aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/utils/TableGen/IntrinsicEmitter.cpp
blob: 946a58417594e4b3fad3293d09b562e4e59218ec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits information about intrinsic functions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
using namespace llvm;

cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
cl::opt<std::string>
    IntrinsicPrefix("intrinsic-prefix",
                    cl::desc("Generate intrinsics with this target prefix"),
                    cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));

namespace {
class IntrinsicEmitter {
  RecordKeeper &Records;

public:
  IntrinsicEmitter(RecordKeeper &R) : Records(R) {}

  void run(raw_ostream &OS, bool Enums);

  void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
                                raw_ostream &OS);
  void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
                                    raw_ostream &OS);
  void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
  void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsClang,
                                 raw_ostream &OS);
};
} // End anonymous namespace

//===----------------------------------------------------------------------===//
// IntrinsicEmitter Implementation
//===----------------------------------------------------------------------===//

void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
  emitSourceFileHeader("Intrinsic Function Source Fragment", OS);

  CodeGenIntrinsicTable Ints(Records);

  if (Enums) {
    // Emit the enum information.
    EmitEnumInfo(Ints, OS);
  } else {
    // Emit the target metadata.
    EmitTargetInfo(Ints, OS);

    // Emit the intrinsic ID -> name table.
    EmitIntrinsicToNameTable(Ints, OS);

    // Emit the intrinsic ID -> overload table.
    EmitIntrinsicToOverloadTable(Ints, OS);

    // Emit the intrinsic declaration generator.
    EmitGenerator(Ints, OS);

    // Emit the intrinsic parameter attributes.
    EmitAttributes(Ints, OS);

    // Emit code to translate GCC builtins into LLVM intrinsics.
    EmitIntrinsicToBuiltinMap(Ints, true, OS);

    // Emit code to translate MS builtins into LLVM intrinsics.
    EmitIntrinsicToBuiltinMap(Ints, false, OS);
  }
}

void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
                                    raw_ostream &OS) {
  // Find the TargetSet for which to generate enums. There will be an initial
  // set with an empty target prefix which will include target independent
  // intrinsics like dbg.value.
  const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
  for (const auto &Target : Ints.Targets) {
    if (Target.Name == IntrinsicPrefix) {
      Set = &Target;
      break;
    }
  }
  if (!Set) {
    std::vector<std::string> KnownTargets;
    for (const auto &Target : Ints.Targets)
      if (!Target.Name.empty())
        KnownTargets.push_back(Target.Name);
    PrintFatalError("tried to generate intrinsics for unknown target " +
                    IntrinsicPrefix +
                    "\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
  }

  // Generate a complete header for target specific intrinsics.
  if (!IntrinsicPrefix.empty()) {
    std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
    OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
    OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
    OS << "namespace llvm {\n";
    OS << "namespace Intrinsic {\n";
    OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
  }

  OS << "// Enum values for intrinsics\n";
  for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
    OS << "    " << Ints[i].EnumName;

    // Assign a value to the first intrinsic in this target set so that all
    // intrinsic ids are distinct.
    if (i == Set->Offset)
      OS << " = " << (Set->Offset + 1);

    OS << ", ";
    if (Ints[i].EnumName.size() < 40)
      OS.indent(40 - Ints[i].EnumName.size());
    OS << " // " << Ints[i].Name << "\n";
  }

  // Emit num_intrinsics into the target neutral enum.
  if (IntrinsicPrefix.empty()) {
    OS << "    num_intrinsics = " << (Ints.size() + 1) << "\n";
  } else {
    OS << "}; // enum\n";
    OS << "} // namespace Intrinsic\n";
    OS << "} // namespace llvm\n\n";
    OS << "#endif\n";
  }
}

void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
                                    raw_ostream &OS) {
  OS << "// Target mapping\n";
  OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
  OS << "struct IntrinsicTargetInfo {\n"
     << "  llvm::StringLiteral Name;\n"
     << "  size_t Offset;\n"
     << "  size_t Count;\n"
     << "};\n";
  OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
  for (auto Target : Ints.Targets)
    OS << "  {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
       << ", " << Target.Count << "},\n";
  OS << "};\n";
  OS << "#endif\n\n";
}

void IntrinsicEmitter::EmitIntrinsicToNameTable(
    const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
  OS << "// Intrinsic ID to name table\n";
  OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
  OS << "  // Note that entry #0 is the invalid intrinsic!\n";
  for (unsigned i = 0, e = Ints.size(); i != e; ++i)
    OS << "  \"" << Ints[i].Name << "\",\n";
  OS << "#endif\n\n";
}

void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
    const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
  OS << "// Intrinsic ID to overload bitset\n";
  OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
  OS << "static const uint8_t OTable[] = {\n";
  OS << "  0";
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
    if ((i+1)%8 == 0)
      OS << ",\n  0";
    if (Ints[i].isOverloaded)
      OS << " | (1<<" << (i+1)%8 << ')';
  }
  OS << "\n};\n\n";
  // OTable contains a true bit at the position if the intrinsic is overloaded.
  OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
  OS << "#endif\n\n";
}


// NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
enum IIT_Info {
  // Common values should be encoded with 0-15.
  IIT_Done = 0,
  IIT_I1 = 1,
  IIT_I8 = 2,
  IIT_I16 = 3,
  IIT_I32 = 4,
  IIT_I64 = 5,
  IIT_F16 = 6,
  IIT_F32 = 7,
  IIT_F64 = 8,
  IIT_V2 = 9,
  IIT_V4 = 10,
  IIT_V8 = 11,
  IIT_V16 = 12,
  IIT_V32 = 13,
  IIT_PTR = 14,
  IIT_ARG = 15,

  // Values from 16+ are only encodable with the inefficient encoding.
  IIT_V64 = 16,
  IIT_MMX = 17,
  IIT_TOKEN = 18,
  IIT_METADATA = 19,
  IIT_EMPTYSTRUCT = 20,
  IIT_STRUCT2 = 21,
  IIT_STRUCT3 = 22,
  IIT_STRUCT4 = 23,
  IIT_STRUCT5 = 24,
  IIT_EXTEND_ARG = 25,
  IIT_TRUNC_ARG = 26,
  IIT_ANYPTR = 27,
  IIT_V1 = 28,
  IIT_VARARG = 29,
  IIT_HALF_VEC_ARG = 30,
  IIT_SAME_VEC_WIDTH_ARG = 31,
  IIT_PTR_TO_ARG = 32,
  IIT_PTR_TO_ELT = 33,
  IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
  IIT_I128 = 35,
  IIT_V512 = 36,
  IIT_V1024 = 37,
  IIT_STRUCT6 = 38,
  IIT_STRUCT7 = 39,
  IIT_STRUCT8 = 40,
  IIT_F128 = 41,
  IIT_VEC_ELEMENT = 42,
  IIT_SCALABLE_VEC = 43,
  IIT_SUBDIVIDE2_ARG = 44,
  IIT_SUBDIVIDE4_ARG = 45,
  IIT_VEC_OF_BITCASTS_TO_INT = 46,
  IIT_V128 = 47,
  IIT_BF16 = 48,
  IIT_STRUCT9 = 49,
  IIT_V256 = 50,
  IIT_AMX = 51,
  IIT_PPCF128 = 52,
  IIT_V3 = 53,
  IIT_EXTERNREF = 54,
  IIT_FUNCREF = 55,
  IIT_ANYPTR_TO_ELT = 56,
  IIT_I2 = 57,
  IIT_I4 = 58,
};

static void EncodeFixedValueType(MVT::SimpleValueType VT,
                                 std::vector<unsigned char> &Sig) {
  // clang-format off
  if (MVT(VT).isInteger()) {
    unsigned BitWidth = MVT(VT).getFixedSizeInBits();
    switch (BitWidth) {
    default: PrintFatalError("unhandled integer type width in intrinsic!");
    case 1: return Sig.push_back(IIT_I1);
    case 2: return Sig.push_back(IIT_I2);
    case 4: return Sig.push_back(IIT_I4);
    case 8: return Sig.push_back(IIT_I8);
    case 16: return Sig.push_back(IIT_I16);
    case 32: return Sig.push_back(IIT_I32);
    case 64: return Sig.push_back(IIT_I64);
    case 128: return Sig.push_back(IIT_I128);
    }
  }

  switch (VT) {
  default: PrintFatalError("unhandled MVT in intrinsic!");
  case MVT::f16: return Sig.push_back(IIT_F16);
  case MVT::bf16: return Sig.push_back(IIT_BF16);
  case MVT::f32: return Sig.push_back(IIT_F32);
  case MVT::f64: return Sig.push_back(IIT_F64);
  case MVT::f128: return Sig.push_back(IIT_F128);
  case MVT::ppcf128: return Sig.push_back(IIT_PPCF128);
  case MVT::token: return Sig.push_back(IIT_TOKEN);
  case MVT::Metadata: return Sig.push_back(IIT_METADATA);
  case MVT::x86mmx: return Sig.push_back(IIT_MMX);
  case MVT::x86amx: return Sig.push_back(IIT_AMX);
  // MVT::OtherVT is used to mean the empty struct type here.
  case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
  // MVT::isVoid is used to represent varargs here.
  case MVT::isVoid: return Sig.push_back(IIT_VARARG);
  case MVT::externref:
    return Sig.push_back(IIT_EXTERNREF);
  case MVT::funcref:
    return Sig.push_back(IIT_FUNCREF);
  }
  // clang-format on
}

#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
#endif

static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
                            unsigned &NextArgCode,
                            std::vector<unsigned char> &Sig,
                            ArrayRef<unsigned char> Mapping) {

  if (R->isSubClassOf("LLVMMatchType")) {
    unsigned Number = Mapping[R->getValueAsInt("Number")];
    assert(Number < ArgCodes.size() && "Invalid matching number!");
    if (R->isSubClassOf("LLVMExtendedType"))
      Sig.push_back(IIT_EXTEND_ARG);
    else if (R->isSubClassOf("LLVMTruncatedType"))
      Sig.push_back(IIT_TRUNC_ARG);
    else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
      Sig.push_back(IIT_HALF_VEC_ARG);
    else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
      Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
      Sig.push_back((Number << 3) | ArgCodes[Number]);
      MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
      EncodeFixedValueType(VT, Sig);
      return;
    }
    else if (R->isSubClassOf("LLVMPointerTo"))
      Sig.push_back(IIT_PTR_TO_ARG);
    else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
      Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
      // Encode overloaded ArgNo
      Sig.push_back(NextArgCode++);
      // Encode LLVMMatchType<Number> ArgNo
      Sig.push_back(Number);
      return;
    } else if (R->isSubClassOf("LLVMAnyPointerToElt")) {
      Sig.push_back(IIT_ANYPTR_TO_ELT);
      // Encode overloaded ArgNo
      Sig.push_back(NextArgCode++);
      // Encode LLVMMatchType<Number> ArgNo
      Sig.push_back(Number);
      return;
    } else if (R->isSubClassOf("LLVMPointerToElt"))
      Sig.push_back(IIT_PTR_TO_ELT);
    else if (R->isSubClassOf("LLVMVectorElementType"))
      Sig.push_back(IIT_VEC_ELEMENT);
    else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
      Sig.push_back(IIT_SUBDIVIDE2_ARG);
    else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
      Sig.push_back(IIT_SUBDIVIDE4_ARG);
    else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
      Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
    else
      Sig.push_back(IIT_ARG);
    return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
  }

  MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));

  unsigned Tmp = 0;
  switch (VT) {
  default: break;
  case MVT::iPTRAny: ++Tmp; [[fallthrough]];
  case MVT::vAny: ++Tmp;    [[fallthrough]];
  case MVT::fAny: ++Tmp;    [[fallthrough]];
  case MVT::iAny: ++Tmp;    [[fallthrough]];
  case MVT::Any: {
    // If this is an "any" valuetype, then the type is the type of the next
    // type in the list specified to getIntrinsic().
    Sig.push_back(IIT_ARG);

    // Figure out what arg # this is consuming, and remember what kind it was.
    assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
           "Invalid or no ArgCode associated with overloaded VT!");
    unsigned ArgNo = NextArgCode++;

    // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
    return Sig.push_back((ArgNo << 3) | Tmp);
  }

  case MVT::iPTR: {
    unsigned AddrSpace = 0;
    if (R->isSubClassOf("LLVMQualPointerType")) {
      AddrSpace = R->getValueAsInt("AddrSpace");
      assert(AddrSpace < 256 && "Address space exceeds 255");
    }
    if (AddrSpace) {
      Sig.push_back(IIT_ANYPTR);
      Sig.push_back(AddrSpace);
    } else {
      Sig.push_back(IIT_PTR);
    }
    return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
                           Mapping);
  }
  }

  if (MVT(VT).isVector()) {
    MVT VVT = VT;
    if (VVT.isScalableVector())
      Sig.push_back(IIT_SCALABLE_VEC);
    switch (VVT.getVectorMinNumElements()) {
    default: PrintFatalError("unhandled vector type width in intrinsic!");
    case 1: Sig.push_back(IIT_V1); break;
    case 2: Sig.push_back(IIT_V2); break;
    case 3: Sig.push_back(IIT_V3); break;
    case 4: Sig.push_back(IIT_V4); break;
    case 8: Sig.push_back(IIT_V8); break;
    case 16: Sig.push_back(IIT_V16); break;
    case 32: Sig.push_back(IIT_V32); break;
    case 64: Sig.push_back(IIT_V64); break;
    case 128: Sig.push_back(IIT_V128); break;
    case 256: Sig.push_back(IIT_V256); break;
    case 512: Sig.push_back(IIT_V512); break;
    case 1024: Sig.push_back(IIT_V1024); break;
    }

    return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
  }

  EncodeFixedValueType(VT, Sig);
}

static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
                           unsigned int &NumInserted,
                           SmallVectorImpl<unsigned char> &Mapping) {
  if (R->isSubClassOf("LLVMMatchType")) {
    if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
      ArgCodes.push_back(3 /*vAny*/);
      ++NumInserted;
    } else if (R->isSubClassOf("LLVMAnyPointerToElt")) {
      ArgCodes.push_back(4 /*iPTRAny*/);
      ++NumInserted;
    }
    return;
  }

  unsigned Tmp = 0;
  switch (getValueType(R->getValueAsDef("VT"))) {
  default: break;
  case MVT::iPTR:
    UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
    break;
  case MVT::iPTRAny:
    ++Tmp;
    [[fallthrough]];
  case MVT::vAny:
    ++Tmp;
    [[fallthrough]];
  case MVT::fAny:
    ++Tmp;
    [[fallthrough]];
  case MVT::iAny:
    ++Tmp;
    [[fallthrough]];
  case MVT::Any:
    unsigned OriginalIdx = ArgCodes.size() - NumInserted;
    assert(OriginalIdx >= Mapping.size());
    Mapping.resize(OriginalIdx+1);
    Mapping[OriginalIdx] = ArgCodes.size();
    ArgCodes.push_back(Tmp);
    break;
  }
}

#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("",on)
#endif

/// ComputeFixedEncoding - If we can encode the type signature for this
/// intrinsic into 32 bits, return it.  If not, return ~0U.
static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
                                 std::vector<unsigned char> &TypeSig) {
  std::vector<unsigned char> ArgCodes;

  // Add codes for any overloaded result VTs.
  unsigned int NumInserted = 0;
  SmallVector<unsigned char, 8> ArgMapping;
  for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
    UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);

  // Add codes for any overloaded operand VTs.
  for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
    UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);

  unsigned NextArgCode = 0;
  if (Int.IS.RetVTs.empty())
    TypeSig.push_back(IIT_Done);
  else if (Int.IS.RetVTs.size() == 1 &&
           Int.IS.RetVTs[0] == MVT::isVoid)
    TypeSig.push_back(IIT_Done);
  else {
    switch (Int.IS.RetVTs.size()) {
      case 1: break;
      case 2: TypeSig.push_back(IIT_STRUCT2); break;
      case 3: TypeSig.push_back(IIT_STRUCT3); break;
      case 4: TypeSig.push_back(IIT_STRUCT4); break;
      case 5: TypeSig.push_back(IIT_STRUCT5); break;
      case 6: TypeSig.push_back(IIT_STRUCT6); break;
      case 7: TypeSig.push_back(IIT_STRUCT7); break;
      case 8: TypeSig.push_back(IIT_STRUCT8); break;
      case 9: TypeSig.push_back(IIT_STRUCT9); break;
      default: llvm_unreachable("Unhandled case in struct");
    }

    for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
      EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
                      ArgMapping);
  }

  for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
    EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
                    ArgMapping);
}

static void printIITEntry(raw_ostream &OS, unsigned char X) {
  OS << (unsigned)X;
}

void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
                                     raw_ostream &OS) {
  // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
  // capture it in this vector, otherwise store a ~0U.
  std::vector<unsigned> FixedEncodings;

  SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;

  std::vector<unsigned char> TypeSig;

  // Compute the unique argument type info.
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    // Get the signature for the intrinsic.
    TypeSig.clear();
    ComputeFixedEncoding(Ints[i], TypeSig);

    // Check to see if we can encode it into a 32-bit word.  We can only encode
    // 8 nibbles into a 32-bit word.
    if (TypeSig.size() <= 8) {
      bool Failed = false;
      unsigned Result = 0;
      for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
        // If we had an unencodable argument, bail out.
        if (TypeSig[i] > 15) {
          Failed = true;
          break;
        }
        Result = (Result << 4) | TypeSig[e-i-1];
      }

      // If this could be encoded into a 31-bit word, return it.
      if (!Failed && (Result >> 31) == 0) {
        FixedEncodings.push_back(Result);
        continue;
      }
    }

    // Otherwise, we're going to unique the sequence into the
    // LongEncodingTable, and use its offset in the 32-bit table instead.
    LongEncodingTable.add(TypeSig);

    // This is a placehold that we'll replace after the table is laid out.
    FixedEncodings.push_back(~0U);
  }

  LongEncodingTable.layout();

  OS << "// Global intrinsic function declaration type table.\n";
  OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";

  OS << "static const unsigned IIT_Table[] = {\n  ";

  for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
    if ((i & 7) == 7)
      OS << "\n  ";

    // If the entry fit in the table, just emit it.
    if (FixedEncodings[i] != ~0U) {
      OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
      continue;
    }

    TypeSig.clear();
    ComputeFixedEncoding(Ints[i], TypeSig);


    // Otherwise, emit the offset into the long encoding table.  We emit it this
    // way so that it is easier to read the offset in the .def file.
    OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
  }

  OS << "0\n};\n\n";

  // Emit the shared table of register lists.
  OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
  if (!LongEncodingTable.empty())
    LongEncodingTable.emit(OS, printIITEntry);
  OS << "  255\n};\n\n";

  OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
}

namespace {
std::optional<bool> compareFnAttributes(const CodeGenIntrinsic *L,
                                        const CodeGenIntrinsic *R) {
  // Sort throwing intrinsics after non-throwing intrinsics.
  if (L->canThrow != R->canThrow)
    return R->canThrow;

  if (L->isNoDuplicate != R->isNoDuplicate)
    return R->isNoDuplicate;

  if (L->isNoMerge != R->isNoMerge)
    return R->isNoMerge;

  if (L->isNoReturn != R->isNoReturn)
    return R->isNoReturn;

  if (L->isNoCallback != R->isNoCallback)
    return R->isNoCallback;

  if (L->isNoSync != R->isNoSync)
    return R->isNoSync;

  if (L->isNoFree != R->isNoFree)
    return R->isNoFree;

  if (L->isWillReturn != R->isWillReturn)
    return R->isWillReturn;

  if (L->isCold != R->isCold)
    return R->isCold;

  if (L->isConvergent != R->isConvergent)
    return R->isConvergent;

  if (L->isSpeculatable != R->isSpeculatable)
    return R->isSpeculatable;

  if (L->hasSideEffects != R->hasSideEffects)
    return R->hasSideEffects;

  // Try to order by readonly/readnone attribute.
  uint32_t LK = L->ME.toIntValue();
  uint32_t RK = R->ME.toIntValue();
  if (LK != RK) return (LK > RK);

  return std::nullopt;
}

struct FnAttributeComparator {
  bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
    return compareFnAttributes(L, R).value_or(false);
  }
};

struct AttributeComparator {
  bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
    if (std::optional<bool> Res = compareFnAttributes(L, R))
      return *Res;

    // Order by argument attributes.
    // This is reliable because each side is already sorted internally.
    return (L->ArgumentAttributes < R->ArgumentAttributes);
  }
};
} // End anonymous namespace

/// EmitAttributes - This emits the Intrinsic::getAttributes method.
void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
                                      raw_ostream &OS) {
  OS << "// Add parameter attributes that are not common to all intrinsics.\n";
  OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";

  // Compute unique argument attribute sets.
  std::map<SmallVector<CodeGenIntrinsic::ArgAttribute, 0>, unsigned>
      UniqArgAttributes;
  OS << "static AttributeSet getIntrinsicArgAttributeSet("
     << "LLVMContext &C, unsigned ID) {\n"
     << "  switch (ID) {\n"
     << "  default: llvm_unreachable(\"Invalid attribute set number\");\n";
  for (const CodeGenIntrinsic &Int : Ints) {
    for (auto &Attrs : Int.ArgumentAttributes) {
      if (Attrs.empty())
        continue;

      unsigned ID = UniqArgAttributes.size();
      if (!UniqArgAttributes.try_emplace(Attrs, ID).second)
        continue;

      assert(is_sorted(Attrs) &&
             "Argument attributes are not sorted");

      OS << "  case " << ID << ":\n";
      OS << "    return AttributeSet::get(C, {\n";
      for (const CodeGenIntrinsic::ArgAttribute &Attr : Attrs) {
        switch (Attr.Kind) {
        case CodeGenIntrinsic::NoCapture:
          OS << "      Attribute::get(C, Attribute::NoCapture),\n";
          break;
        case CodeGenIntrinsic::NoAlias:
          OS << "      Attribute::get(C, Attribute::NoAlias),\n";
          break;
        case CodeGenIntrinsic::NoUndef:
          OS << "      Attribute::get(C, Attribute::NoUndef),\n";
          break;
        case CodeGenIntrinsic::NonNull:
          OS << "      Attribute::get(C, Attribute::NonNull),\n";
          break;
        case CodeGenIntrinsic::Returned:
          OS << "      Attribute::get(C, Attribute::Returned),\n";
          break;
        case CodeGenIntrinsic::ReadOnly:
          OS << "      Attribute::get(C, Attribute::ReadOnly),\n";
          break;
        case CodeGenIntrinsic::WriteOnly:
          OS << "      Attribute::get(C, Attribute::WriteOnly),\n";
          break;
        case CodeGenIntrinsic::ReadNone:
          OS << "      Attribute::get(C, Attribute::ReadNone),\n";
          break;
        case CodeGenIntrinsic::ImmArg:
          OS << "      Attribute::get(C, Attribute::ImmArg),\n";
          break;
        case CodeGenIntrinsic::Alignment:
          OS << "      Attribute::get(C, Attribute::Alignment, "
             << Attr.Value << "),\n";
          break;
        }
      }
      OS << "    });\n";
    }
  }
  OS << "  }\n";
  OS << "}\n\n";

  // Compute unique function attribute sets.
  std::map<const CodeGenIntrinsic*, unsigned, FnAttributeComparator>
      UniqFnAttributes;
  OS << "static AttributeSet getIntrinsicFnAttributeSet("
     << "LLVMContext &C, unsigned ID) {\n"
     << "  switch (ID) {\n"
     << "  default: llvm_unreachable(\"Invalid attribute set number\");\n";
  for (const CodeGenIntrinsic &Intrinsic : Ints) {
    unsigned ID = UniqFnAttributes.size();
    if (!UniqFnAttributes.try_emplace(&Intrinsic, ID).second)
      continue;

    OS << "  case " << ID << ":\n"
       << "    return AttributeSet::get(C, {\n";
    if (!Intrinsic.canThrow)
      OS << "      Attribute::get(C, Attribute::NoUnwind),\n";
    if (Intrinsic.isNoReturn)
      OS << "      Attribute::get(C, Attribute::NoReturn),\n";
    if (Intrinsic.isNoCallback)
      OS << "      Attribute::get(C, Attribute::NoCallback),\n";
    if (Intrinsic.isNoSync)
      OS << "      Attribute::get(C, Attribute::NoSync),\n";
    if (Intrinsic.isNoFree)
      OS << "      Attribute::get(C, Attribute::NoFree),\n";
    if (Intrinsic.isWillReturn)
      OS << "      Attribute::get(C, Attribute::WillReturn),\n";
    if (Intrinsic.isCold)
      OS << "      Attribute::get(C, Attribute::Cold),\n";
    if (Intrinsic.isNoDuplicate)
      OS << "      Attribute::get(C, Attribute::NoDuplicate),\n";
    if (Intrinsic.isNoMerge)
      OS << "      Attribute::get(C, Attribute::NoMerge),\n";
    if (Intrinsic.isConvergent)
      OS << "      Attribute::get(C, Attribute::Convergent),\n";
    if (Intrinsic.isSpeculatable)
      OS << "      Attribute::get(C, Attribute::Speculatable),\n";

    MemoryEffects ME = Intrinsic.ME;
    // TODO: IntrHasSideEffects should affect not only readnone intrinsics.
    if (ME.doesNotAccessMemory() && Intrinsic.hasSideEffects)
      ME = MemoryEffects::unknown();
    if (ME != MemoryEffects::unknown()) {
      OS << "      Attribute::getWithMemoryEffects(C, "
         << "MemoryEffects::createFromIntValue(" << ME.toIntValue() << ")),\n";
    }
    OS << "    });\n";
  }
  OS << "  }\n";
  OS << "}\n\n";
  OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";

  // Compute the maximum number of attribute arguments and the map
  typedef std::map<const CodeGenIntrinsic*, unsigned,
                   AttributeComparator> UniqAttrMapTy;
  UniqAttrMapTy UniqAttributes;
  unsigned maxArgAttrs = 0;
  unsigned AttrNum = 0;
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    const CodeGenIntrinsic &intrinsic = Ints[i];
    maxArgAttrs =
      std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
    unsigned &N = UniqAttributes[&intrinsic];
    if (N) continue;
    N = ++AttrNum;
    assert(N < 65536 && "Too many unique attributes for table!");
  }

  // Emit an array of AttributeList.  Most intrinsics will have at least one
  // entry, for the function itself (index ~1), which is usually nounwind.
  OS << "  static const uint16_t IntrinsicsToAttributesMap[] = {\n";

  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    const CodeGenIntrinsic &intrinsic = Ints[i];

    OS << "    " << UniqAttributes[&intrinsic] << ", // "
       << intrinsic.Name << "\n";
  }
  OS << "  };\n\n";

  OS << "  std::pair<unsigned, AttributeSet> AS[" << maxArgAttrs + 1 << "];\n";
  OS << "  unsigned NumAttrs = 0;\n";
  OS << "  if (id != 0) {\n";
  OS << "    switch(IntrinsicsToAttributesMap[id - 1]) {\n";
  OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
  for (auto UniqAttribute : UniqAttributes) {
    OS << "    case " << UniqAttribute.second << ": {\n";

    const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first);

    // Keep track of the number of attributes we're writing out.
    unsigned numAttrs = 0;

    for (const auto &[AttrIdx, Attrs] :
         enumerate(Intrinsic.ArgumentAttributes)) {
      if (Attrs.empty())
        continue;

      unsigned ID = UniqArgAttributes.find(Attrs)->second;
      OS << "      AS[" << numAttrs++ << "] = {" << AttrIdx
         << ", getIntrinsicArgAttributeSet(C, " << ID << ")};\n";
    }

    if (!Intrinsic.canThrow ||
        (Intrinsic.ME != MemoryEffects::unknown() &&
         !Intrinsic.hasSideEffects) ||
        Intrinsic.isNoReturn || Intrinsic.isNoCallback || Intrinsic.isNoSync ||
        Intrinsic.isNoFree || Intrinsic.isWillReturn || Intrinsic.isCold ||
        Intrinsic.isNoDuplicate || Intrinsic.isNoMerge ||
        Intrinsic.isConvergent || Intrinsic.isSpeculatable) {
      unsigned ID = UniqFnAttributes.find(&Intrinsic)->second;
      OS << "      AS[" << numAttrs++ << "] = {AttributeList::FunctionIndex, "
         << "getIntrinsicFnAttributeSet(C, " << ID << ")};\n";
    }

    if (numAttrs) {
      OS << "      NumAttrs = " << numAttrs << ";\n";
      OS << "      break;\n";
      OS << "    }\n";
    } else {
      OS << "      return AttributeList();\n";
      OS << "    }\n";
    }
  }

  OS << "    }\n";
  OS << "  }\n";
  OS << "  return AttributeList::get(C, ArrayRef(AS, NumAttrs));\n";
  OS << "}\n";
  OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
}

void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
    const CodeGenIntrinsicTable &Ints, bool IsClang, raw_ostream &OS) {
  StringRef CompilerName = (IsClang ? "Clang" : "MS");
  StringRef UpperCompilerName = (IsClang ? "CLANG" : "MS");
  typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
  BIMTy BuiltinMap;
  StringToOffsetTable Table;
  for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    const std::string &BuiltinName =
        IsClang ? Ints[i].ClangBuiltinName : Ints[i].MSBuiltinName;
    if (!BuiltinName.empty()) {
      // Get the map for this target prefix.
      std::map<std::string, std::string> &BIM =
          BuiltinMap[Ints[i].TargetPrefix];

      if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
        PrintFatalError(Ints[i].TheDef->getLoc(),
                        "Intrinsic '" + Ints[i].TheDef->getName() +
                            "': duplicate " + CompilerName + " builtin name!");
      Table.GetOrAddStringOffset(BuiltinName);
    }
  }

  OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
  OS << "// This is used by the C front-end.  The builtin name is passed\n";
  OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
  OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
  OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << UpperCompilerName << "_BUILTIN\n";

  OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
     << "Builtin(const char "
     << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";

  if (Table.Empty()) {
    OS << "  return Intrinsic::not_intrinsic;\n";
    OS << "}\n";
    OS << "#endif\n\n";
    return;
  }

  OS << "  static const char BuiltinNames[] = {\n";
  Table.EmitCharArray(OS);
  OS << "  };\n\n";

  OS << "  struct BuiltinEntry {\n";
  OS << "    Intrinsic::ID IntrinID;\n";
  OS << "    unsigned StrTabOffset;\n";
  OS << "    const char *getName() const {\n";
  OS << "      return &BuiltinNames[StrTabOffset];\n";
  OS << "    }\n";
  OS << "    bool operator<(StringRef RHS) const {\n";
  OS << "      return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
  OS << "    }\n";
  OS << "  };\n";

  OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";

  // Note: this could emit significantly better code if we cared.
  for (auto &I : BuiltinMap) {
    OS << "  ";
    if (!I.first.empty())
      OS << "if (TargetPrefix == \"" << I.first << "\") ";
    else
      OS << "/* Target Independent Builtins */ ";
    OS << "{\n";

    // Emit the comparisons for this target prefix.
    OS << "    static const BuiltinEntry " << I.first << "Names[] = {\n";
    for (const auto &P : I.second) {
      OS << "      {Intrinsic::" << P.second << ", "
         << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
    }
    OS << "    };\n";
    OS << "    auto I = std::lower_bound(std::begin(" << I.first << "Names),\n";
    OS << "                              std::end(" << I.first << "Names),\n";
    OS << "                              BuiltinNameStr);\n";
    OS << "    if (I != std::end(" << I.first << "Names) &&\n";
    OS << "        I->getName() == BuiltinNameStr)\n";
    OS << "      return I->IntrinID;\n";
    OS << "  }\n";
  }
  OS << "  return ";
  OS << "Intrinsic::not_intrinsic;\n";
  OS << "}\n";
  OS << "#endif\n\n";
}

void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
  IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
}

void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
  IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
}