aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/polly/lib/External/isl/isl_equalities.c
blob: 90dfb7709ce7ec46942dec864cb2d9de846228b1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
 */

#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <isl_seq.h>
#include "isl_map_private.h"
#include "isl_equalities.h"
#include <isl_val_private.h>

/* Given a set of modulo constraints
 *
 *		c + A y = 0 mod d
 *
 * this function computes a particular solution y_0
 *
 * The input is given as a matrix B = [ c A ] and a vector d.
 *
 * The output is matrix containing the solution y_0 or
 * a zero-column matrix if the constraints admit no integer solution.
 *
 * The given set of constrains is equivalent to
 *
 *		c + A y = -D x
 *
 * with D = diag d and x a fresh set of variables.
 * Reducing both c and A modulo d does not change the
 * value of y in the solution and may lead to smaller coefficients.
 * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
 * Then
 *		  [ x ]
 *		M [ y ] = - c
 * and so
 *		               [ x ]
 *		[ H 0 ] U^{-1} [ y ] = - c
 * Let
 *		[ A ]          [ x ]
 *		[ B ] = U^{-1} [ y ]
 * then
 *		H A + 0 B = -c
 *
 * so B may be chosen arbitrarily, e.g., B = 0, and then
 *
 *		       [ x ] = [ -c ]
 *		U^{-1} [ y ] = [  0 ]
 * or
 *		[ x ]     [ -c ]
 *		[ y ] = U [  0 ]
 * specifically,
 *
 *		y = U_{2,1} (-c)
 *
 * If any of the coordinates of this y are non-integer
 * then the constraints admit no integer solution and
 * a zero-column matrix is returned.
 */
static __isl_give isl_mat *particular_solution(__isl_keep isl_mat *B,
	__isl_keep isl_vec *d)
{
	int i, j;
	struct isl_mat *M = NULL;
	struct isl_mat *C = NULL;
	struct isl_mat *U = NULL;
	struct isl_mat *H = NULL;
	struct isl_mat *cst = NULL;
	struct isl_mat *T = NULL;

	M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1);
	C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1);
	if (!M || !C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_clr(M->row[i], B->n_row);
		isl_int_set(M->row[i][i], d->block.data[i]);
		isl_int_neg(C->row[1 + i][0], B->row[i][0]);
		isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]);
		for (j = 0; j < B->n_col - 1; ++j)
			isl_int_fdiv_r(M->row[i][B->n_row + j],
					B->row[i][1 + j], M->row[i][i]);
	}
	M = isl_mat_left_hermite(M, 0, &U, NULL);
	if (!M || !U)
		goto error;
	H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row);
	H = isl_mat_lin_to_aff(H);
	C = isl_mat_inverse_product(H, C);
	if (!C)
		goto error;
	for (i = 0; i < B->n_row; ++i) {
		if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0]))
			break;
		isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]);
	}
	if (i < B->n_row)
		cst = isl_mat_alloc(B->ctx, B->n_row, 0);
	else
		cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1);
	T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row);
	cst = isl_mat_product(T, cst);
	isl_mat_free(M);
	isl_mat_free(C);
	isl_mat_free(U);
	return cst;
error:
	isl_mat_free(M);
	isl_mat_free(C);
	isl_mat_free(U);
	return NULL;
}

/* Compute and return the matrix
 *
 *		U_1^{-1} diag(d_1, 1, ..., 1)
 *
 * with U_1 the unimodular completion of the first (and only) row of B.
 * The columns of this matrix generate the lattice that satisfies
 * the single (linear) modulo constraint.
 */
static __isl_take isl_mat *parameter_compression_1(__isl_keep isl_mat *B,
	__isl_keep isl_vec *d)
{
	struct isl_mat *U;

	U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1);
	if (!U)
		return NULL;
	isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1);
	U = isl_mat_unimodular_complete(U, 1);
	U = isl_mat_right_inverse(U);
	if (!U)
		return NULL;
	isl_mat_col_mul(U, 0, d->block.data[0], 0);
	U = isl_mat_lin_to_aff(U);
	return U;
}

/* Compute a common lattice of solutions to the linear modulo
 * constraints specified by B and d.
 * See also the documentation of isl_mat_parameter_compression.
 * We put the matrix
 * 
 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
 *
 * on a common denominator.  This denominator D is the lcm of modulos d.
 * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
 * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
 * Putting this on the common denominator, we have
 * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
 */
static __isl_give isl_mat *parameter_compression_multi(__isl_keep isl_mat *B,
	__isl_keep isl_vec *d)
{
	int i, j, k;
	isl_int D;
	struct isl_mat *A = NULL, *U = NULL;
	struct isl_mat *T;
	unsigned size;

	isl_int_init(D);

	isl_vec_lcm(d, &D);

	size = B->n_col - 1;
	A = isl_mat_alloc(B->ctx, size, B->n_row * size);
	U = isl_mat_alloc(B->ctx, size, size);
	if (!U || !A)
		goto error;
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_cpy(U->row[0], B->row[i] + 1, size);
		U = isl_mat_unimodular_complete(U, 1);
		if (!U)
			goto error;
		isl_int_divexact(D, D, d->block.data[i]);
		for (k = 0; k < U->n_col; ++k)
			isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
		isl_int_mul(D, D, d->block.data[i]);
		for (j = 1; j < U->n_row; ++j)
			for (k = 0; k < U->n_col; ++k)
				isl_int_mul(A->row[k][i*size+j],
						D, U->row[j][k]);
	}
	A = isl_mat_left_hermite(A, 0, NULL, NULL);
	T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
	T = isl_mat_lin_to_aff(T);
	if (!T)
		goto error;
	isl_int_set(T->row[0][0], D);
	T = isl_mat_right_inverse(T);
	if (!T)
		goto error;
	isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
	T = isl_mat_transpose(T);
	isl_mat_free(A);
	isl_mat_free(U);

	isl_int_clear(D);
	return T;
error:
	isl_mat_free(A);
	isl_mat_free(U);
	isl_int_clear(D);
	return NULL;
}

/* Given a set of modulo constraints
 *
 *		c + A y = 0 mod d
 *
 * this function returns an affine transformation T,
 *
 *		y = T y'
 *
 * that bijectively maps the integer vectors y' to integer
 * vectors y that satisfy the modulo constraints.
 *
 * This function is inspired by Section 2.5.3
 * of B. Meister, "Stating and Manipulating Periodicity in the Polytope
 * Model.  Applications to Program Analysis and Optimization".
 * However, the implementation only follows the algorithm of that
 * section for computing a particular solution and not for computing
 * a general homogeneous solution.  The latter is incomplete and
 * may remove some valid solutions.
 * Instead, we use an adaptation of the algorithm in Section 7 of
 * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
 * Model: Bringing the Power of Quasi-Polynomials to the Masses".
 *
 * The input is given as a matrix B = [ c A ] and a vector d.
 * Each element of the vector d corresponds to a row in B.
 * The output is a lower triangular matrix.
 * If no integer vector y satisfies the given constraints then
 * a matrix with zero columns is returned.
 *
 * We first compute a particular solution y_0 to the given set of
 * modulo constraints in particular_solution.  If no such solution
 * exists, then we return a zero-columned transformation matrix.
 * Otherwise, we compute the generic solution to
 *
 *		A y = 0 mod d
 *
 * That is we want to compute G such that
 *
 *		y = G y''
 *
 * with y'' integer, describes the set of solutions.
 *
 * We first remove the common factors of each row.
 * In particular if gcd(A_i,d_i) != 1, then we divide the whole
 * row i (including d_i) by this common factor.  If afterwards gcd(A_i) != 1,
 * then we divide this row of A by the common factor, unless gcd(A_i) = 0.
 * In the later case, we simply drop the row (in both A and d).
 *
 * If there are no rows left in A, then G is the identity matrix. Otherwise,
 * for each row i, we now determine the lattice of integer vectors
 * that satisfies this row.  Let U_i be the unimodular extension of the
 * row A_i.  This unimodular extension exists because gcd(A_i) = 1.
 * The first component of
 *
 *		y' = U_i y
 *
 * needs to be a multiple of d_i.  Let y' = diag(d_i, 1, ..., 1) y''.
 * Then,
 *
 *		y = U_i^{-1} diag(d_i, 1, ..., 1) y''
 *
 * for arbitrary integer vectors y''.  That is, y belongs to the lattice
 * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
 * If there is only one row, then G = L_1.
 *
 * If there is more than one row left, we need to compute the intersection
 * of the lattices.  That is, we need to compute an L such that
 *
 *		L = L_i L_i'	for all i
 *
 * with L_i' some integer matrices.  Let A be constructed as follows
 *
 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
 *
 * and computed the Hermite Normal Form of A = [ H 0 ] U
 * Then,
 *
 *		L_i^{-T} = H U_{1,i}
 *
 * or
 *
 *		H^{-T} = L_i U_{1,i}^T
 *
 * In other words G = L = H^{-T}.
 * To ensure that G is lower triangular, we compute and use its Hermite
 * normal form.
 *
 * The affine transformation matrix returned is then
 *
 *		[  1   0  ]
 *		[ y_0  G  ]
 *
 * as any y = y_0 + G y' with y' integer is a solution to the original
 * modulo constraints.
 */
__isl_give isl_mat *isl_mat_parameter_compression(__isl_take isl_mat *B,
	__isl_take isl_vec *d)
{
	int i;
	struct isl_mat *cst = NULL;
	struct isl_mat *T = NULL;
	isl_int D;

	if (!B || !d)
		goto error;
	isl_assert(B->ctx, B->n_row == d->size, goto error);
	cst = particular_solution(B, d);
	if (!cst)
		goto error;
	if (cst->n_col == 0) {
		T = isl_mat_alloc(B->ctx, B->n_col, 0);
		isl_mat_free(cst);
		isl_mat_free(B);
		isl_vec_free(d);
		return T;
	}
	isl_int_init(D);
	/* Replace a*g*row = 0 mod g*m by row = 0 mod m */
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
		if (isl_int_is_one(D))
			continue;
		if (isl_int_is_zero(D)) {
			B = isl_mat_drop_rows(B, i, 1);
			d = isl_vec_cow(d);
			if (!B || !d)
				goto error2;
			isl_seq_cpy(d->block.data+i, d->block.data+i+1,
							d->size - (i+1));
			d->size--;
			i--;
			continue;
		}
		B = isl_mat_cow(B);
		if (!B)
			goto error2;
		isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
		isl_int_gcd(D, D, d->block.data[i]);
		d = isl_vec_cow(d);
		if (!d)
			goto error2;
		isl_int_divexact(d->block.data[i], d->block.data[i], D);
	}
	isl_int_clear(D);
	if (B->n_row == 0)
		T = isl_mat_identity(B->ctx, B->n_col);
	else if (B->n_row == 1)
		T = parameter_compression_1(B, d);
	else
		T = parameter_compression_multi(B, d);
	T = isl_mat_left_hermite(T, 0, NULL, NULL);
	if (!T)
		goto error;
	isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
	isl_mat_free(cst);
	isl_mat_free(B);
	isl_vec_free(d);
	return T;
error2:
	isl_int_clear(D);
error:
	isl_mat_free(cst);
	isl_mat_free(B);
	isl_vec_free(d);
	return NULL;
}

/* Given a set of equalities
 *
 *		B(y) + A x = 0						(*)
 *
 * compute and return an affine transformation T,
 *
 *		y = T y'
 *
 * that bijectively maps the integer vectors y' to integer
 * vectors y that satisfy the modulo constraints for some value of x.
 *
 * Let [H 0] be the Hermite Normal Form of A, i.e.,
 *
 *		A = [H 0] Q
 *
 * Then y is a solution of (*) iff
 *
 *		H^-1 B(y) (= - [I 0] Q x)
 *
 * is an integer vector.  Let d be the common denominator of H^-1.
 * We impose
 *
 *		d H^-1 B(y) = 0 mod d
 *
 * and compute the solution using isl_mat_parameter_compression.
 */
__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B,
	__isl_take isl_mat *A)
{
	isl_ctx *ctx;
	isl_vec *d;
	int n_row, n_col;

	if (!A)
		return isl_mat_free(B);

	ctx = isl_mat_get_ctx(A);
	n_row = A->n_row;
	n_col = A->n_col;
	A = isl_mat_left_hermite(A, 0, NULL, NULL);
	A = isl_mat_drop_cols(A, n_row, n_col - n_row);
	A = isl_mat_lin_to_aff(A);
	A = isl_mat_right_inverse(A);
	d = isl_vec_alloc(ctx, n_row);
	if (A)
		d = isl_vec_set(d, A->row[0][0]);
	A = isl_mat_drop_rows(A, 0, 1);
	A = isl_mat_drop_cols(A, 0, 1);
	B = isl_mat_product(A, B);

	return isl_mat_parameter_compression(B, d);
}

/* Return a compression matrix that indicates that there are no solutions
 * to the original constraints.  In particular, return a zero-column
 * matrix with 1 + dim rows.  If "T2" is not NULL, then assign *T2
 * the inverse of this matrix.  *T2 may already have been assigned
 * matrix, so free it first.
 * "free1", "free2" and "free3" are temporary matrices that are
 * not useful when an empty compression is returned.  They are
 * simply freed.
 */
static __isl_give isl_mat *empty_compression(isl_ctx *ctx, unsigned dim,
	__isl_give isl_mat **T2, __isl_take isl_mat *free1,
	__isl_take isl_mat *free2, __isl_take isl_mat *free3)
{
	isl_mat_free(free1);
	isl_mat_free(free2);
	isl_mat_free(free3);
	if (T2) {
		isl_mat_free(*T2);
		*T2 = isl_mat_alloc(ctx, 0, 1 + dim);
	}
	return isl_mat_alloc(ctx, 1 + dim, 0);
}

/* Given a matrix that maps a (possibly) parametric domain to
 * a parametric domain, add in rows that map the "nparam" parameters onto
 * themselves.
 */
static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat,
	unsigned nparam)
{
	int i;

	if (nparam == 0)
		return mat;
	if (!mat)
		return NULL;

	mat = isl_mat_insert_rows(mat, 1, nparam);
	if (!mat)
		return NULL;

	for (i = 0; i < nparam; ++i) {
		isl_seq_clr(mat->row[1 + i], mat->n_col);
		isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]);
	}

	return mat;
}

/* Given a set of equalities
 *
 *		-C(y) + M x = 0
 *
 * this function computes a unimodular transformation from a lower-dimensional
 * space to the original space that bijectively maps the integer points x'
 * in the lower-dimensional space to the integer points x in the original
 * space that satisfy the equalities.
 *
 * The input is given as a matrix B = [ -C M ] and the output is a
 * matrix that maps [1 x'] to [1 x].
 * The number of equality constraints in B is assumed to be smaller than
 * or equal to the number of variables x.
 * "first" is the position of the first x variable.
 * The preceding variables are considered to be y-variables.
 * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
 *
 * First compute the (left) Hermite normal form of M,
 *
 *		M [U1 U2] = M U = H = [H1 0]
 * or
 *		              M = H Q = [H1 0] [Q1]
 *                                             [Q2]
 *
 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
 * Define the transformed variables as
 *
 *		x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
 *		            [ x2' ]           [Q2]
 *
 * The equalities then become
 *
 *		-C(y) + H1 x1' = 0   or   x1' = H1^{-1} C(y) = C'(y)
 *
 * If the denominator of the constant term does not divide the
 * the common denominator of the coefficients of y, then every
 * integer point is mapped to a non-integer point and then the original set
 * has no integer solutions (since the x' are a unimodular transformation
 * of the x).  In this case, a zero-column matrix is returned.
 * Otherwise, the transformation is given by
 *
 *		x = U1 H1^{-1} C(y) + U2 x2'
 *
 * The inverse transformation is simply
 *
 *		x2' = Q2 x
 */
__isl_give isl_mat *isl_mat_final_variable_compression(__isl_take isl_mat *B,
	int first, __isl_give isl_mat **T2)
{
	int i, n;
	isl_ctx *ctx;
	isl_mat *H = NULL, *C, *H1, *U = NULL, *U1, *U2;
	unsigned dim;

	if (T2)
		*T2 = NULL;
	if (!B)
		goto error;

	ctx = isl_mat_get_ctx(B);
	dim = B->n_col - 1;
	n = dim - first;
	if (n < B->n_row)
		isl_die(ctx, isl_error_invalid, "too many equality constraints",
			goto error);
	H = isl_mat_sub_alloc(B, 0, B->n_row, 1 + first, n);
	H = isl_mat_left_hermite(H, 0, &U, T2);
	if (!H || !U || (T2 && !*T2))
		goto error;
	if (T2) {
		*T2 = isl_mat_drop_rows(*T2, 0, B->n_row);
		*T2 = isl_mat_diagonal(isl_mat_identity(ctx, 1 + first), *T2);
		if (!*T2)
			goto error;
	}
	C = isl_mat_alloc(ctx, 1 + B->n_row, 1 + first);
	if (!C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	isl_seq_clr(C->row[0] + 1, first);
	isl_mat_sub_neg(ctx, C->row + 1, B->row, B->n_row, 0, 0, 1 + first);
	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
	H1 = isl_mat_lin_to_aff(H1);
	C = isl_mat_inverse_product(H1, C);
	if (!C)
		goto error;
	isl_mat_free(H);
	if (!isl_int_is_one(C->row[0][0])) {
		isl_int g;

		isl_int_init(g);
		for (i = 0; i < B->n_row; ++i) {
			isl_seq_gcd(C->row[1 + i] + 1, first, &g);
			isl_int_gcd(g, g, C->row[0][0]);
			if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
				break;
		}
		isl_int_clear(g);

		if (i < B->n_row)
			return empty_compression(ctx, dim, T2, B, C, U);
		C = isl_mat_normalize(C);
	}
	U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row);
	U1 = isl_mat_lin_to_aff(U1);
	U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row);
	U2 = isl_mat_lin_to_aff(U2);
	isl_mat_free(U);
	C = isl_mat_product(U1, C);
	C = isl_mat_aff_direct_sum(C, U2);
	C = insert_parameter_rows(C, first);

	isl_mat_free(B);

	return C;
error:
	isl_mat_free(B);
	isl_mat_free(H);
	isl_mat_free(U);
	if (T2) {
		isl_mat_free(*T2);
		*T2 = NULL;
	}
	return NULL;
}

/* Given a set of equalities
 *
 *		M x - c = 0
 *
 * this function computes a unimodular transformation from a lower-dimensional
 * space to the original space that bijectively maps the integer points x'
 * in the lower-dimensional space to the integer points x in the original
 * space that satisfy the equalities.
 *
 * The input is given as a matrix B = [ -c M ] and the output is a
 * matrix that maps [1 x'] to [1 x].
 * The number of equality constraints in B is assumed to be smaller than
 * or equal to the number of variables x.
 * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
 */
__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B,
	__isl_give isl_mat **T2)
{
	return isl_mat_final_variable_compression(B, 0, T2);
}

/* Return "bset" and set *T and *T2 to the identity transformation
 * on "bset" (provided T and T2 are not NULL).
 */
static __isl_give isl_basic_set *return_with_identity(
	__isl_take isl_basic_set *bset, __isl_give isl_mat **T,
	__isl_give isl_mat **T2)
{
	isl_size dim;
	isl_mat *id;

	dim = isl_basic_set_dim(bset, isl_dim_set);
	if (dim < 0)
		return isl_basic_set_free(bset);
	if (!T && !T2)
		return bset;

	id = isl_mat_identity(isl_basic_map_get_ctx(bset), 1 + dim);
	if (T)
		*T = isl_mat_copy(id);
	if (T2)
		*T2 = isl_mat_copy(id);
	isl_mat_free(id);

	return bset;
}

/* Use the n equalities of bset to unimodularly transform the
 * variables x such that n transformed variables x1' have a constant value
 * and rewrite the constraints of bset in terms of the remaining
 * transformed variables x2'.  The matrix pointed to by T maps
 * the new variables x2' back to the original variables x, while T2
 * maps the original variables to the new variables.
 */
static __isl_give isl_basic_set *compress_variables(
	__isl_take isl_basic_set *bset,
	__isl_give isl_mat **T, __isl_give isl_mat **T2)
{
	struct isl_mat *B, *TC;
	isl_size dim;

	if (T)
		*T = NULL;
	if (T2)
		*T2 = NULL;
	if (isl_basic_set_check_no_params(bset) < 0 ||
	    isl_basic_set_check_no_locals(bset) < 0)
		return isl_basic_set_free(bset);
	dim = isl_basic_set_dim(bset, isl_dim_set);
	if (dim < 0)
		return isl_basic_set_free(bset);
	isl_assert(bset->ctx, bset->n_eq <= dim, goto error);
	if (bset->n_eq == 0)
		return return_with_identity(bset, T, T2);

	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim);
	TC = isl_mat_variable_compression(B, T2);
	if (!TC)
		goto error;
	if (TC->n_col == 0) {
		isl_mat_free(TC);
		if (T2) {
			isl_mat_free(*T2);
			*T2 = NULL;
		}
		bset = isl_basic_set_set_to_empty(bset);
		return return_with_identity(bset, T, T2);
	}

	bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC);
	if (T)
		*T = TC;
	return bset;
error:
	isl_basic_set_free(bset);
	return NULL;
}

__isl_give isl_basic_set *isl_basic_set_remove_equalities(
	__isl_take isl_basic_set *bset, __isl_give isl_mat **T,
	__isl_give isl_mat **T2)
{
	if (T)
		*T = NULL;
	if (T2)
		*T2 = NULL;
	if (isl_basic_set_check_no_params(bset) < 0)
		return isl_basic_set_free(bset);
	bset = isl_basic_set_gauss(bset, NULL);
	if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
		return return_with_identity(bset, T, T2);
	bset = compress_variables(bset, T, T2);
	return bset;
}

/* Check if dimension dim belongs to a residue class
 *		i_dim \equiv r mod m
 * with m != 1 and if so return m in *modulo and r in *residue.
 * As a special case, when i_dim has a fixed value v, then
 * *modulo is set to 0 and *residue to v.
 *
 * If i_dim does not belong to such a residue class, then *modulo
 * is set to 1 and *residue is set to 0.
 */
isl_stat isl_basic_set_dim_residue_class(__isl_keep isl_basic_set *bset,
	int pos, isl_int *modulo, isl_int *residue)
{
	isl_bool fixed;
	struct isl_ctx *ctx;
	struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
	isl_size total;
	isl_size nparam;

	if (!bset || !modulo || !residue)
		return isl_stat_error;

	fixed = isl_basic_set_plain_dim_is_fixed(bset, pos, residue);
	if (fixed < 0)
		return isl_stat_error;
	if (fixed) {
		isl_int_set_si(*modulo, 0);
		return isl_stat_ok;
	}

	ctx = isl_basic_set_get_ctx(bset);
	total = isl_basic_set_dim(bset, isl_dim_all);
	nparam = isl_basic_set_dim(bset, isl_dim_param);
	if (total < 0 || nparam < 0)
		return isl_stat_error;
	H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total);
	H = isl_mat_left_hermite(H, 0, &U, NULL);
	if (!H)
		return isl_stat_error;

	isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
			total-bset->n_eq, modulo);
	if (isl_int_is_zero(*modulo))
		isl_int_set_si(*modulo, 1);
	if (isl_int_is_one(*modulo)) {
		isl_int_set_si(*residue, 0);
		isl_mat_free(H);
		isl_mat_free(U);
		return isl_stat_ok;
	}

	C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1);
	if (!C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1);
	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
	H1 = isl_mat_lin_to_aff(H1);
	C = isl_mat_inverse_product(H1, C);
	isl_mat_free(H);
	U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
	U1 = isl_mat_lin_to_aff(U1);
	isl_mat_free(U);
	C = isl_mat_product(U1, C);
	if (!C)
		return isl_stat_error;
	if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
		bset = isl_basic_set_copy(bset);
		bset = isl_basic_set_set_to_empty(bset);
		isl_basic_set_free(bset);
		isl_int_set_si(*modulo, 1);
		isl_int_set_si(*residue, 0);
		return isl_stat_ok;
	}
	isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
	isl_int_fdiv_r(*residue, *residue, *modulo);
	isl_mat_free(C);
	return isl_stat_ok;
error:
	isl_mat_free(H);
	isl_mat_free(U);
	return isl_stat_error;
}

/* Check if dimension dim belongs to a residue class
 *		i_dim \equiv r mod m
 * with m != 1 and if so return m in *modulo and r in *residue.
 * As a special case, when i_dim has a fixed value v, then
 * *modulo is set to 0 and *residue to v.
 *
 * If i_dim does not belong to such a residue class, then *modulo
 * is set to 1 and *residue is set to 0.
 */
isl_stat isl_set_dim_residue_class(__isl_keep isl_set *set,
	int pos, isl_int *modulo, isl_int *residue)
{
	isl_int m;
	isl_int r;
	int i;

	if (!set || !modulo || !residue)
		return isl_stat_error;

	if (set->n == 0) {
		isl_int_set_si(*modulo, 0);
		isl_int_set_si(*residue, 0);
		return isl_stat_ok;
	}

	if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0)
		return isl_stat_error;

	if (set->n == 1)
		return isl_stat_ok;

	if (isl_int_is_one(*modulo))
		return isl_stat_ok;

	isl_int_init(m);
	isl_int_init(r);

	for (i = 1; i < set->n; ++i) {
		if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0)
			goto error;
		isl_int_gcd(*modulo, *modulo, m);
		isl_int_sub(m, *residue, r);
		isl_int_gcd(*modulo, *modulo, m);
		if (!isl_int_is_zero(*modulo))
			isl_int_fdiv_r(*residue, *residue, *modulo);
		if (isl_int_is_one(*modulo))
			break;
	}

	isl_int_clear(m);
	isl_int_clear(r);

	return isl_stat_ok;
error:
	isl_int_clear(m);
	isl_int_clear(r);
	return isl_stat_error;
}

/* Check if dimension "dim" belongs to a residue class
 *		i_dim \equiv r mod m
 * with m != 1 and if so return m in *modulo and r in *residue.
 * As a special case, when i_dim has a fixed value v, then
 * *modulo is set to 0 and *residue to v.
 *
 * If i_dim does not belong to such a residue class, then *modulo
 * is set to 1 and *residue is set to 0.
 */
isl_stat isl_set_dim_residue_class_val(__isl_keep isl_set *set,
	int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue)
{
	*modulo = NULL;
	*residue = NULL;
	if (!set)
		return isl_stat_error;
	*modulo = isl_val_alloc(isl_set_get_ctx(set));
	*residue = isl_val_alloc(isl_set_get_ctx(set));
	if (!*modulo || !*residue)
		goto error;
	if (isl_set_dim_residue_class(set, pos,
					&(*modulo)->n, &(*residue)->n) < 0)
		goto error;
	isl_int_set_si((*modulo)->d, 1);
	isl_int_set_si((*residue)->d, 1);
	return isl_stat_ok;
error:
	isl_val_free(*modulo);
	isl_val_free(*residue);
	return isl_stat_error;
}