1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
//===-- MissingFrameInferrer.cpp - Missing frame inferrer --------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MissingFrameInferrer.h"
#include "PerfReader.h"
#include "ProfiledBinary.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <cstdint>
#include <iterator>
#include <queue>
#include <sys/types.h>
#define DEBUG_TYPE "missing-frame-inferrer"
using namespace llvm;
using namespace sampleprof;
STATISTIC(TailCallUniReachable,
"Number of frame pairs reachable via a unique tail call path");
STATISTIC(TailCallMultiReachable,
"Number of frame pairs reachable via a multiple tail call paths");
STATISTIC(TailCallUnreachable,
"Number of frame pairs unreachable via any tail call path");
STATISTIC(TailCallFuncSingleTailCalls,
"Number of functions with single tail call site");
STATISTIC(TailCallFuncMultipleTailCalls,
"Number of functions with multiple tail call sites");
STATISTIC(TailCallMaxTailCallPath, "Length of the longest tail call path");
static cl::opt<uint32_t>
MaximumSearchDepth("max-search-depth", cl::init(UINT32_MAX - 1),
cl::desc("The maximum levels the DFS-based missing "
"frame search should go with"));
void MissingFrameInferrer::initialize(
const ContextSampleCounterMap *SampleCounters) {
// Refine call edges based on LBR samples.
if (SampleCounters) {
std::unordered_map<uint64_t, std::unordered_set<uint64_t>> SampledCalls;
std::unordered_map<uint64_t, std::unordered_set<uint64_t>> SampledTailCalls;
// Populate SampledCalls based on static call sites. Similarly to
// SampledTailCalls.
for (const auto &CI : *SampleCounters) {
for (auto Item : CI.second.BranchCounter) {
auto From = Item.first.first;
auto To = Item.first.second;
if (CallEdges.count(From)) {
assert(CallEdges[From].size() == 1 &&
"A callsite should only appear once with either a known or a "
"zero (unknown) target value at this point");
SampledCalls[From].insert(To);
}
if (TailCallEdges.count(From)) {
assert(TailCallEdges[From].size() == 1 &&
"A callsite should only appear once with either a known or a "
"zero (unknown) target value at this point");
FuncRange *FromFRange = Binary->findFuncRange(From);
FuncRange *ToFRange = Binary->findFuncRange(To);
if (FromFRange != ToFRange)
SampledTailCalls[From].insert(To);
}
}
}
// Replace static edges with dynamic edges.
CallEdges = SampledCalls;
TailCallEdges = SampledTailCalls;
}
// Populate function-based edges. This is to speed up address to function
// translation.
for (auto Call : CallEdges)
for (auto Target : Call.second)
if (FuncRange *ToFRange = Binary->findFuncRange(Target))
CallEdgesF[Call.first].insert(ToFRange->Func);
for (auto Call : TailCallEdges) {
for (auto Target : Call.second) {
if (FuncRange *ToFRange = Binary->findFuncRange(Target)) {
TailCallEdgesF[Call.first].insert(ToFRange->Func);
TailCallTargetFuncs.insert(ToFRange->Func);
}
}
if (FuncRange *FromFRange = Binary->findFuncRange(Call.first))
FuncToTailCallMap[FromFRange->Func].push_back(Call.first);
}
#if LLVM_ENABLE_STATS
for (auto F : FuncToTailCallMap) {
assert(F.second.size() > 0 && "");
if (F.second.size() > 1)
TailCallFuncMultipleTailCalls++;
else
TailCallFuncSingleTailCalls++;
}
#endif
#ifndef NDEBUG
auto PrintCallTargets =
[&](const std::unordered_map<uint64_t, std::unordered_set<uint64_t>>
&CallTargets,
bool IsTailCall) {
for (const auto &Targets : CallTargets) {
for (const auto &Target : Targets.second) {
dbgs() << (IsTailCall ? "TailCall" : "Call");
dbgs() << " From " << format("%8" PRIx64, Targets.first) << " to "
<< format("%8" PRIx64, Target) << "\n";
}
}
};
LLVM_DEBUG(dbgs() << "============================\n ";
dbgs() << "Call targets:\n";
PrintCallTargets(CallEdges, false);
dbgs() << "\nTail call targets:\n";
PrintCallTargets(CallEdges, true);
dbgs() << "============================\n";);
#endif
}
uint64_t MissingFrameInferrer::computeUniqueTailCallPath(
BinaryFunction *From, BinaryFunction *To, SmallVectorImpl<uint64_t> &Path) {
// Search for a unique path comprised of only tail call edges for a given
// source and target frame address on the a tail call graph that consists of
// only tail call edges. Note that only a unique path counts. Multiple paths
// are treated unreachable.
if (From == To)
return 1;
// Ignore cyclic paths. Since we are doing a recursive DFS walk, if the source
// frame being visited is already in the stack, it means we are seeing a
// cycle. This is done before querying the cached result because the cached
// result may be computed based on the same path. Consider the following case:
// A -> B, B -> A, A -> D
// When computing unique reachablity from A to D, the cached result for (B,D)
// should not be counted since the unique path B->A->D is basically the same
// path as A->D. Counting that with invalidate the uniqueness from A to D.
if (Visiting.contains(From))
return 0;
// If already computed, return the cached result.
auto I = UniquePaths.find({From, To});
if (I != UniquePaths.end()) {
Path.append(I->second.begin(), I->second.end());
return 1;
}
auto J = NonUniquePaths.find({From, To});
if (J != NonUniquePaths.end()) {
return J->second;
}
uint64_t Pos = Path.size();
// DFS walk each outgoing tail call edges.
// Bail out if we are already at the the maximum searching depth.
if (CurSearchingDepth == MaximumSearchDepth)
return 0;
if (!FuncToTailCallMap.count(From))
return 0;
CurSearchingDepth++;
Visiting.insert(From);
uint64_t NumPaths = 0;
for (auto TailCall : FuncToTailCallMap[From]) {
NumPaths += computeUniqueTailCallPath(TailCall, To, Path);
// Stop analyzing the remaining if we are already seeing more than one
// reachable paths.
if (NumPaths > 1)
break;
}
CurSearchingDepth--;
Visiting.erase(From);
// Undo already-computed path if it is not unique.
if (NumPaths != 1) {
Path.pop_back_n(Path.size() - Pos);
}
// Cache the result.
if (NumPaths == 1) {
UniquePaths[{From, To}].assign(Path.begin() + Pos, Path.end());
#if LLVM_ENABLE_STATS
auto &LocalPath = UniquePaths[{From, To}];
assert((LocalPath.size() <= MaximumSearchDepth + 1) &&
"Path should not be longer than the maximum searching depth");
TailCallMaxTailCallPath = std::max(uint64_t(LocalPath.size()),
TailCallMaxTailCallPath.getValue());
#endif
} else {
NonUniquePaths[{From, To}] = NumPaths;
}
return NumPaths;
}
uint64_t MissingFrameInferrer::computeUniqueTailCallPath(
uint64_t From, BinaryFunction *To, SmallVectorImpl<uint64_t> &Path) {
if (!TailCallEdgesF.count(From))
return 0;
Path.push_back(From);
uint64_t NumPaths = 0;
for (auto Target : TailCallEdgesF[From]) {
NumPaths += computeUniqueTailCallPath(Target, To, Path);
// Stop analyzing the remaining if we are already seeing more than one
// reachable paths.
if (NumPaths > 1)
break;
}
// Undo already-computed path if it is not unique.
if (NumPaths != 1)
Path.pop_back();
return NumPaths;
}
bool MissingFrameInferrer::inferMissingFrames(
uint64_t From, uint64_t To, SmallVectorImpl<uint64_t> &UniquePath) {
assert(!TailCallEdgesF.count(From) &&
"transition between From and To cannot be via a tailcall otherwise "
"they would not show up at the same time");
UniquePath.push_back(From);
uint64_t Pos = UniquePath.size();
FuncRange *ToFRange = Binary->findFuncRange(To);
if (!ToFRange)
return false;
// Bail out if caller has no known outgoing call edges.
if (!CallEdgesF.count(From))
return false;
// Done with the inference if the calle is reachable via a single callsite.
// This may not be accurate but it improves the search throughput.
for (auto Target : CallEdgesF[From]) {
if (Target == ToFRange->Func)
return true;
}
// Bail out if callee is not tailcall reachable at all.
if (!TailCallTargetFuncs.contains(ToFRange->Func))
return false;
Visiting.clear();
CurSearchingDepth = 0;
uint64_t NumPaths = 0;
for (auto Target : CallEdgesF[From]) {
NumPaths +=
computeUniqueTailCallPath(Target, ToFRange->Func, UniquePath);
// Stop analyzing the remaining if we are already seeing more than one
// reachable paths.
if (NumPaths > 1)
break;
}
// Undo already-computed path if it is not unique.
if (NumPaths != 1) {
UniquePath.pop_back_n(UniquePath.size() - Pos);
assert(UniquePath.back() == From && "broken path");
}
#if LLVM_ENABLE_STATS
if (NumPaths == 1) {
if (ReachableViaUniquePaths.insert({From, ToFRange->StartAddress}).second)
TailCallUniReachable++;
} else if (NumPaths == 0) {
if (Unreachables.insert({From, ToFRange->StartAddress}).second) {
TailCallUnreachable++;
LLVM_DEBUG(dbgs() << "No path found from "
<< format("%8" PRIx64 ":", From) << " to "
<< format("%8" PRIx64 ":", ToFRange->StartAddress)
<< "\n");
}
} else if (NumPaths > 1) {
if (ReachableViaMultiPaths.insert({From, ToFRange->StartAddress})
.second) {
TailCallMultiReachable++;
LLVM_DEBUG(dbgs() << "Multiple paths found from "
<< format("%8" PRIx64 ":", From) << " to "
<< format("%8" PRIx64 ":", ToFRange->StartAddress)
<< "\n");
}
}
#endif
return NumPaths == 1;
}
void MissingFrameInferrer::inferMissingFrames(
const SmallVectorImpl<uint64_t> &Context,
SmallVectorImpl<uint64_t> &NewContext) {
if (Context.size() == 1) {
NewContext = Context;
return;
}
NewContext.clear();
for (uint64_t I = 1; I < Context.size(); I++) {
inferMissingFrames(Context[I - 1], Context[I], NewContext);
}
NewContext.push_back(Context.back());
assert((NewContext.size() >= Context.size()) &&
"Inferred context should include all frames in the original context");
assert((NewContext.size() > Context.size() || NewContext == Context) &&
"Inferred context should be exactly the same "
"with the original context");
}
|