aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/polly/lib/Transform/ZoneAlgo.cpp
blob: 4c86891d2cf7de52a22ee2f42f7caeacb7ec8b82 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Derive information about array elements between statements ("Zones").
//
// The algorithms here work on the scatter space - the image space of the
// schedule returned by Scop::getSchedule(). We call an element in that space a
// "timepoint". Timepoints are lexicographically ordered such that we can
// defined ranges in the scatter space. We use two flavors of such ranges:
// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
// space and is directly stored as isl_set.
//
// Zones are used to describe the space between timepoints as open sets, i.e.
// they do not contain the extrema. Using isl rational sets to express these
// would be overkill. We also cannot store them as the integer timepoints they
// contain; the (nonempty) zone between 1 and 2 would be empty and
// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
// Instead, we store the "half-open" integer extrema, including the lower bound,
// but excluding the upper bound. Examples:
//
// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
//   integer points 1 and 2, but not 0 or 3)
//
// * { [1] } represents the zone ]0,1[
//
// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
//
// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
// speaking the integer points never belong to the zone. However, depending an
// the interpretation, one might want to include them. Part of the
// interpretation may not be known when the zone is constructed.
//
// Reads are assumed to always take place before writes, hence we can think of
// reads taking place at the beginning of a timepoint and writes at the end.
//
// Let's assume that the zone represents the lifetime of a variable. That is,
// the zone begins with a write that defines the value during its lifetime and
// ends with the last read of that value. In the following we consider whether a
// read/write at the beginning/ending of the lifetime zone should be within the
// zone or outside of it.
//
// * A read at the timepoint that starts the live-range loads the previous
//   value. Hence, exclude the timepoint starting the zone.
//
// * A write at the timepoint that starts the live-range is not defined whether
//   it occurs before or after the write that starts the lifetime. We do not
//   allow this situation to occur. Hence, we include the timepoint starting the
//   zone to determine whether they are conflicting.
//
// * A read at the timepoint that ends the live-range reads the same variable.
//   We include the timepoint at the end of the zone to include that read into
//   the live-range. Doing otherwise would mean that the two reads access
//   different values, which would mean that the value they read are both alive
//   at the same time but occupy the same variable.
//
// * A write at the timepoint that ends the live-range starts a new live-range.
//   It must not be included in the live-range of the previous definition.
//
// All combinations of reads and writes at the endpoints are possible, but most
// of the time only the write->read (for instance, a live-range from definition
// to last use) and read->write (for instance, an unused range from last use to
// overwrite) and combinations are interesting (half-open ranges). write->write
// zones might be useful as well in some context to represent
// output-dependencies.
//
// @see convertZoneToTimepoints
//
//
// The code makes use of maps and sets in many different spaces. To not loose
// track in which space a set or map is expected to be in, variables holding an
// isl reference are usually annotated in the comments. They roughly follow isl
// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
// meaning as follows:
//
// * Space[] - An unspecified tuple. Used for function parameters such that the
//             function caller can use it for anything they like.
//
// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
//     isl_id_get_name: Stmt_<NameOfBasicBlock>
//     isl_id_get_user: Pointer to ScopStmt
//
// * Element[] - An array element as in the range part of
//               MemoryAccess::getAccessRelation()
//     isl_id_get_name: MemRef_<NameOfArrayVariable>
//     isl_id_get_user: Pointer to ScopArrayInfo
//
// * Scatter[] - Scatter space or space of timepoints
//     Has no tuple id
//
// * Zone[] - Range between timepoints as described above
//     Has no tuple id
//
// * ValInst[] - An llvm::Value as defined at a specific timepoint.
//
//     A ValInst[] itself can be structured as one of:
//
//     * [] - An unknown value.
//         Always zero dimensions
//         Has no tuple id
//
//     * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
//                 runtime content does not depend on the timepoint.
//         Always zero dimensions
//         isl_id_get_name: Val_<NameOfValue>
//         isl_id_get_user: A pointer to an llvm::Value
//
//     * SCEV[...] - A synthesizable llvm::SCEV Expression.
//         In contrast to a Value[] is has at least one dimension per
//         SCEVAddRecExpr in the SCEV.
//
//     * [Domain[] -> Value[]] - An llvm::Value that may change during the
//                               Scop's execution.
//         The tuple itself has no id, but it wraps a map space holding a
//         statement instance which defines the llvm::Value as the map's domain
//         and llvm::Value itself as range.
//
// @see makeValInst()
//
// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
// statement instance to a timepoint, aka a schedule. There is only one scatter
// space, but most of the time multiple statements are processed in one set.
// This is why most of the time isl_union_map has to be used.
//
// The basic algorithm works as follows:
// At first we verify that the SCoP is compatible with this technique. For
// instance, two writes cannot write to the same location at the same statement
// instance because we cannot determine within the polyhedral model which one
// comes first. Once this was verified, we compute zones at which an array
// element is unused. This computation can fail if it takes too long. Then the
// main algorithm is executed. Because every store potentially trails an unused
// zone, we start at stores. We search for a scalar (MemoryKind::Value or
// MemoryKind::PHI) that we can map to the array element overwritten by the
// store, preferably one that is used by the store or at least the ScopStmt.
// When it does not conflict with the lifetime of the values in the array
// element, the map is applied and the unused zone updated as it is now used. We
// continue to try to map scalars to the array element until there are no more
// candidates to map. The algorithm is greedy in the sense that the first scalar
// not conflicting will be mapped. Other scalars processed later that could have
// fit the same unused zone will be rejected. As such the result depends on the
// processing order.
//
//===----------------------------------------------------------------------===//

#include "polly/ZoneAlgo.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "polly-zone"

STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");

using namespace polly;
using namespace llvm;

static isl::union_map computeReachingDefinition(isl::union_map Schedule,
                                                isl::union_map Writes,
                                                bool InclDef, bool InclRedef) {
  return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
}

/// Compute the reaching definition of a scalar.
///
/// Compared to computeReachingDefinition, there is just one element which is
/// accessed and therefore only a set if instances that accesses that element is
/// required.
///
/// @param Schedule  { DomainWrite[] -> Scatter[] }
/// @param Writes    { DomainWrite[] }
/// @param InclDef   Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
                                                      isl::union_set Writes,
                                                      bool InclDef,
                                                      bool InclRedef) {
  // { DomainWrite[] -> Element[] }
  isl::union_map Defs = isl::union_map::from_domain(Writes);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  auto ReachDefs =
      computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);

  // { Scatter[] -> DomainWrite[] }
  return ReachDefs.curry().range().unwrap();
}

/// Compute the reaching definition of a scalar.
///
/// This overload accepts only a single writing statement as an isl_map,
/// consequently the result also is only a single isl_map.
///
/// @param Schedule  { DomainWrite[] -> Scatter[] }
/// @param Writes    { DomainWrite[] }
/// @param InclDef   Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
                                                isl::set Writes, bool InclDef,
                                                bool InclRedef) {
  isl::space DomainSpace = Writes.get_space();
  isl::space ScatterSpace = getScatterSpace(Schedule);

  //  { Scatter[] -> DomainWrite[] }
  isl::union_map UMap = computeScalarReachingDefinition(
      Schedule, isl::union_set(Writes), InclDef, InclRedef);

  isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
  return singleton(UMap, ResultSpace);
}

isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
  return isl::union_map::from_domain(Domain);
}

/// Create a domain-to-unknown value mapping.
///
/// @see makeUnknownForDomain(isl::union_set)
///
/// @param Domain { Domain[] }
///
/// @return { Domain[] -> ValInst[] }
static isl::map makeUnknownForDomain(isl::set Domain) {
  return isl::map::from_domain(Domain);
}

/// Return whether @p Map maps to an unknown value.
///
/// @param { [] -> ValInst[] }
static bool isMapToUnknown(const isl::map &Map) {
  isl::space Space = Map.get_space().range();
  return Space.has_tuple_id(isl::dim::set).is_false() &&
         Space.is_wrapping().is_false() &&
         Space.dim(isl::dim::set).release() == 0;
}

isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
  isl::union_map Result = isl::union_map::empty(UMap.ctx());
  for (isl::map Map : UMap.get_map_list()) {
    if (!isMapToUnknown(Map))
      Result = Result.unite(Map);
  }
  return Result;
}

ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
    : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
      Schedule(S->getSchedule()) {
  auto Domains = S->getDomains();

  Schedule = Schedule.intersect_domain(Domains);
  ParamSpace = Schedule.get_space();
  ScatterSpace = getScatterSpace(Schedule);
}

/// Check if all stores in @p Stmt store the very same value.
///
/// This covers a special situation occurring in Polybench's
/// covariance/correlation (which is typical for algorithms that cover symmetric
/// matrices):
///
/// for (int i = 0; i < n; i += 1)
/// 	for (int j = 0; j <= i; j += 1) {
/// 		double x = ...;
/// 		C[i][j] = x;
/// 		C[j][i] = x;
/// 	}
///
/// For i == j, the same value is written twice to the same element.Double
/// writes to the same element are not allowed in DeLICM because its algorithm
/// does not see which of the writes is effective.But if its the same value
/// anyway, it doesn't matter.
///
/// LLVM passes, however, cannot simplify this because the write is necessary
/// for i != j (unless it would add a condition for one of the writes to occur
/// only if i != j).
///
/// TODO: In the future we may want to extent this to make the checks
///       specific to different memory locations.
static bool onlySameValueWrites(ScopStmt *Stmt) {
  Value *V = nullptr;

  for (auto *MA : *Stmt) {
    if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
        !MA->isOriginalArrayKind())
      continue;

    if (!V) {
      V = MA->getAccessValue();
      continue;
    }

    if (V != MA->getAccessValue())
      return false;
  }
  return true;
}

/// Is @p InnerLoop nested inside @p OuterLoop?
static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) {
  // If OuterLoop is nullptr, we cannot call its contains() method. In this case
  // OuterLoop represents the 'top level' and therefore contains all loop.
  return !OuterLoop || OuterLoop->contains(InnerLoop);
}

void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
                                            isl::union_set &IncompatibleElts,
                                            isl::union_set &AllElts) {
  auto Stores = makeEmptyUnionMap();
  auto Loads = makeEmptyUnionMap();

  // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
  // order.
  for (auto *MA : *Stmt) {
    if (!MA->isOriginalArrayKind())
      continue;

    isl::map AccRelMap = getAccessRelationFor(MA);
    isl::union_map AccRel = AccRelMap;

    // To avoid solving any ILP problems, always add entire arrays instead of
    // just the elements that are accessed.
    auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
    AllElts = AllElts.unite(ArrayElts);

    if (MA->isRead()) {
      // Reject load after store to same location.
      if (!Stores.is_disjoint(AccRel)) {
        LLVM_DEBUG(
            dbgs() << "Load after store of same element in same statement\n");
        OptimizationRemarkMissed R(PassName, "LoadAfterStore",
                                   MA->getAccessInstruction());
        R << "load after store of same element in same statement";
        R << " (previous stores: " << Stores;
        R << ", loading: " << AccRel << ")";
        S->getFunction().getContext().diagnose(R);

        IncompatibleElts = IncompatibleElts.unite(ArrayElts);
      }

      Loads = Loads.unite(AccRel);

      continue;
    }

    // In region statements the order is less clear, eg. the load and store
    // might be in a boxed loop.
    if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) {
      LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
      OptimizationRemarkMissed R(PassName, "StoreInSubregion",
                                 MA->getAccessInstruction());
      R << "store is in a non-affine subregion";
      S->getFunction().getContext().diagnose(R);

      IncompatibleElts = IncompatibleElts.unite(ArrayElts);
    }

    // Do not allow more than one store to the same location.
    if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) {
      LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
      OptimizationRemarkMissed R(PassName, "StoreAfterStore",
                                 MA->getAccessInstruction());
      R << "store after store of same element in same statement";
      R << " (previous stores: " << Stores;
      R << ", storing: " << AccRel << ")";
      S->getFunction().getContext().diagnose(R);

      IncompatibleElts = IncompatibleElts.unite(ArrayElts);
    }

    Stores = Stores.unite(AccRel);
  }
}

void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
  assert(MA->isLatestArrayKind());
  assert(MA->isRead());
  ScopStmt *Stmt = MA->getStatement();

  // { DomainRead[] -> Element[] }
  auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
  AllReads = AllReads.unite(AccRel);

  if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
    // { DomainRead[] -> ValInst[] }
    isl::map LoadValInst = makeValInst(
        Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());

    // { DomainRead[] -> [Element[] -> DomainRead[]] }
    isl::map IncludeElement = AccRel.domain_map().curry();

    // { [Element[] -> DomainRead[]] -> ValInst[] }
    isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement);

    AllReadValInst = AllReadValInst.unite(EltLoadValInst);
  }
}

isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
                                              isl::map AccRel) {
  if (!MA->isMustWrite())
    return {};

  Value *AccVal = MA->getAccessValue();
  ScopStmt *Stmt = MA->getStatement();
  Instruction *AccInst = MA->getAccessInstruction();

  // Write a value to a single element.
  auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
                                     : Stmt->getSurroundingLoop();
  if (AccVal &&
      AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
      AccRel.is_single_valued().is_true())
    return makeNormalizedValInst(AccVal, Stmt, L);

  // memset(_, '0', ) is equivalent to writing the null value to all touched
  // elements. isMustWrite() ensures that all of an element's bytes are
  // overwritten.
  if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
    auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
    Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
    if (WrittenConstant && WrittenConstant->isZeroValue()) {
      Constant *Zero = Constant::getNullValue(Ty);
      return makeNormalizedValInst(Zero, Stmt, L);
    }
  }

  return {};
}

void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
  assert(MA->isLatestArrayKind());
  assert(MA->isWrite());
  auto *Stmt = MA->getStatement();

  // { Domain[] -> Element[] }
  isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);

  if (MA->isMustWrite())
    AllMustWrites = AllMustWrites.unite(AccRel);

  if (MA->isMayWrite())
    AllMayWrites = AllMayWrites.unite(AccRel);

  // { Domain[] -> ValInst[] }
  isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
  if (WriteValInstance.is_null())
    WriteValInstance = makeUnknownForDomain(Stmt);

  // { Domain[] -> [Element[] -> Domain[]] }
  isl::map IncludeElement = AccRel.domain_map().curry();

  // { [Element[] -> DomainWrite[]] -> ValInst[] }
  isl::union_map EltWriteValInst =
      WriteValInstance.apply_domain(IncludeElement);

  AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
}

/// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
/// use in every instance of @p UseStmt.
///
/// @param UseStmt Statement a scalar is used in.
/// @param DefStmt Statement a scalar is defined in.
///
/// @return { DomainUse[] -> DomainDef[] }
isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt,
                                                      ScopStmt *DefStmt) {
  // { DomainUse[] -> Scatter[] }
  isl::map UseScatter = getScatterFor(UseStmt);

  // { Zone[] -> DomainDef[] }
  isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);

  // { Scatter[] -> DomainDef[] }
  isl::map ReachDefTimepoints =
      convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);

  // { DomainUse[] -> DomainDef[] }
  return UseScatter.apply_range(ReachDefTimepoints);
}

/// Return whether @p PHI refers (also transitively through other PHIs) to
/// itself.
///
/// loop:
///   %phi1 = phi [0, %preheader], [%phi1, %loop]
///   br i1 %c, label %loop, label %exit
///
/// exit:
///   %phi2 = phi [%phi1, %bb]
///
/// In this example, %phi1 is recursive, but %phi2 is not.
static bool isRecursivePHI(const PHINode *PHI) {
  SmallVector<const PHINode *, 8> Worklist;
  SmallPtrSet<const PHINode *, 8> Visited;
  Worklist.push_back(PHI);

  while (!Worklist.empty()) {
    const PHINode *Cur = Worklist.pop_back_val();

    if (Visited.count(Cur))
      continue;
    Visited.insert(Cur);

    for (const Use &Incoming : Cur->incoming_values()) {
      Value *IncomingVal = Incoming.get();
      auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
      if (!IncomingPHI)
        continue;

      if (IncomingPHI == PHI)
        return true;
      Worklist.push_back(IncomingPHI);
    }
  }
  return false;
}

isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
  // TODO: If the PHI has an incoming block from before the SCoP, it is not
  // represented in any ScopStmt.

  auto *PHI = cast<PHINode>(SAI->getBasePtr());
  auto It = PerPHIMaps.find(PHI);
  if (It != PerPHIMaps.end())
    return It->second;

  // Cannot reliably compute immediate predecessor for undefined executions, so
  // bail out if we do not know. This in particular applies to undefined control
  // flow.
  isl::set DefinedContext = S->getDefinedBehaviorContext();
  if (DefinedContext.is_null())
    return {};

  assert(SAI->isPHIKind());

  // { DomainPHIWrite[] -> Scatter[] }
  isl::union_map PHIWriteScatter = makeEmptyUnionMap();

  // Collect all incoming block timepoints.
  for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
    isl::map Scatter = getScatterFor(MA);
    PHIWriteScatter = PHIWriteScatter.unite(Scatter);
  }

  // { DomainPHIRead[] -> Scatter[] }
  isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));

  // { DomainPHIRead[] -> Scatter[] }
  isl::map BeforeRead = beforeScatter(PHIReadScatter, true);

  // { Scatter[] }
  isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);

  // { DomainPHIRead[] -> Scatter[] }
  isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);

  // Remove instances outside the context.
  PHIWriteTimes = PHIWriteTimes.intersect_params(DefinedContext);

  isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();

  // { DomainPHIRead[] -> DomainPHIWrite[] }
  isl::union_map Result =
      isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
  assert(!Result.is_single_valued().is_false());
  assert(!Result.is_injective().is_false());

  PerPHIMaps.insert({PHI, Result});
  return Result;
}

isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
  return isl::union_set::empty(ParamSpace.ctx());
}

isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
  return isl::union_map::empty(ParamSpace.ctx());
}

void ZoneAlgorithm::collectCompatibleElts() {
  // First find all the incompatible elements, then take the complement.
  // We compile the list of compatible (rather than incompatible) elements so
  // users can intersect with the list, not requiring a subtract operation. It
  // also allows us to define a 'universe' of all elements and makes it more
  // explicit in which array elements can be used.
  isl::union_set AllElts = makeEmptyUnionSet();
  isl::union_set IncompatibleElts = makeEmptyUnionSet();

  for (auto &Stmt : *S)
    collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);

  NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get());
  CompatibleElts = AllElts.subtract(IncompatibleElts);
  NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get());
}

isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
  isl::space ResultSpace =
      Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace);
  return Schedule.extract_map(ResultSpace);
}

isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
  return getScatterFor(MA->getStatement());
}

isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
  return Schedule.intersect_domain(Domain);
}

isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
  auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace);
  auto UDomain = isl::union_set(Domain);
  auto UResult = getScatterFor(std::move(UDomain));
  auto Result = singleton(std::move(UResult), std::move(ResultSpace));
  assert(Result.is_null() || Result.domain().is_equal(Domain) == isl_bool_true);
  return Result;
}

isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
  return Stmt->getDomain().remove_redundancies();
}

isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
  return getDomainFor(MA->getStatement());
}

isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
  auto Domain = getDomainFor(MA);
  auto AccRel = MA->getLatestAccessRelation();
  return AccRel.intersect_domain(Domain);
}

isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt,
                                       ScopStmt *TargetStmt) {
  // No translation required if the definition is already at the target.
  if (TargetStmt == DefStmt)
    return isl::map::identity(
        getDomainFor(TargetStmt).get_space().map_from_set());

  isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)];

  // This is a shortcut in case the schedule is still the original and
  // TargetStmt is in the same or nested inside DefStmt's loop. With the
  // additional assumption that operand trees do not cross DefStmt's loop
  // header, then TargetStmt's instance shared coordinates are the same as
  // DefStmt's coordinates. All TargetStmt instances with this prefix share
  // the same DefStmt instance.
  // Model:
  //
  //   for (int i < 0; i < N; i+=1) {
  // DefStmt:
  //    D = ...;
  //    for (int j < 0; j < N; j+=1) {
  // TargetStmt:
  //      use(D);
  //    }
  //  }
  //
  // Here, the value used in TargetStmt is defined in the corresponding
  // DefStmt, i.e.
  //
  //   { DefStmt[i] -> TargetStmt[i,j] }
  //
  // In practice, this should cover the majority of cases.
  if (Result.is_null() && S->isOriginalSchedule() &&
      isInsideLoop(DefStmt->getSurroundingLoop(),
                   TargetStmt->getSurroundingLoop())) {
    isl::set DefDomain = getDomainFor(DefStmt);
    isl::set TargetDomain = getDomainFor(TargetStmt);
    assert(unsignedFromIslSize(DefDomain.tuple_dim()) <=
           unsignedFromIslSize(TargetDomain.tuple_dim()));

    Result = isl::map::from_domain_and_range(DefDomain, TargetDomain);
    for (unsigned i : rangeIslSize(0, DefDomain.tuple_dim()))
      Result = Result.equate(isl::dim::in, i, isl::dim::out, i);
  }

  if (Result.is_null()) {
    // { DomainDef[] -> DomainTarget[] }
    Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse();
    simplify(Result);
  }

  return Result;
}

isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
  auto &Result = ScalarReachDefZone[Stmt];
  if (!Result.is_null())
    return Result;

  auto Domain = getDomainFor(Stmt);
  Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
  simplify(Result);

  return Result;
}

isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
  auto DomId = DomainDef.get_tuple_id();
  auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.get()));

  auto StmtResult = getScalarReachingDefinition(Stmt);

  return StmtResult.intersect_range(DomainDef);
}

isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
  return ::makeUnknownForDomain(getDomainFor(Stmt));
}

isl::id ZoneAlgorithm::makeValueId(Value *V) {
  if (!V)
    return {};

  auto &Id = ValueIds[V];
  if (Id.is_null()) {
    auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
                                     std::string(), UseInstructionNames);
    Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V);
  }
  return Id;
}

isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
  auto Result = ParamSpace.set_from_params();
  return Result.set_tuple_id(isl::dim::set, makeValueId(V));
}

isl::set ZoneAlgorithm::makeValueSet(Value *V) {
  auto Space = makeValueSpace(V);
  return isl::set::universe(Space);
}

isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
                                    bool IsCertain) {
  // If the definition/write is conditional, the value at the location could
  // be either the written value or the old value. Since we cannot know which
  // one, consider the value to be unknown.
  if (!IsCertain)
    return makeUnknownForDomain(UserStmt);

  auto DomainUse = getDomainFor(UserStmt);
  auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
  switch (VUse.getKind()) {
  case VirtualUse::Constant:
  case VirtualUse::Block:
  case VirtualUse::Hoisted:
  case VirtualUse::ReadOnly: {
    // The definition does not depend on the statement which uses it.
    auto ValSet = makeValueSet(Val);
    return isl::map::from_domain_and_range(DomainUse, ValSet);
  }

  case VirtualUse::Synthesizable: {
    auto *ScevExpr = VUse.getScevExpr();
    auto UseDomainSpace = DomainUse.get_space();

    // Construct the SCEV space.
    // TODO: Add only the induction variables referenced in SCEVAddRecExpr
    // expressions, not just all of them.
    auto ScevId = isl::manage(isl_id_alloc(UseDomainSpace.ctx().get(), nullptr,
                                           const_cast<SCEV *>(ScevExpr)));

    auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0);
    ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId);

    // { DomainUse[] -> ScevExpr[] }
    auto ValInst =
        isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace));
    return ValInst;
  }

  case VirtualUse::Intra: {
    // Definition and use is in the same statement. We do not need to compute
    // a reaching definition.

    // { llvm::Value }
    auto ValSet = makeValueSet(Val);

    // {  UserDomain[] -> llvm::Value }
    auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);

    // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
    auto Result = ValInstSet.domain_map().reverse();
    simplify(Result);
    return Result;
  }

  case VirtualUse::Inter: {
    // The value is defined in a different statement.

    auto *Inst = cast<Instruction>(Val);
    auto *ValStmt = S->getStmtFor(Inst);

    // If the llvm::Value is defined in a removed Stmt, we cannot derive its
    // domain. We could use an arbitrary statement, but this could result in
    // different ValInst[] for the same llvm::Value.
    if (!ValStmt)
      return ::makeUnknownForDomain(DomainUse);

    // { DomainUse[] -> DomainDef[] }
    auto UsedInstance = getDefToTarget(ValStmt, UserStmt).reverse();

    // { llvm::Value }
    auto ValSet = makeValueSet(Val);

    // { DomainUse[] -> llvm::Value[] }
    auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);

    // { DomainUse[] -> [DomainDef[] -> llvm::Value]  }
    auto Result = UsedInstance.range_product(ValInstSet);

    simplify(Result);
    return Result;
  }
  }
  llvm_unreachable("Unhandled use type");
}

/// Remove all computed PHIs out of @p Input and replace by their incoming
/// value.
///
/// @param Input        { [] -> ValInst[] }
/// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
///                     on the LHS of @p NormalizeMap.
/// @param NormalizeMap { ValInst[] -> ValInst[] }
static isl::union_map normalizeValInst(isl::union_map Input,
                                       const DenseSet<PHINode *> &ComputedPHIs,
                                       isl::union_map NormalizeMap) {
  isl::union_map Result = isl::union_map::empty(Input.ctx());
  for (isl::map Map : Input.get_map_list()) {
    isl::space Space = Map.get_space();
    isl::space RangeSpace = Space.range();

    // Instructions within the SCoP are always wrapped. Non-wrapped tuples
    // are therefore invariant in the SCoP and don't need normalization.
    if (!RangeSpace.is_wrapping()) {
      Result = Result.unite(Map);
      continue;
    }

    auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
        RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));

    // If no normalization is necessary, then the ValInst stands for itself.
    if (!ComputedPHIs.count(PHI)) {
      Result = Result.unite(Map);
      continue;
    }

    // Otherwise, apply the normalization.
    isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
    Result = Result.unite(Mapped);
    NumPHINormialization++;
  }
  return Result;
}

isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
                                                    ScopStmt *UserStmt,
                                                    llvm::Loop *Scope,
                                                    bool IsCertain) {
  isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
  isl::union_map Normalized =
      normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
  return Normalized;
}

bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
  if (!MA)
    return false;
  if (!MA->isLatestArrayKind())
    return false;
  Instruction *AccInst = MA->getAccessInstruction();
  return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
}

bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
  assert(MA->isRead());

  // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
  // MemoryAccess.
  if (!MA->isOriginalPHIKind())
    return false;

  // Exclude recursive PHIs, normalizing them would require a transitive
  // closure.
  auto *PHI = cast<PHINode>(MA->getAccessInstruction());
  if (RecursivePHIs.count(PHI))
    return false;

  // Ensure that each incoming value can be represented by a ValInst[].
  // We do represent values from statements associated to multiple incoming
  // value by the PHI itself, but we do not handle this case yet (especially
  // isNormalized()) when normalizing.
  const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
  auto Incomings = S->getPHIIncomings(SAI);
  for (MemoryAccess *Incoming : Incomings) {
    if (Incoming->getIncoming().size() != 1)
      return false;
  }

  return true;
}

isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) {
  isl::space Space = Map.get_space();
  isl::space RangeSpace = Space.range();

  isl::boolean IsWrapping = RangeSpace.is_wrapping();
  if (!IsWrapping.is_true())
    return !IsWrapping;
  isl::space Unwrapped = RangeSpace.unwrap();

  isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out);
  if (OutTupleId.is_null())
    return isl::boolean();
  auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(OutTupleId.get_user()));
  if (!PHI)
    return true;

  isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in);
  if (OutTupleId.is_null())
    return isl::boolean();
  auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user());
  MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
  if (!isNormalizable(PHIRead))
    return true;

  return false;
}

isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) {
  isl::boolean Result = true;
  for (isl::map Map : UMap.get_map_list()) {
    Result = isNormalized(Map);
    if (Result.is_true())
      continue;
    break;
  }
  return Result;
}

void ZoneAlgorithm::computeCommon() {
  AllReads = makeEmptyUnionMap();
  AllMayWrites = makeEmptyUnionMap();
  AllMustWrites = makeEmptyUnionMap();
  AllWriteValInst = makeEmptyUnionMap();
  AllReadValInst = makeEmptyUnionMap();

  // Default to empty, i.e. no normalization/replacement is taking place. Call
  // computeNormalizedPHIs() to initialize.
  NormalizeMap = makeEmptyUnionMap();
  ComputedPHIs.clear();

  for (auto &Stmt : *S) {
    for (auto *MA : Stmt) {
      if (!MA->isLatestArrayKind())
        continue;

      if (MA->isRead())
        addArrayReadAccess(MA);

      if (MA->isWrite())
        addArrayWriteAccess(MA);
    }
  }

  // { DomainWrite[] -> Element[] }
  AllWrites = AllMustWrites.unite(AllMayWrites);

  // { [Element[] -> Zone[]] -> DomainWrite[] }
  WriteReachDefZone =
      computeReachingDefinition(Schedule, AllWrites, false, true);
  simplify(WriteReachDefZone);
}

void ZoneAlgorithm::computeNormalizedPHIs() {
  // Determine which PHIs can reference themselves. They are excluded from
  // normalization to avoid problems with transitive closures.
  for (ScopStmt &Stmt : *S) {
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isPHIKind())
        continue;
      if (!MA->isRead())
        continue;

      // TODO: Can be more efficient since isRecursivePHI can theoretically
      // determine recursiveness for multiple values and/or cache results.
      auto *PHI = cast<PHINode>(MA->getAccessInstruction());
      if (isRecursivePHI(PHI)) {
        NumRecursivePHIs++;
        RecursivePHIs.insert(PHI);
      }
    }
  }

  // { PHIValInst[] -> IncomingValInst[] }
  isl::union_map AllPHIMaps = makeEmptyUnionMap();

  // Discover new PHIs and try to normalize them.
  DenseSet<PHINode *> AllPHIs;
  for (ScopStmt &Stmt : *S) {
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isOriginalPHIKind())
        continue;
      if (!MA->isRead())
        continue;
      if (!isNormalizable(MA))
        continue;

      auto *PHI = cast<PHINode>(MA->getAccessInstruction());
      const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();

      // Determine which instance of the PHI statement corresponds to which
      // incoming value. Skip if we cannot determine PHI predecessors.
      // { PHIDomain[] -> IncomingDomain[] }
      isl::union_map PerPHI = computePerPHI(SAI);
      if (PerPHI.is_null())
        continue;

      // { PHIDomain[] -> PHIValInst[] }
      isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());

      // { IncomingDomain[] -> IncomingValInst[] }
      isl::union_map IncomingValInsts = makeEmptyUnionMap();

      // Get all incoming values.
      for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
        ScopStmt *IncomingStmt = MA->getStatement();

        auto Incoming = MA->getIncoming();
        assert(Incoming.size() == 1 && "The incoming value must be "
                                       "representable by something else than "
                                       "the PHI itself");
        Value *IncomingVal = Incoming[0].second;

        // { IncomingDomain[] -> IncomingValInst[] }
        isl::map IncomingValInst = makeValInst(
            IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());

        IncomingValInsts = IncomingValInsts.unite(IncomingValInst);
      }

      // { PHIValInst[] -> IncomingValInst[] }
      isl::union_map PHIMap =
          PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
      assert(!PHIMap.is_single_valued().is_false());

      // Resolve transitiveness: The incoming value of the newly discovered PHI
      // may reference a previously normalized PHI. At the same time, already
      // normalized PHIs might be normalized to the new PHI. At the end, none of
      // the PHIs may appear on the right-hand-side of the normalization map.
      PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
      AllPHIs.insert(PHI);
      AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);

      AllPHIMaps = AllPHIMaps.unite(PHIMap);
      NumNormalizablePHIs++;
    }
  }
  simplify(AllPHIMaps);

  // Apply the normalization.
  ComputedPHIs = AllPHIs;
  NormalizeMap = AllPHIMaps;

  assert(NormalizeMap.is_null() || isNormalized(NormalizeMap));
}

void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
  OS.indent(Indent) << "After accesses {\n";
  for (auto &Stmt : *S) {
    OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
    for (auto *MA : Stmt)
      MA->print(OS);
  }
  OS.indent(Indent) << "}\n";
}

isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
  // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
  isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());

  // { [Element[] -> DomainWrite[]] -> ValInst[] }
  isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);

  // { [Element[] -> Zone[]] -> ValInst[] }
  return EltReachdDef.apply_range(AllKnownWriteValInst);
}

isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
  // { Element[] }
  isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());

  // { Element[] -> Scatter[] }
  isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
      AllAccessedElts, isl::set::universe(ScatterSpace));

  // This assumes there are no "holes" in
  // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
  // before the first write or that are not written at all.
  // { Element[] -> Scatter[] }
  isl::union_set NonReachDef =
      EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());

  // { [Element[] -> Zone[]] -> ReachDefId[] }
  isl::union_map DefZone =
      WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));

  // { [Element[] -> Scatter[]] -> Element[] }
  isl::union_map EltZoneElt = EltZoneUniverse.domain_map();

  // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
  isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);

  // { Element[] -> [Zone[] -> ReachDefId[]] }
  isl::union_map EltDefZone = DefZone.curry();

  // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
  isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);

  // { [Element[] -> Scatter[]] -> DomainRead[] }
  isl::union_map Reads = AllReads.range_product(Schedule).reverse();

  // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
  isl::union_map ReadsElt = EltZoneElt.range_product(Reads);

  // { [Element[] -> Scatter[]] -> ValInst[] }
  isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);

  // { [Element[] -> ReachDefId[]] -> ValInst[] }
  isl::union_map DefidKnown =
      DefZoneEltDefId.apply_domain(ScatterKnown).reverse();

  // { [Element[] -> Zone[]] -> ValInst[] }
  return DefZoneEltDefId.apply_range(DefidKnown);
}

isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
                                           bool FromRead) const {
  isl::union_map Result = makeEmptyUnionMap();

  if (FromWrite)
    Result = Result.unite(computeKnownFromMustWrites());

  if (FromRead)
    Result = Result.unite(computeKnownFromLoad());

  simplify(Result);
  return Result;
}