86-64,
// branchless C is not used at all.
// - With x86-64 asm, there are slight differences between GCC and Clang
// and different processors. Overall 0x1F0 seems to be the best choice.
#ifndef LZMA_RANGE_DECODER_CONFIG
# if defined(__x86_64__) && !defined(__ILP32__) \
&& !defined(__NVCOMPILER) \
&& (defined(__GNUC__) || defined(__clang__))
# define LZMA_RANGE_DECODER_CONFIG 0x1F0
# else
# define LZMA_RANGE_DECODER_CONFIG 0
# endif
#endif
// Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped.
// This is useful for updating probability variables in branchless decoding:
//
// uint32_t decoded_bit = ...;
// probability tmp = RC_BIT_MODEL_OFFSET;
// tmp &= decoded_bit - 1;
// prob -= (prob + tmp) >> RC_MOVE_BITS;
#define RC_BIT_MODEL_OFFSET \
((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL)
typedef struct {
uint32_t range;
uint32_t code;
uint32_t init_bytes_left;
} lzma_range_decoder;
/// Reads the first five bytes to initialize the range decoder.
static inline lzma_ret
rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
size_t *restrict in_pos, size_t in_size)
{
while (rc->init_bytes_left > 0) {
if (*in_pos == in_size)
return LZMA_OK;
// The first byte is always 0x00. It could have been omitted
// in LZMA2 but it wasn't, so one byte is wasted in every
// LZMA2 chunk.
if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00)
return LZMA_DATA_ERROR;
rc->code = (rc->code << 8) | in[*in_pos];
++*in_pos;
--rc->init_bytes_left;
}
return LZMA_STREAM_END;
}
/// Makes local copies of range decoder and *in_pos variables. Doing this
/// improves speed significantly. The range decoder macros expect also
/// variables 'in' and 'in_size' to be defined.
#define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \
lzma_range_decoder rc = range_decoder; \
const uint8_t *rc_in_ptr = in + (in_pos); \
const uint8_t *rc_in_end = in + in_size; \
const uint8_t *rc_in_fast_end \
= (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \
? rc_in_ptr \
: rc_in_end - (fast_mode_in_required); \
(void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \
uint32_t rc_bound
/// Evaluates to true if there is enough input remaining to use fast mode.
#define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end)
/// Stores the local copes back to the range decoder structure.
#define rc_from_local(range_decoder, in_pos) \
do { \
range_decoder = rc; \
in_pos = (size_t)(rc_in_ptr - in); \
} while (0)
/// Resets the range decoder structure.
#define rc_reset(range_decoder) \
do { \
(range_decoder).range = UINT32_MAX; \
(range_decoder).code = 0; \
(range_decoder).init_bytes_left = 5; \
} while (0)
/// When decoding has been properly finished, rc.code is always zero unless
/// the input stream is corrupt. So checking this can catch some corrupt
/// files especially if they don't have any other integrity check.
#define rc_is_finished(range_decoder) \
((range_decoder).code == 0)
// Read the next input byte if needed.
#define rc_normalize() \
do { \
if (rc.range < RC_TOP_VALUE) { \
rc.range <<= RC_SHIFT_BITS; \
rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
} \
} while (0)
/// If more input is needed but there is
/// no more input available, "goto out" is used to jump out of the main
/// decoder loop. The "_safe" macros are used in the Resumable decoder
/// mode in order to save the sequence to continue decoding from that
/// point later.
#define rc_normalize_safe(seq) \
do { \
if (rc.range < RC_TOP_VALUE) { \
if (rc_in_ptr == rc_in_end) { \
coder->sequence = seq; \
goto out; \
} \
rc.range <<= RC_SHIFT_BITS; \
rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
} \
} while (0)
/// Start decoding a bit. This must be used together with rc_update_0()
/// and rc_update_1():
///
/// rc_if_0(prob) {
/// rc_update_0(prob);
/// // Do something
/// } else {
/// rc_update_1(prob);
/// // Do something else
/// }
///
#define rc_if_0(prob) \
rc_normalize(); \
rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
if (rc.code < rc_bound)
#define rc_if_0_safe(prob, seq) \
rc_normalize_safe(seq); \
rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
if (rc.code < rc_bound)
/// Update the range decoder state and the used probability variable to
/// match a decoded bit of 0.
///
/// The x86-64 assembly uses the commented method but it seems that,
/// at least on x86-64, the first version is slightly faster as C code.
#define rc_update_0(prob) \
do { \
rc.range = rc_bound; \
prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
/* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \
} while (0)
/// Update the range decoder state and the used probability variable to
/// match a decoded bit of 1.
#define rc_update_1(prob) \
do { \
rc.range -= rc_bound; \
rc.code -= rc_bound; \
prob -= (prob) >> RC_MOVE_BITS; \
} while (0)
/// Decodes one bit and runs action0 or action1 depending on the decoded bit.
/// This macro is used as the last step in bittree reverse decoders since
/// those don't use "symbol" for anything else than indexing the probability
/// arrays.
#define rc_bit_last(prob, action0, action1) \
do { \
rc_if_0(prob) { \
rc_update_0(prob); \
action0; \
} else { \
rc_update_1(prob); \
action1; \
} \
} while (0)
#define rc_bit_last_safe(prob, action0, action1, seq) \
do { \
rc_if_0_safe(prob, seq) { \
rc_update_0(prob); \
action0; \
} else { \
rc_update_1(prob); \
action1; \
} \
} while (0)
/// Decodes one bit, updates "symbol", and runs action0 or action1 depending
/// on the decoded bit.
#define rc_bit(prob, action0, action1) \
rc_bit_last(prob, \
symbol <<= 1; action0, \
symbol = (symbol << 1) + 1; action1);
#define rc_bit_safe(prob, action0, action1, seq) \
rc_bit_last_safe(prob, \
symbol <<= 1; action0, \
symbol = (symbol << 1) + 1; action1, \
seq);
// Unroll fixed-sized bittree decoding.
//
// A compile-time constant in final_add can be used to get rid of the high bit
// from symbol that is used for the array indexing (1U << bittree_bits).
// final_add may also be used to add offset to the result (LZMA length
// decoder does that).
//
// The reason to have final_add here is that in the asm code the addition
// can be done for free: in x86-64 there is SBB instruction with -1 as
// the immediate value, and final_add is combined with that value.
#define rc_bittree_bit(prob) \
rc_bit(prob, , )
#define rc_bittree3(probs, final_add) \
do { \
symbol = 1; \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
symbol += (uint32_t)(final_add); \
} while (0)
#define rc_bittree6(probs, final_add) \
do { \
symbol = 1; \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
symbol += (uint32_t)(final_add); \
} while (0)
#define rc_bittree8(probs, final_add) \
do { \
symbol = 1; \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
rc_bittree_bit(probs[symbol]); \
symbol += (uint32_t)(final_add); \
} while (0)
// Fixed-sized reverse bittree
#define rc_bittree_rev4(probs) \
do { \
symbol = 0; \
rc_bit_last(probs[symbol + 1], , symbol += 1); \
rc_bit_last(probs[symbol + 2], , symbol += 2); \
rc_bit_last(probs[symbol + 4], , symbol += 4); \
rc_bit_last(probs[symbol + 8], , symbol += 8); \
} while (0)
// Decode one bit from variable-sized reverse bittree. The loop is done
// in the code that uses this macro. This could be changed if the assembly
// version benefited from having the loop done in assembly but it didn't
// seem so in early 2024.
//
// Also, if the loop was done here, the loop counter would likely be local
// to the macro so that it wouldn't modify yet another input variable.
// If a _safe version of a macro with a loop was done then a modifiable
// input variable couldn't be avoided though.
#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
rc_bit(probs[symbol], \
, \
dest += value_to_add_if_1);
// Matched literal
#define decode_with_match_bit \
t_match_byte <<= 1; \
t_match_bit = t_match_byte & t_offset; \
t_subcoder_index = t_offset + t_match_bit + symbol; \
rc_bit(probs[t_subcoder_index], \
t_offset &= ~t_match_bit, \
t_offset &= t_match_bit)
#define rc_matched_literal(probs_base_var, match_byte) \
do { \
uint32_t t_match_byte = (match_byte); \
uint32_t t_match_bit; \
uint32_t t_subcoder_index; \
uint32_t t_offset = 0x100; \
symbol = 1; \
decode_with_match_bit; \
decode_with_match_bit; \
decode_with_match_bit; \
decode_with_match_bit; \
decode_with_match_bit; \
decode_with_match_bit; \
decode_with_match_bit; \
decode_with_match_bit; \
} while (0)
/// Decode a bit without using a probability.
//
// NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound
// calculation to use an arithmetic right shift so there's no need to provide
// the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't
// perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31);
#define rc_direct(dest, count_var) \
do { \
dest = (dest << 1) + 1; \
rc_normalize(); \
rc.range >>= 1; \
rc.code -= rc.range; \
rc_bound = UINT32_C(0) - (rc.code >> 31); \
dest += rc_bound; \
rc.code += rc.range & rc_bound; \
} while (--count_var > 0)
#define rc_direct_safe(dest, count_var, seq) \
do { \
rc_normalize_safe(seq); \
rc.range >>= 1; \
rc.code -= rc.range; \
rc_bound = UINT32_C(0) - (rc.code >> 31); \
rc.code += rc.range & rc_bound; \
dest = (dest << 1) + (rc_bound + 1); \
} while (--count_var > 0)
//////////////////
// Branchless C //
//////////////////
/// Decode a bit using a branchless method. This reduces the number of
/// mispredicted branches and thus can improve speed.
#define rc_c_bit(prob, action_bit, action_neg) \
do { \
probability *p = &(prob); \
rc_normalize(); \
rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \
uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \
action_bit; /* action when rc_mask is 0 or 1 */ \
/* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \
rc_mask = 0U - rc_mask; \
rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \
rc_bound ^= rc_mask; \
rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \
rc.range += rc_bound; \
rc_bound &= rc_mask; \
rc.code += rc_bound; \
action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \
rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \
rc_mask &= RC_BIT_MODEL_OFFSET; \
*p -= (*p + rc_mask) >> RC_MOVE_BITS; \
} while (0)
// Testing on x86-64 give an impression that only the normal bittrees and
// the fixed-sized reverse bittrees are worth the branchless C code.
// It should be tested on other archs for which there isn't assembly code
// in this file.
// Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA
// or RISC-V SH1ADD instructions. Compilers might infer it from
// "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but
// the use of addition doesn't require such analysis from compilers.
#if LZMA_RANGE_DECODER_CONFIG & 0x01
#undef rc_bittree_bit
#define rc_bittree_bit(prob) \
rc_c_bit(prob, \
symbol = (symbol << 1) + rc_mask, \
)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x01
#if LZMA_RANGE_DECODER_CONFIG & 0x02
#undef rc_bittree_rev4
#define rc_bittree_rev4(probs) \
do { \
symbol = 0; \
rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \
rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \
rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \
rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \
} while (0)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x02
#if LZMA_RANGE_DECODER_CONFIG & 0x04
#undef rc_bit_add_if_1
#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
rc_c_bit(probs[symbol], \
symbol = (symbol << 1) + rc_mask, \
dest += (value_to_add_if_1) & rc_mask)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x04
#if LZMA_RANGE_DECODER_CONFIG & 0x08
#undef decode_with_match_bit
#define decode_with_match_bit \
t_match_byte <<= 1; \
t_match_bit = t_match_byte & t_offset; \
t_subcoder_index = t_offset + t_match_bit + symbol; \
rc_c_bit(probs[t_subcoder_index], \
symbol = (symbol << 1) + rc_mask, \
t_offset &= ~t_match_bit ^ rc_mask)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x08
////////////
// x86-64 //
////////////
#if LZMA_RANGE_DECODER_CONFIG & 0x1F0
// rc_asm_y and rc_asm_n are used as arguments to macros to control which
// strings to include or omit.
#define rc_asm_y(str) str
#define rc_asm_n(str)
// There are a few possible variations for normalization.
// This is the smallest variant which is also used by LZMA SDK.
//
// - This has partial register write (the MOV from (%[in_ptr])).
//
// - INC saves one byte in code size over ADD. False dependency on
// partial flags from INC shouldn't become a problem on any processor
// because the instructions after normalization don't read the flags
// until SUB which sets all flags.
//
#define rc_asm_normalize \
"cmp %[top_value], %[range]\n\t" \
"jae 1f\n\t" \
"shl %[shift_bits], %[code]\n\t" \
"mov (%[in_ptr]), %b[code]\n\t" \
"shl %[shift_bits], %[range]\n\t" \
"inc %[in_ptr]\n" \
"1:\n"
// rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)...
//
// rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
// if (rc.code < rc_bound)
//
// ...but the bound is stored in "range":
//
// t0 = range;
// range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
// t0 -= range;
// t1 = code;
// code -= range;
//
// The carry flag (CF) from the last subtraction holds the negation of
// the decoded bit (if CF==0 then the decoded bit is 1).
// The values in t0 and t1 are needed for rc_update_0(prob) and
// rc_update_1(prob). If the bit is 0, rc_update_0(prob)...
//
// rc.range = rc_bound;
//
// ...has already been done but the "code -= range" has to be reverted using
// the old value stored in t1. (Also, prob needs to be updated.)
//
// If the bit is 1, rc_update_1(prob)...
//
// rc.range -= rc_bound;
// rc.code -= rc_bound;
//
// ...is already done for "code" but the value for "range" needs to be taken
// from t0. (Also, prob needs to be updated here as well.)
//
// The assignments from t0 and t1 can be done in a branchless manner with CMOV
// after the instructions from this macro. The CF from SUB tells which moves
// are needed.
#define rc_asm_calc(prob) \
"mov %[range], %[t0]\n\t" \
"shr %[bit_model_total_bits], %[range]\n\t" \
"imul %[" prob "], %[range]\n\t" \
"sub %[range], %[t0]\n\t" \
"mov %[code], %[t1]\n\t" \
"sub %[range], %[code]\n\t"
// Also, prob needs to be updated: The update math depends on the decoded bit.
// It can be expressed in a few slightly different ways but this is fairly
// convenient here:
//
// prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS;
//
// To do it in branchless way when the negation of the decoded bit is in CF,
// both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired
// value can be picked with CMOV. The addition can be done using LEA without
// affecting CF.
//
// (This prob update method is a tiny bit different from LZMA SDK 23.01.
// In the LZMA SDK a single register is reserved solely for a constant to
// be used with CMOV when updating prob. That is fine since there are enough
// free registers to do so. The method used here uses one fewer register,
// which is valuable with inline assembly.)
//
// * * *
//
// In bittree decoding, each (unrolled) loop iteration decodes one bit
// and needs one prob variable. To make it faster, the prob variable of
// the iteration N+1 is loaded during iteration N. There are two possible
// prob variables to choose from for N+1. Both are loaded from memory and
// the correct one is chosen with CMOV using the same CF as is used for
// other things described above.
//
// This preloading/prefetching requires an extra register. To avoid
// useless moves from "preloaded prob register" to "current prob register",
// the macros swap between the two registers for odd and even iterations.
//
// * * *
//
// Finally, the decoded bit has to be stored in "symbol". Since the negation
// of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is,
// if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0"
// and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is
// the same as "symbol += 1".
//
// The instructions for all things are intertwined for a few reasons:
// - freeing temporary registers for new use
// - not modifying CF too early
// - instruction scheduling
//
// The first and last iterations can cheat a little. For example,
// on the first iteration "symbol" is known to start from 1 so it
// doesn't need to be read; it can even be immediately initialized
// to 2 to prepare for the second iteration of the loop.
//
// * * *
//
// a = number of the current prob variable (0 or 1)
// b = number of the next prob variable (1 or 0)
// *_only = rc_asm_y or _n to include or exclude code marked with them
#define rc_asm_bittree(a, b, first_only, middle_only, last_only) \
first_only( \
"movzw 2(%[probs_base]), %[prob" #a "]\n\t" \
"mov $2, %[symbol]\n\t" \
"movzw 4(%[probs_base]), %[prob" #b "]\n\t" \
) \
middle_only( \
/* Note the scaling of 4 instead of 2: */ \
"movzw (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \
) \
last_only( \
"add %[symbol], %[symbol]\n\t" \
) \
\
rc_asm_normalize \
rc_asm_calc("prob" #a) \
\
"cmovae %[t0], %[range]\n\t" \
\
first_only( \
"movzw 6(%[probs_base]), %[t0]\n\t" \
"cmovae %[t0], %[prob" #b "]\n\t" \
) \
middle_only( \
"movzw 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \
"lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \
"cmovae %[t0], %[prob" #b "]\n\t" \
) \
\
"lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
"cmovb %[t1], %[code]\n\t" \
"mov %[symbol], %[t1]\n\t" \
"cmovae %[prob" #a "], %[t0]\n\t" \
\
first_only( \
"sbb $-1, %[symbol]\n\t" \
) \
middle_only( \
"sbb $-1, %[symbol]\n\t" \
) \
last_only( \
"sbb %[last_sbb], %[symbol]\n\t" \
) \
\
"shr %[move_bits], %[t0]\n\t" \
"sub %[t0], %[prob" #a "]\n\t" \
/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
"mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t"
// NOTE: The order of variables in __asm__ can affect speed and code size.
#define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \
do { \
uint32_t t0; \
uint32_t t1; \
uint32_t t_prob0; \
uint32_t t_prob1; \
\
__asm__( \
asm_str \
: \
[range] "+&r"(rc.range), \
[code] "+&r"(rc.code), \
[t0] "=&r"(t0), \
[t1] "=&r"(t1), \
[prob0] "=&r"(t_prob0), \
[prob1] "=&r"(t_prob1), \
[symbol] "=&r"(symbol), \
[in_ptr] "+&r"(rc_in_ptr) \
: \
[probs_base] "r"(probs_base_var), \
[last_sbb] "n"(-1 - (final_add)), \
[top_value] "n"(RC_TOP_VALUE), \
[shift_bits] "n"(RC_SHIFT_BITS), \
[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
[bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
[move_bits] "n"(RC_MOVE_BITS) \
: \
"cc", "memory"); \
} while (0)
#if LZMA_RANGE_DECODER_CONFIG & 0x010
#undef rc_bittree3
#define rc_bittree3(probs_base_var, final_add) \
rc_asm_bittree_n(probs_base_var, final_add, \
rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \
)
#undef rc_bittree6
#define rc_bittree6(probs_base_var, final_add) \
rc_asm_bittree_n(probs_base_var, final_add, \
rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
)
#undef rc_bittree8
#define rc_bittree8(probs_base_var, final_add) \
rc_asm_bittree_n(probs_base_var, final_add, \
rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x010
// Fixed-sized reverse bittree
//
// This uses the indexing that constructs the final value in symbol directly.
// add = 1, 2, 4, 8
// dcur = -, 4, 8, 16
// dnext0 = 4, 8, 16, -
// dnext0 = 6, 12, 24, -
#define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \
first_only, middle_only, last_only) \
first_only( \
"movzw 2(%[probs_base]), %[prob" #a "]\n\t" \
"xor %[symbol], %[symbol]\n\t" \
"movzw 4(%[probs_base]), %[prob" #b "]\n\t" \
) \
middle_only( \
"movzw " #dnext0 "(%[probs_base], %q[symbol], 2), " \
"%[prob" #b "]\n\t" \
) \
\
rc_asm_normalize \
rc_asm_calc("prob" #a) \
\
"cmovae %[t0], %[range]\n\t" \
\
first_only( \
"movzw 6(%[probs_base]), %[t0]\n\t" \
"cmovae %[t0], %[prob" #b "]\n\t" \
) \
middle_only( \
"movzw " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \
"cmovae %[t0], %[prob" #b "]\n\t" \
) \
\
"lea " #add "(%q[symbol]), %[t0]\n\t" \
"cmovb %[t1], %[code]\n\t" \
middle_only( \
"mov %[symbol], %[t1]\n\t" \
) \
last_only( \
"mov %[symbol], %[t1]\n\t" \
) \
"cmovae %[t0], %[symbol]\n\t" \
"lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
"cmovae %[prob" #a "], %[t0]\n\t" \
\
"shr %[move_bits], %[t0]\n\t" \
"sub %[t0], %[prob" #a "]\n\t" \
first_only( \
"mov %w[prob" #a "], 2(%[probs_base])\n\t" \
) \
middle_only( \
"mov %w[prob" #a "], " \
#dcur "(%[probs_base], %q[t1], 2)\n\t" \
) \
last_only( \
"mov %w[prob" #a "], " \
#dcur "(%[probs_base], %q[t1], 2)\n\t" \
)
#if LZMA_RANGE_DECODER_CONFIG & 0x020
#undef rc_bittree_rev4
#define rc_bittree_rev4(probs_base_var) \
rc_asm_bittree_n(probs_base_var, 4, \
rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \
rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \
rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \
)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x020
#if LZMA_RANGE_DECODER_CONFIG & 0x040
#undef rc_bit_add_if_1
#define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \
do { \
uint32_t t0; \
uint32_t t1; \
uint32_t t2 = (value_to_add_if_1); \
uint32_t t_prob; \
uint32_t t_index; \
\
__asm__( \
"movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
"mov %[symbol], %[index]\n\t" \
\
"add %[dest], %[t2]\n\t" \
"add %[symbol], %[symbol]\n\t" \
\
rc_asm_normalize \
rc_asm_calc("prob") \
\
"cmovae %[t0], %[range]\n\t" \
"lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
"cmovb %[t1], %[code]\n\t" \
"cmovae %[prob], %[t0]\n\t" \
\
"cmovae %[t2], %[dest]\n\t" \
"sbb $-1, %[symbol]\n\t" \
\
"sar %[move_bits], %[t0]\n\t" \
"sub %[t0], %[prob]\n\t" \
"mov %w[prob], (%[probs_base], %q[index], 2)" \
: \
[range] "+&r"(rc.range), \
[code] "+&r"(rc.code), \
[t0] "=&r"(t0), \
[t1] "=&r"(t1), \
[prob] "=&r"(t_prob), \
[index] "=&r"(t_index), \
[symbol] "+&r"(symbol), \
[t2] "+&r"(t2), \
[dest] "+&r"(dest_var), \
[in_ptr] "+&r"(rc_in_ptr) \
: \
[probs_base] "r"(probs_base_var), \
[top_value] "n"(RC_TOP_VALUE), \
[shift_bits] "n"(RC_SHIFT_BITS), \
[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
[bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
[move_bits] "n"(RC_MOVE_BITS) \
: \
"cc", "memory"); \
} while (0)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x040
// Literal decoding uses a normal 8-bit bittree but literal with match byte
// is more complex in picking the probability variable from the correct
// subtree. This doesn't use preloading/prefetching of the next prob because
// there are four choices instead of two.
//
// FIXME? The first iteration starts with symbol = 1 so it could be optimized
// by a tiny amount.
#define rc_asm_matched_literal(nonlast_only) \
"add %[offset], %[symbol]\n\t" \
"and %[offset], %[match_bit]\n\t" \
"add %[match_bit], %[symbol]\n\t" \
\
"movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
\
"add %[symbol], %[symbol]\n\t" \
\
nonlast_only( \
"xor %[match_bit], %[offset]\n\t" \
"add %[match_byte], %[match_byte]\n\t" \
) \
\
rc_asm_normalize \
rc_asm_calc("prob") \
\
"cmovae %[t0], %[range]\n\t" \
"lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
"cmovb %[t1], %[code]\n\t" \
"mov %[symbol], %[t1]\n\t" \
"cmovae %[prob], %[t0]\n\t" \
\
nonlast_only( \
"cmovae %[match_bit], %[offset]\n\t" \
"mov %[match_byte], %[match_bit]\n\t" \
) \
\
"sbb $-1, %[symbol]\n\t" \
\
"shr %[move_bits], %[t0]\n\t" \
/* Undo symbol += match_bit + offset: */ \
"and $0x1FF, %[symbol]\n\t" \
"sub %[t0], %[prob]\n\t" \
\
/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
"mov %w[prob], (%[probs_base], %q[t1], 1)\n\t"
#if LZMA_RANGE_DECODER_CONFIG & 0x080
#undef rc_matched_literal
#define rc_matched_literal(probs_base_var, match_byte_value) \
do { \
uint32_t t0; \
uint32_t t1; \
uint32_t t_prob; \
uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \
uint32_t t_match_bit = t_match_byte; \
uint32_t t_offset = 0x100; \
symbol = 1; \
\
__asm__( \
rc_asm_matched_literal(rc_asm_y) \
rc_asm_matched_literal(rc_asm_y) \
rc_asm_matched_literal(rc_asm_y) \
rc_asm_matched_literal(rc_asm_y) \
rc_asm_matched_literal(rc_asm_y) \
rc_asm_matched_literal(rc_asm_y) \
rc_asm_matched_literal(rc_asm_y) \
rc_asm_matched_literal(rc_asm_n) \
: \
[range] "+&r"(rc.range), \
[code] "+&r"(rc.code), \
[t0] "=&r"(t0), \
[t1] "=&r"(t1), \
[prob] "=&r"(t_prob), \
[match_bit] "+&r"(t_match_bit), \
[symbol] "+&r"(symbol), \
[match_byte] "+&r"(t_match_byte), \
[offset] "+&r"(t_offset), \
[in_ptr] "+&r"(rc_in_ptr) \
: \
[probs_base] "r"(probs_base_var), \
[top_value] "n"(RC_TOP_VALUE), \
[shift_bits] "n"(RC_SHIFT_BITS), \
[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
[bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
[move_bits] "n"(RC_MOVE_BITS) \
: \
"cc", "memory"); \
} while (0)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x080
// Doing the loop in asm instead of C seems to help a little.
#if LZMA_RANGE_DECODER_CONFIG & 0x100
#undef rc_direct
#define rc_direct(dest_var, count_var) \
do { \
uint32_t t0; \
uint32_t t1; \
\
__asm__( \
"2:\n\t" \
"add %[dest], %[dest]\n\t" \
"lea 1(%q[dest]), %[t1]\n\t" \
\
rc_asm_normalize \
\
"shr $1, %[range]\n\t" \
"mov %[code], %[t0]\n\t" \
"sub %[range], %[code]\n\t" \
"cmovns %[t1], %[dest]\n\t" \
"cmovs %[t0], %[code]\n\t" \
"dec %[count]\n\t" \
"jnz 2b\n\t" \
: \
[range] "+&r"(rc.range), \
[code] "+&r"(rc.code), \
[t0] "=&r"(t0), \
[t1] "=&r"(t1), \
[dest] "+&r"(dest_var), \
[count] "+&r"(count_var), \
[in_ptr] "+&r"(rc_in_ptr) \
: \
[top_value] "n"(RC_TOP_VALUE), \
[shift_bits] "n"(RC_SHIFT_BITS) \
: \
"cc", "memory"); \
} while (0)
#endif // LZMA_RANGE_DECODER_CONFIG & 0x100
#endif // x86_64
#endif
|