aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/llvm-exegesis/lib/SnippetGenerator.cpp
blob: 4b47be085e6561f191c79e19415546d8fc9d5173 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//===-- SnippetGenerator.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include <array>
#include <string>

#include "Assembler.h"
#include "Error.h"
#include "MCInstrDescView.h"
#include "SnippetGenerator.h"
#include "Target.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Program.h"

namespace llvm {
namespace exegesis {

std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT) {
  std::vector<CodeTemplate> Result;
  Result.push_back(std::move(CT));
  return Result;
}

SnippetGeneratorFailure::SnippetGeneratorFailure(const Twine &S)
    : StringError(S, inconvertibleErrorCode()) {}

SnippetGenerator::SnippetGenerator(const LLVMState &State, const Options &Opts)
    : State(State), Opts(Opts) {}

SnippetGenerator::~SnippetGenerator() = default;

Error SnippetGenerator::generateConfigurations(
    const InstructionTemplate &Variant, std::vector<BenchmarkCode> &Benchmarks,
    const BitVector &ExtraForbiddenRegs) const {
  BitVector ForbiddenRegs = State.getRATC().reservedRegisters();
  ForbiddenRegs |= ExtraForbiddenRegs;
  // If the instruction has memory registers, prevent the generator from
  // using the scratch register and its aliasing registers.
  if (Variant.getInstr().hasMemoryOperands()) {
    const auto &ET = State.getExegesisTarget();
    unsigned ScratchSpacePointerInReg =
        ET.getScratchMemoryRegister(State.getTargetMachine().getTargetTriple());
    if (ScratchSpacePointerInReg == 0)
      return make_error<Failure>(
          "Infeasible : target does not support memory instructions");
    const auto &ScratchRegAliases =
        State.getRATC().getRegister(ScratchSpacePointerInReg).aliasedBits();
    // If the instruction implicitly writes to ScratchSpacePointerInReg , abort.
    // FIXME: We could make a copy of the scratch register.
    for (const auto &Op : Variant.getInstr().Operands) {
      if (Op.isDef() && Op.isImplicitReg() &&
          ScratchRegAliases.test(Op.getImplicitReg()))
        return make_error<Failure>(
            "Infeasible : memory instruction uses scratch memory register");
    }
    ForbiddenRegs |= ScratchRegAliases;
  }

  if (auto E = generateCodeTemplates(Variant, ForbiddenRegs)) {
    MutableArrayRef<CodeTemplate> Templates = E.get();

    // Avoid reallocations in the loop.
    Benchmarks.reserve(Benchmarks.size() + Templates.size());
    for (CodeTemplate &CT : Templates) {
      // TODO: Generate as many BenchmarkCode as needed.
      {
        BenchmarkCode BC;
        BC.Info = CT.Info;
        BC.Key.Instructions.reserve(CT.Instructions.size());
        for (InstructionTemplate &IT : CT.Instructions) {
          if (auto error = randomizeUnsetVariables(State, ForbiddenRegs, IT))
            return error;
          BC.Key.Instructions.push_back(IT.build());
        }
        if (CT.ScratchSpacePointerInReg)
          BC.LiveIns.push_back(CT.ScratchSpacePointerInReg);
        BC.Key.RegisterInitialValues =
            computeRegisterInitialValues(CT.Instructions);
        BC.Key.Config = CT.Config;
        Benchmarks.emplace_back(std::move(BC));
        if (Benchmarks.size() >= Opts.MaxConfigsPerOpcode) {
          // We reached the number of  allowed configs and return early.
          return Error::success();
        }
      }
    }
    return Error::success();
  } else
    return E.takeError();
}

std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
    const std::vector<InstructionTemplate> &Instructions) const {
  // Collect all register uses and create an assignment for each of them.
  // Ignore memory operands which are handled separately.
  // Loop invariant: DefinedRegs[i] is true iif it has been set at least once
  // before the current instruction.
  BitVector DefinedRegs = State.getRATC().emptyRegisters();
  std::vector<RegisterValue> RIV;
  for (const InstructionTemplate &IT : Instructions) {
    // Returns the register that this Operand sets or uses, or 0 if this is not
    // a register.
    const auto GetOpReg = [&IT](const Operand &Op) -> unsigned {
      if (Op.isMemory())
        return 0;
      if (Op.isImplicitReg())
        return Op.getImplicitReg();
      if (Op.isExplicit() && IT.getValueFor(Op).isReg())
        return IT.getValueFor(Op).getReg();
      return 0;
    };
    // Collect used registers that have never been def'ed.
    for (const Operand &Op : IT.getInstr().Operands) {
      if (Op.isUse()) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0 && !DefinedRegs.test(Reg)) {
          RIV.push_back(RegisterValue::zero(Reg));
          DefinedRegs.set(Reg);
        }
      }
    }
    // Mark defs as having been def'ed.
    for (const Operand &Op : IT.getInstr().Operands) {
      if (Op.isDef()) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0)
          DefinedRegs.set(Reg);
      }
    }
  }
  return RIV;
}

Expected<std::vector<CodeTemplate>>
generateSelfAliasingCodeTemplates(InstructionTemplate Variant,
                                  const BitVector &ForbiddenRegisters) {
  const AliasingConfigurations SelfAliasing(
      Variant.getInstr(), Variant.getInstr(), ForbiddenRegisters);
  if (SelfAliasing.empty())
    return make_error<SnippetGeneratorFailure>("empty self aliasing");
  std::vector<CodeTemplate> Result;
  Result.emplace_back();
  CodeTemplate &CT = Result.back();
  if (SelfAliasing.hasImplicitAliasing()) {
    CT.Info = "implicit Self cycles, picking random values.";
  } else {
    CT.Info = "explicit self cycles, selecting one aliasing Conf.";
    // This is a self aliasing instruction so defs and uses are from the same
    // instance, hence twice Variant in the following call.
    setRandomAliasing(SelfAliasing, Variant, Variant);
  }
  CT.Instructions.push_back(std::move(Variant));
  return std::move(Result);
}

Expected<std::vector<CodeTemplate>>
generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant,
                                   StringRef Msg) {
  std::vector<CodeTemplate> Result;
  Result.emplace_back();
  CodeTemplate &CT = Result.back();
  CT.Info =
      std::string(formatv("{0}, repeating an unconstrained assignment", Msg));
  CT.Instructions.push_back(std::move(Variant));
  return std::move(Result);
}

std::mt19937 &randomGenerator() {
  static std::random_device RandomDevice;
  static std::mt19937 RandomGenerator(RandomDevice());
  return RandomGenerator;
}

size_t randomIndex(size_t Max) {
  std::uniform_int_distribution<> Distribution(0, Max);
  return Distribution(randomGenerator());
}

template <typename C> static decltype(auto) randomElement(const C &Container) {
  assert(!Container.empty() &&
         "Can't pick a random element from an empty container)");
  return Container[randomIndex(Container.size() - 1)];
}

static void setRegisterOperandValue(const RegisterOperandAssignment &ROV,
                                    InstructionTemplate &IB) {
  assert(ROV.Op);
  if (ROV.Op->isExplicit()) {
    auto &AssignedValue = IB.getValueFor(*ROV.Op);
    if (AssignedValue.isValid()) {
      assert(AssignedValue.isReg() && AssignedValue.getReg() == ROV.Reg);
      return;
    }
    AssignedValue = MCOperand::createReg(ROV.Reg);
  } else {
    assert(ROV.Op->isImplicitReg());
    assert(ROV.Reg == ROV.Op->getImplicitReg());
  }
}

size_t randomBit(const BitVector &Vector) {
  assert(Vector.any());
  auto Itr = Vector.set_bits_begin();
  for (size_t I = randomIndex(Vector.count() - 1); I != 0; --I)
    ++Itr;
  return *Itr;
}

std::optional<int> getFirstCommonBit(const BitVector &A, const BitVector &B) {
  BitVector Intersect = A;
  Intersect &= B;
  int idx = Intersect.find_first();
  if (idx != -1)
    return idx;
  return {};
}

void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
                       InstructionTemplate &DefIB, InstructionTemplate &UseIB) {
  assert(!AliasingConfigurations.empty());
  assert(!AliasingConfigurations.hasImplicitAliasing());
  const auto &RandomConf = randomElement(AliasingConfigurations.Configurations);
  setRegisterOperandValue(randomElement(RandomConf.Defs), DefIB);
  setRegisterOperandValue(randomElement(RandomConf.Uses), UseIB);
}

static Error randomizeMCOperand(const LLVMState &State,
                                const Instruction &Instr, const Variable &Var,
                                MCOperand &AssignedValue,
                                const BitVector &ForbiddenRegs) {
  const Operand &Op = Instr.getPrimaryOperand(Var);
  if (Op.getExplicitOperandInfo().OperandType >=
      MCOI::OperandType::OPERAND_FIRST_TARGET)
    return State.getExegesisTarget().randomizeTargetMCOperand(
        Instr, Var, AssignedValue, ForbiddenRegs);
  switch (Op.getExplicitOperandInfo().OperandType) {
  case MCOI::OperandType::OPERAND_IMMEDIATE:
    // FIXME: explore immediate values too.
    AssignedValue = MCOperand::createImm(1);
    break;
  case MCOI::OperandType::OPERAND_REGISTER: {
    assert(Op.isReg());
    auto AllowedRegs = Op.getRegisterAliasing().sourceBits();
    assert(AllowedRegs.size() == ForbiddenRegs.size());
    for (auto I : ForbiddenRegs.set_bits())
      AllowedRegs.reset(I);
    if (!AllowedRegs.any())
      return make_error<Failure>(
          Twine("no available registers:\ncandidates:\n")
              .concat(debugString(State.getRegInfo(),
                                  Op.getRegisterAliasing().sourceBits()))
              .concat("\nforbidden:\n")
              .concat(debugString(State.getRegInfo(), ForbiddenRegs)));
    AssignedValue = MCOperand::createReg(randomBit(AllowedRegs));
    break;
  }
  default:
    break;
  }
  return Error::success();
}

Error randomizeUnsetVariables(const LLVMState &State,
                              const BitVector &ForbiddenRegs,
                              InstructionTemplate &IT) {
  for (const Variable &Var : IT.getInstr().Variables) {
    MCOperand &AssignedValue = IT.getValueFor(Var);
    if (!AssignedValue.isValid())
      if (auto Err = randomizeMCOperand(State, IT.getInstr(), Var,
                                        AssignedValue, ForbiddenRegs))
        return Err;
  }
  return Error::success();
}

} // namespace exegesis
} // namespace llvm