aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/polly/lib/Support/ISLTools.cpp
blob: b6ac9bac819b901c0f89d771656b2f67a6759346 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
//===------ ISLTools.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Tools, utilities, helpers and extensions useful in conjunction with the
// Integer Set Library (isl).
//
//===----------------------------------------------------------------------===//

#include "polly/Support/ISLTools.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <vector>

using namespace polly;

namespace {
/// Create a map that shifts one dimension by an offset.
///
/// Example:
/// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2)
///   = { [i0, i1] -> [i0, i1 - 1] }
///
/// @param Space  The map space of the result. Must have equal number of in- and
///               out-dimensions.
/// @param Pos    Position to shift.
/// @param Amount Value added to the shifted dimension.
///
/// @return An isl_multi_aff for the map with this shifted dimension.
isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) {
  auto Identity = isl::multi_aff::identity(Space);
  if (Amount == 0)
    return Identity;
  auto ShiftAff = Identity.at(Pos);
  ShiftAff = ShiftAff.set_constant_si(Amount);
  return Identity.set_aff(Pos, ShiftAff);
}

/// Construct a map that swaps two nested tuples.
///
/// @param FromSpace1 { Space1[] }
/// @param FromSpace2 { Space2[] }
///
/// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] }
isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1,
                                     isl::space FromSpace2) {
  // Fast-path on out-of-quota.
  if (FromSpace1.is_null() || FromSpace2.is_null())
    return {};

  assert(FromSpace1.is_set());
  assert(FromSpace2.is_set());

  unsigned Dims1 = unsignedFromIslSize(FromSpace1.dim(isl::dim::set));
  unsigned Dims2 = unsignedFromIslSize(FromSpace2.dim(isl::dim::set));

  isl::space FromSpace =
      FromSpace1.map_from_domain_and_range(FromSpace2).wrap();
  isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap();
  isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace);

  isl::basic_map Result = isl::basic_map::universe(MapSpace);
  for (unsigned i = 0u; i < Dims1; i += 1)
    Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i);
  for (unsigned i = 0u; i < Dims2; i += 1) {
    Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i);
  }

  return Result;
}

/// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns
/// an isl_map.
isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) {
  isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2);
  return isl::map(BMapResult);
}
} // anonymous namespace

isl::map polly::beforeScatter(isl::map Map, bool Strict) {
  isl::space RangeSpace = Map.get_space().range();
  isl::map ScatterRel =
      Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace);
  return Map.apply_range(ScatterRel);
}

isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) {
  isl::union_map Result = isl::union_map::empty(UMap.ctx());

  for (isl::map Map : UMap.get_map_list()) {
    isl::map After = beforeScatter(Map, Strict);
    Result = Result.unite(After);
  }

  return Result;
}

isl::map polly::afterScatter(isl::map Map, bool Strict) {
  isl::space RangeSpace = Map.get_space().range();
  isl::map ScatterRel =
      Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace);
  return Map.apply_range(ScatterRel);
}

isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) {
  isl::union_map Result = isl::union_map::empty(UMap.ctx());
  for (isl::map Map : UMap.get_map_list()) {
    isl::map After = afterScatter(Map, Strict);
    Result = Result.unite(After);
  }
  return Result;
}

isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom,
                               bool InclTo) {
  isl::map AfterFrom = afterScatter(From, !InclFrom);
  isl::map BeforeTo = beforeScatter(To, !InclTo);

  return AfterFrom.intersect(BeforeTo);
}

isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To,
                                     bool InclFrom, bool InclTo) {
  isl::union_map AfterFrom = afterScatter(From, !InclFrom);
  isl::union_map BeforeTo = beforeScatter(To, !InclTo);

  return AfterFrom.intersect(BeforeTo);
}

isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) {
  if (UMap.is_null())
    return {};

  if (isl_union_map_n_map(UMap.get()) == 0)
    return isl::map::empty(ExpectedSpace);

  isl::map Result = isl::map::from_union_map(UMap);
  assert(Result.is_null() ||
         Result.get_space().has_equal_tuples(ExpectedSpace));

  return Result;
}

isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) {
  if (USet.is_null())
    return {};

  if (isl_union_set_n_set(USet.get()) == 0)
    return isl::set::empty(ExpectedSpace);

  isl::set Result(USet);
  assert(Result.is_null() ||
         Result.get_space().has_equal_tuples(ExpectedSpace));

  return Result;
}

unsigned polly::getNumScatterDims(const isl::union_map &Schedule) {
  unsigned Dims = 0;
  for (isl::map Map : Schedule.get_map_list()) {
    if (Map.is_null())
      continue;

    Dims = std::max(Dims, unsignedFromIslSize(Map.range_tuple_dim()));
  }
  return Dims;
}

isl::space polly::getScatterSpace(const isl::union_map &Schedule) {
  if (Schedule.is_null())
    return {};
  unsigned Dims = getNumScatterDims(Schedule);
  isl::space ScatterSpace = Schedule.get_space().set_from_params();
  return ScatterSpace.add_dims(isl::dim::set, Dims);
}

isl::map polly::makeIdentityMap(const isl::set &Set, bool RestrictDomain) {
  isl::map Result = isl::map::identity(Set.get_space().map_from_set());
  if (RestrictDomain)
    Result = Result.intersect_domain(Set);
  return Result;
}

isl::union_map polly::makeIdentityMap(const isl::union_set &USet,
                                      bool RestrictDomain) {
  isl::union_map Result = isl::union_map::empty(USet.ctx());
  for (isl::set Set : USet.get_set_list()) {
    isl::map IdentityMap = makeIdentityMap(Set, RestrictDomain);
    Result = Result.unite(IdentityMap);
  }
  return Result;
}

isl::map polly::reverseDomain(isl::map Map) {
  isl::space DomSpace = Map.get_space().domain().unwrap();
  isl::space Space1 = DomSpace.domain();
  isl::space Space2 = DomSpace.range();
  isl::map Swap = makeTupleSwapMap(Space1, Space2);
  return Map.apply_domain(Swap);
}

isl::union_map polly::reverseDomain(const isl::union_map &UMap) {
  isl::union_map Result = isl::union_map::empty(UMap.ctx());
  for (isl::map Map : UMap.get_map_list()) {
    auto Reversed = reverseDomain(std::move(Map));
    Result = Result.unite(Reversed);
  }
  return Result;
}

isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) {
  unsigned NumDims = unsignedFromIslSize(Set.tuple_dim());
  if (Pos < 0)
    Pos = NumDims + Pos;
  assert(unsigned(Pos) < NumDims && "Dimension index must be in range");
  isl::space Space = Set.get_space();
  Space = Space.map_from_domain_and_range(Space);
  isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
  isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
  return Set.apply(TranslatorMap);
}

isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) {
  isl::union_set Result = isl::union_set::empty(USet.ctx());
  for (isl::set Set : USet.get_set_list()) {
    isl::set Shifted = shiftDim(Set, Pos, Amount);
    Result = Result.unite(Shifted);
  }
  return Result;
}

isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) {
  unsigned NumDims = unsignedFromIslSize(Map.dim(Dim));
  if (Pos < 0)
    Pos = NumDims + Pos;
  assert(unsigned(Pos) < NumDims && "Dimension index must be in range");
  isl::space Space = Map.get_space();
  switch (Dim) {
  case isl::dim::in:
    Space = Space.domain();
    break;
  case isl::dim::out:
    Space = Space.range();
    break;
  default:
    llvm_unreachable("Unsupported value for 'dim'");
  }
  Space = Space.map_from_domain_and_range(Space);
  isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
  isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
  switch (Dim) {
  case isl::dim::in:
    return Map.apply_domain(TranslatorMap);
  case isl::dim::out:
    return Map.apply_range(TranslatorMap);
  default:
    llvm_unreachable("Unsupported value for 'dim'");
  }
}

isl::val polly::getConstant(isl::map Map, isl::dim Dim, int Pos) {
  unsigned NumDims = unsignedFromIslSize(Map.dim(Dim));
  if (Pos < 0)
    Pos = NumDims + Pos;
  assert(unsigned(Pos) < NumDims && "Dimension index must be in range");
  // TODO: The isl_map_plain_get_val_if_fixed function is not robust, since its
  // result is different depending on the internal representation.
  // Replace it with a different implementation.
  return isl::manage(isl_map_plain_get_val_if_fixed(
      Map.get(), static_cast<enum isl_dim_type>(Dim), Pos));
}

isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos,
                               int Amount) {
  isl::union_map Result = isl::union_map::empty(UMap.ctx());

  for (isl::map Map : UMap.get_map_list()) {
    isl::map Shifted = shiftDim(Map, Dim, Pos, Amount);
    Result = Result.unite(Shifted);
  }
  return Result;
}

void polly::simplify(isl::set &Set) {
  Set = isl::manage(isl_set_compute_divs(Set.copy()));
  Set = Set.detect_equalities();
  Set = Set.coalesce();
}

void polly::simplify(isl::union_set &USet) {
  USet = isl::manage(isl_union_set_compute_divs(USet.copy()));
  USet = USet.detect_equalities();
  USet = USet.coalesce();
}

void polly::simplify(isl::map &Map) {
  Map = isl::manage(isl_map_compute_divs(Map.copy()));
  Map = Map.detect_equalities();
  Map = Map.coalesce();
}

void polly::simplify(isl::union_map &UMap) {
  UMap = isl::manage(isl_union_map_compute_divs(UMap.copy()));
  UMap = UMap.detect_equalities();
  UMap = UMap.coalesce();
}

isl::union_map polly::computeReachingWrite(isl::union_map Schedule,
                                           isl::union_map Writes, bool Reverse,
                                           bool InclPrevDef, bool InclNextDef) {

  // { Scatter[] }
  isl::space ScatterSpace = getScatterSpace(Schedule);

  // { ScatterRead[] -> ScatterWrite[] }
  isl::map Relation;
  if (Reverse)
    Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace)
                           : isl::map::lex_le(ScatterSpace);
  else
    Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace)
                           : isl::map::lex_ge(ScatterSpace);

  // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] }
  isl::map RelationMap = Relation.range_map().reverse();

  // { Element[] -> ScatterWrite[] }
  isl::union_map WriteAction = Schedule.apply_domain(Writes);

  // { ScatterWrite[] -> Element[] }
  isl::union_map WriteActionRev = WriteAction.reverse();

  // { Element[] -> [ScatterUse[] -> ScatterWrite[]] }
  isl::union_map DefSchedRelation =
      isl::union_map(RelationMap).apply_domain(WriteActionRev);

  // For each element, at every point in time, map to the times of previous
  // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] }
  isl::union_map ReachableWrites = DefSchedRelation.uncurry();
  if (Reverse)
    ReachableWrites = ReachableWrites.lexmin();
  else
    ReachableWrites = ReachableWrites.lexmax();

  // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] }
  isl::union_map SelfUse = WriteAction.range_map();

  if (InclPrevDef && InclNextDef) {
    // Add the Def itself to the solution.
    ReachableWrites = ReachableWrites.unite(SelfUse).coalesce();
  } else if (!InclPrevDef && !InclNextDef) {
    // Remove Def itself from the solution.
    ReachableWrites = ReachableWrites.subtract(SelfUse);
  }

  // { [Element[] -> ScatterRead[]] -> Domain[] }
  return ReachableWrites.apply_range(Schedule.reverse());
}

isl::union_map
polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes,
                          isl::union_map Reads, bool ReadEltInSameInst,
                          bool IncludeLastRead, bool IncludeWrite) {
  // { Element[] -> Scatter[] }
  isl::union_map ReadActions = Schedule.apply_domain(Reads);
  isl::union_map WriteActions = Schedule.apply_domain(Writes);

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map EltDomWrites =
      Writes.reverse().range_map().apply_range(Schedule);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  isl::union_map ReachingOverwrite = computeReachingWrite(
      Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  isl::union_map ReadsOverwritten =
      ReachingOverwrite.intersect_domain(ReadActions.wrap());

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map ReadsOverwrittenRotated =
      reverseDomain(ReadsOverwritten).curry().reverse();
  isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax();

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map BetweenLastReadOverwrite = betweenScatter(
      LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  isl::union_map ReachingOverwriteZone = computeReachingWrite(
      Schedule, Writes, true, IncludeLastRead, IncludeWrite);

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map ReachingOverwriteRotated =
      reverseDomain(ReachingOverwriteZone).curry().reverse();

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain(
      ReadsOverwrittenRotated.domain());

  return BetweenLastReadOverwrite.unite(WritesWithoutReads)
      .domain_factor_domain();
}

isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone,
                                              bool InclStart, bool InclEnd) {
  if (!InclStart && InclEnd)
    return Zone;

  auto ShiftedZone = shiftDim(Zone, -1, -1);
  if (InclStart && !InclEnd)
    return ShiftedZone;
  else if (!InclStart && !InclEnd)
    return Zone.intersect(ShiftedZone);

  assert(InclStart && InclEnd);
  return Zone.unite(ShiftedZone);
}

isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim,
                                              bool InclStart, bool InclEnd) {
  if (!InclStart && InclEnd)
    return Zone;

  auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
  if (InclStart && !InclEnd)
    return ShiftedZone;
  else if (!InclStart && !InclEnd)
    return Zone.intersect(ShiftedZone);

  assert(InclStart && InclEnd);
  return Zone.unite(ShiftedZone);
}

isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim,
                                        bool InclStart, bool InclEnd) {
  if (!InclStart && InclEnd)
    return Zone;

  auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
  if (InclStart && !InclEnd)
    return ShiftedZone;
  else if (!InclStart && !InclEnd)
    return Zone.intersect(ShiftedZone);

  assert(InclStart && InclEnd);
  return Zone.unite(ShiftedZone);
}

isl::map polly::distributeDomain(isl::map Map) {
  // Note that we cannot take Map apart into { Domain[] -> Range1[] } and {
  // Domain[] -> Range2[] } and combine again. We would loose any relation
  // between Range1[] and Range2[] that is not also a constraint to Domain[].

  isl::space Space = Map.get_space();
  isl::space DomainSpace = Space.domain();
  if (DomainSpace.is_null())
    return {};
  unsigned DomainDims = unsignedFromIslSize(DomainSpace.dim(isl::dim::set));
  isl::space RangeSpace = Space.range().unwrap();
  isl::space Range1Space = RangeSpace.domain();
  if (Range1Space.is_null())
    return {};
  unsigned Range1Dims = unsignedFromIslSize(Range1Space.dim(isl::dim::set));
  isl::space Range2Space = RangeSpace.range();
  if (Range2Space.is_null())
    return {};
  unsigned Range2Dims = unsignedFromIslSize(Range2Space.dim(isl::dim::set));

  isl::space OutputSpace =
      DomainSpace.map_from_domain_and_range(Range1Space)
          .wrap()
          .map_from_domain_and_range(
              DomainSpace.map_from_domain_and_range(Range2Space).wrap());

  isl::basic_map Translator = isl::basic_map::universe(
      Space.wrap().map_from_domain_and_range(OutputSpace.wrap()));

  for (unsigned i = 0; i < DomainDims; i += 1) {
    Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i);
    Translator = Translator.equate(isl::dim::in, i, isl::dim::out,
                                   DomainDims + Range1Dims + i);
  }
  for (unsigned i = 0; i < Range1Dims; i += 1)
    Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out,
                                   DomainDims + i);
  for (unsigned i = 0; i < Range2Dims; i += 1)
    Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i,
                                   isl::dim::out,
                                   DomainDims + Range1Dims + DomainDims + i);

  return Map.wrap().apply(Translator).unwrap();
}

isl::union_map polly::distributeDomain(isl::union_map UMap) {
  isl::union_map Result = isl::union_map::empty(UMap.ctx());
  for (isl::map Map : UMap.get_map_list()) {
    auto Distributed = distributeDomain(Map);
    Result = Result.unite(Distributed);
  }
  return Result;
}

isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) {

  // { Factor[] -> Factor[] }
  isl::union_map Factors = makeIdentityMap(Factor, true);

  return Factors.product(UMap);
}

isl::union_map polly::applyDomainRange(isl::union_map UMap,
                                       isl::union_map Func) {
  // This implementation creates unnecessary cross products of the
  // DomainDomain[] and Func. An alternative implementation could reverse
  // domain+uncurry,apply Func to what now is the domain, then undo the
  // preparing transformation. Another alternative implementation could create a
  // translator map for each piece.

  // { DomainDomain[] }
  isl::union_set DomainDomain = UMap.domain().unwrap().domain();

  // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]]
  // }
  isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain);

  return UMap.apply_domain(LifetedFunc);
}

isl::map polly::intersectRange(isl::map Map, isl::union_set Range) {
  isl::set RangeSet = Range.extract_set(Map.get_space().range());
  return Map.intersect_range(RangeSet);
}

isl::map polly::subtractParams(isl::map Map, isl::set Params) {
  auto MapSpace = Map.get_space();
  auto ParamsMap = isl::map::universe(MapSpace).intersect_params(Params);
  return Map.subtract(ParamsMap);
}

isl::set polly::subtractParams(isl::set Set, isl::set Params) {
  isl::space SetSpace = Set.get_space();
  isl::set ParamsSet = isl::set::universe(SetSpace).intersect_params(Params);
  return Set.subtract(ParamsSet);
}

isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) {
  assert(!Max || !Min); // Cannot return min and max at the same time.
  isl::val Result;
  isl::stat Stat = PwAff.foreach_piece(
      [=, &Result](isl::set Set, isl::aff Aff) -> isl::stat {
        if (!Result.is_null() && Result.is_nan())
          return isl::stat::ok();

        // TODO: If Min/Max, we can also determine a minimum/maximum value if
        // Set is constant-bounded.
        if (!Aff.is_cst()) {
          Result = isl::val::nan(Aff.ctx());
          return isl::stat::error();
        }

        isl::val ThisVal = Aff.get_constant_val();
        if (Result.is_null()) {
          Result = ThisVal;
          return isl::stat::ok();
        }

        if (Result.eq(ThisVal))
          return isl::stat::ok();

        if (Max && ThisVal.gt(Result)) {
          Result = ThisVal;
          return isl::stat::ok();
        }

        if (Min && ThisVal.lt(Result)) {
          Result = ThisVal;
          return isl::stat::ok();
        }

        // Not compatible
        Result = isl::val::nan(Aff.ctx());
        return isl::stat::error();
      });

  if (Stat.is_error())
    return {};

  return Result;
}

llvm::iota_range<unsigned> polly::rangeIslSize(unsigned Begin, isl::size End) {
  unsigned UEnd = unsignedFromIslSize(End);
  return llvm::seq<unsigned>(std::min(Begin, UEnd), UEnd);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void foreachPoint(const isl::set &Set,
                         const std::function<void(isl::point P)> &F) {
  Set.foreach_point([&](isl::point P) -> isl::stat {
    F(P);
    return isl::stat::ok();
  });
}

static void foreachPoint(isl::basic_set BSet,
                         const std::function<void(isl::point P)> &F) {
  foreachPoint(isl::set(BSet), F);
}

/// Determine the sorting order of the sets @p A and @p B without considering
/// the space structure.
///
/// Ordering is based on the lower bounds of the set's dimensions. First
/// dimensions are considered first.
static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) {
  // Quick bail-out on out-of-quota.
  if (A.is_null() || B.is_null())
    return 0;

  unsigned ALen = unsignedFromIslSize(A.dim(isl::dim::set));
  unsigned BLen = unsignedFromIslSize(B.dim(isl::dim::set));
  unsigned Len = std::min(ALen, BLen);

  for (unsigned i = 0; i < Len; i += 1) {
    isl::basic_set ADim =
        A.project_out(isl::dim::param, 0,
                      unsignedFromIslSize(A.dim(isl::dim::param)))
            .project_out(isl::dim::set, i + 1, ALen - i - 1)
            .project_out(isl::dim::set, 0, i);
    isl::basic_set BDim =
        B.project_out(isl::dim::param, 0,
                      unsignedFromIslSize(B.dim(isl::dim::param)))
            .project_out(isl::dim::set, i + 1, BLen - i - 1)
            .project_out(isl::dim::set, 0, i);

    isl::basic_set AHull = isl::set(ADim).convex_hull();
    isl::basic_set BHull = isl::set(BDim).convex_hull();

    bool ALowerBounded =
        bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0));
    bool BLowerBounded =
        bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0));

    int BoundedCompare = BLowerBounded - ALowerBounded;
    if (BoundedCompare != 0)
      return BoundedCompare;

    if (!ALowerBounded || !BLowerBounded)
      continue;

    isl::pw_aff AMin = isl::set(ADim).dim_min(0);
    isl::pw_aff BMin = isl::set(BDim).dim_min(0);

    isl::val AMinVal = polly::getConstant(AMin, false, true);
    isl::val BMinVal = polly::getConstant(BMin, false, true);

    int MinCompare = AMinVal.sub(BMinVal).sgn();
    if (MinCompare != 0)
      return MinCompare;
  }

  // If all the dimensions' lower bounds are equal or incomparable, sort based
  // on the number of dimensions.
  return ALen - BLen;
}

/// Compare the sets @p A and @p B according to their nested space structure.
/// Returns 0 if the structure is considered equal.
/// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are
/// ignored, i.e. a tuple with the same name but different number of dimensions
/// are considered equal.
static int structureCompare(const isl::space &ASpace, const isl::space &BSpace,
                            bool ConsiderTupleLen) {
  int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping());
  if (WrappingCompare != 0)
    return WrappingCompare;

  if (ASpace.is_wrapping() && BSpace.is_wrapping()) {
    isl::space AMap = ASpace.unwrap();
    isl::space BMap = BSpace.unwrap();

    int FirstResult =
        structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen);
    if (FirstResult != 0)
      return FirstResult;

    return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen);
  }

  std::string AName;
  if (!ASpace.is_params() && ASpace.has_tuple_name(isl::dim::set))
    AName = ASpace.get_tuple_name(isl::dim::set);

  std::string BName;
  if (!BSpace.is_params() && BSpace.has_tuple_name(isl::dim::set))
    BName = BSpace.get_tuple_name(isl::dim::set);

  int NameCompare = AName.compare(BName);
  if (NameCompare != 0)
    return NameCompare;

  if (ConsiderTupleLen) {
    int LenCompare = (int)unsignedFromIslSize(BSpace.dim(isl::dim::set)) -
                     (int)unsignedFromIslSize(ASpace.dim(isl::dim::set));
    if (LenCompare != 0)
      return LenCompare;
  }

  return 0;
}

/// Compare the sets @p A and @p B according to their nested space structure. If
/// the structure is the same, sort using the dimension lower bounds.
/// Returns an std::sort compatible bool.
static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) {
  isl::space ASpace = A.get_space();
  isl::space BSpace = B.get_space();

  // Ignoring number of dimensions first ensures that structures with same tuple
  // names, but different number of dimensions are still sorted close together.
  int TupleNestingCompare = structureCompare(ASpace, BSpace, false);
  if (TupleNestingCompare != 0)
    return TupleNestingCompare < 0;

  int TupleCompare = structureCompare(ASpace, BSpace, true);
  if (TupleCompare != 0)
    return TupleCompare < 0;

  return flatCompare(A, B) < 0;
}

/// Print a string representation of @p USet to @p OS.
///
/// The pieces of @p USet are printed in a sorted order. Spaces with equal or
/// similar nesting structure are printed together. Compared to isl's own
/// printing function the uses the structure itself as base of the sorting, not
/// a hash of it. It ensures that e.g. maps spaces with same domain structure
/// are printed together. Set pieces with same structure are printed in order of
/// their lower bounds.
///
/// @param USet     Polyhedra to print.
/// @param OS       Target stream.
/// @param Simplify Whether to simplify the polyhedron before printing.
/// @param IsMap    Whether @p USet is a wrapped map. If true, sets are
///                 unwrapped before printing to again appear as a map.
static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS,
                                 bool Simplify, bool IsMap) {
  if (USet.is_null()) {
    OS << "<null>\n";
    return;
  }

  if (Simplify)
    simplify(USet);

  // Get all the polyhedra.
  std::vector<isl::basic_set> BSets;

  for (isl::set Set : USet.get_set_list()) {
    for (isl::basic_set BSet : Set.get_basic_set_list()) {
      BSets.push_back(BSet);
    }
  }

  if (BSets.empty()) {
    OS << "{\n}\n";
    return;
  }

  // Sort the polyhedra.
  llvm::sort(BSets, orderComparer);

  // Print the polyhedra.
  bool First = true;
  for (const isl::basic_set &BSet : BSets) {
    std::string Str;
    if (IsMap)
      Str = stringFromIslObj(isl::map(BSet.unwrap()));
    else
      Str = stringFromIslObj(isl::set(BSet));
    size_t OpenPos = Str.find_first_of('{');
    assert(OpenPos != std::string::npos);
    size_t ClosePos = Str.find_last_of('}');
    assert(ClosePos != std::string::npos);

    if (First)
      OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n ";
    else
      OS << ";\n ";

    OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2);
    First = false;
  }
  assert(!First);
  OS << "\n}\n";
}

static void recursiveExpand(isl::basic_set BSet, unsigned Dim,
                            isl::set &Expanded) {
  unsigned Dims = unsignedFromIslSize(BSet.dim(isl::dim::set));
  if (Dim >= Dims) {
    Expanded = Expanded.unite(BSet);
    return;
  }

  isl::basic_set DimOnly =
      BSet.project_out(isl::dim::param, 0,
                       unsignedFromIslSize(BSet.dim(isl::dim::param)))
          .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1)
          .project_out(isl::dim::set, 0, Dim);
  if (!DimOnly.is_bounded()) {
    recursiveExpand(BSet, Dim + 1, Expanded);
    return;
  }

  foreachPoint(DimOnly, [&, Dim](isl::point P) {
    isl::val Val = P.get_coordinate_val(isl::dim::set, 0);
    isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val);
    recursiveExpand(FixBSet, Dim + 1, Expanded);
  });
}

/// Make each point of a set explicit.
///
/// "Expanding" makes each point a set contains explicit. That is, the result is
/// a set of singleton polyhedra. Unbounded dimensions are not expanded.
///
/// Example:
///   { [i] : 0 <= i < 2 }
/// is expanded to:
///   { [0]; [1] }
static isl::set expand(const isl::set &Set) {
  isl::set Expanded = isl::set::empty(Set.get_space());
  for (isl::basic_set BSet : Set.get_basic_set_list())
    recursiveExpand(BSet, 0, Expanded);
  return Expanded;
}

/// Expand all points of a union set explicit.
///
/// @see expand(const isl::set)
static isl::union_set expand(const isl::union_set &USet) {
  isl::union_set Expanded = isl::union_set::empty(USet.ctx());
  for (isl::set Set : USet.get_set_list()) {
    isl::set SetExpanded = expand(Set);
    Expanded = Expanded.unite(SetExpanded);
  }
  return Expanded;
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) {
  printSortedPolyhedra(Set, llvm::errs(), true, false);
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) {
  printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true);
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) {
  printSortedPolyhedra(USet, llvm::errs(), true, false);
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) {
  printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true);
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) {
  dumpPw(isl::manage_copy(Set));
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) {
  dumpPw(isl::manage_copy(Map));
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) {
  dumpPw(isl::manage_copy(USet));
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) {
  dumpPw(isl::manage_copy(UMap));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) {
  printSortedPolyhedra(expand(Set), llvm::errs(), false, false);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) {
  printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) {
  printSortedPolyhedra(expand(USet), llvm::errs(), false, false);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) {
  printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) {
  dumpExpanded(isl::manage_copy(Set));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) {
  dumpExpanded(isl::manage_copy(Map));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) {
  dumpExpanded(isl::manage_copy(USet));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) {
  dumpExpanded(isl::manage_copy(UMap));
}
#endif