1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ReduceOperands.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace PatternMatch;
static void
extractOperandsFromModule(Oracle &O, ReducerWorkItem &WorkItem,
function_ref<Value *(Use &)> ReduceValue) {
Module &Program = WorkItem.getModule();
for (auto &F : Program.functions()) {
for (auto &I : instructions(&F)) {
if (PHINode *Phi = dyn_cast<PHINode>(&I)) {
for (auto &Op : Phi->incoming_values()) {
if (!O.shouldKeep()) {
if (Value *Reduced = ReduceValue(Op))
Phi->setIncomingValueForBlock(Phi->getIncomingBlock(Op), Reduced);
}
}
continue;
}
for (auto &Op : I.operands()) {
if (Value *Reduced = ReduceValue(Op)) {
if (!O.shouldKeep())
Op.set(Reduced);
}
}
}
}
}
static bool isOne(Use &Op) {
auto *C = dyn_cast<Constant>(Op);
return C && C->isOneValue();
}
static bool isZero(Use &Op) {
auto *C = dyn_cast<Constant>(Op);
return C && C->isNullValue();
}
static bool isZeroOrOneFP(Value *Op) {
const APFloat *C;
return match(Op, m_APFloat(C)) &&
((C->isZero() && !C->isNegative()) || C->isExactlyValue(1.0));
}
static bool shouldReduceOperand(Use &Op) {
Type *Ty = Op->getType();
if (Ty->isLabelTy() || Ty->isMetadataTy())
return false;
// TODO: be more precise about which GEP operands we can reduce (e.g. array
// indexes)
if (isa<GEPOperator>(Op.getUser()))
return false;
if (auto *CB = dyn_cast<CallBase>(Op.getUser())) {
if (&CB->getCalledOperandUse() == &Op)
return false;
}
return true;
}
static bool switchCaseExists(Use &Op, ConstantInt *CI) {
SwitchInst *SI = dyn_cast<SwitchInst>(Op.getUser());
if (!SI)
return false;
return SI->findCaseValue(CI) != SI->case_default();
}
void llvm::reduceOperandsOneDeltaPass(TestRunner &Test) {
auto ReduceValue = [](Use &Op) -> Value * {
if (!shouldReduceOperand(Op))
return nullptr;
Type *Ty = Op->getType();
if (auto *IntTy = dyn_cast<IntegerType>(Ty)) {
// Don't duplicate an existing switch case.
if (switchCaseExists(Op, ConstantInt::get(IntTy, 1)))
return nullptr;
// Don't replace existing ones and zeroes.
return (isOne(Op) || isZero(Op)) ? nullptr : ConstantInt::get(IntTy, 1);
}
if (Ty->isFloatingPointTy())
return isZeroOrOneFP(Op) ? nullptr : ConstantFP::get(Ty, 1.0);
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
if (isOne(Op) || isZero(Op) || isZeroOrOneFP(Op))
return nullptr;
Type *ElementType = VT->getElementType();
Constant *C;
if (ElementType->isFloatingPointTy()) {
C = ConstantFP::get(ElementType, 1.0);
} else if (IntegerType *IntTy = dyn_cast<IntegerType>(ElementType)) {
C = ConstantInt::get(IntTy, 1);
} else {
return nullptr;
}
return ConstantVector::getSplat(VT->getElementCount(), C);
}
return nullptr;
};
runDeltaPass(
Test,
[ReduceValue](Oracle &O, ReducerWorkItem &WorkItem) {
extractOperandsFromModule(O, WorkItem, ReduceValue);
},
"Reducing Operands to one");
}
void llvm::reduceOperandsZeroDeltaPass(TestRunner &Test) {
auto ReduceValue = [](Use &Op) -> Value * {
if (!shouldReduceOperand(Op))
return nullptr;
// Don't duplicate an existing switch case.
if (auto *IntTy = dyn_cast<IntegerType>(Op->getType()))
if (switchCaseExists(Op, ConstantInt::get(IntTy, 0)))
return nullptr;
// Don't replace existing zeroes.
return isZero(Op) ? nullptr : Constant::getNullValue(Op->getType());
};
runDeltaPass(
Test,
[ReduceValue](Oracle &O, ReducerWorkItem &Program) {
extractOperandsFromModule(O, Program, ReduceValue);
},
"Reducing Operands to zero");
}
void llvm::reduceOperandsNaNDeltaPass(TestRunner &Test) {
auto ReduceValue = [](Use &Op) -> Value * {
Type *Ty = Op->getType();
if (!Ty->isFPOrFPVectorTy())
return nullptr;
// Prefer 0.0 or 1.0 over NaN.
//
// TODO: Preferring NaN may make more sense because FP operations are more
// universally foldable.
if (match(Op.get(), m_NaN()) || isZeroOrOneFP(Op.get()))
return nullptr;
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
return ConstantVector::getSplat(VT->getElementCount(),
ConstantFP::getQNaN(VT->getElementType()));
}
return ConstantFP::getQNaN(Ty);
};
runDeltaPass(
Test,
[ReduceValue](Oracle &O, ReducerWorkItem &Program) {
extractOperandsFromModule(O, Program, ReduceValue);
},
"Reducing Operands to NaN");
}
|