1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
//===-- ParallelSnippetGenerator.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ParallelSnippetGenerator.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "Target.h"
// FIXME: Load constants into registers (e.g. with fld1) to not break
// instructions like x87.
// Ideally we would like the only limitation on executing instructions to be the
// availability of the CPU resources (e.g. execution ports) needed to execute
// them, instead of the availability of their data dependencies.
// To achieve that, one approach is to generate instructions that do not have
// data dependencies between them.
//
// For some instructions, this is trivial:
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// mov rax, qword ptr [rsi]
// For the above snippet, haswell just renames rax four times and executes the
// four instructions two at a time on P23 and P0126.
//
// For some instructions, we just need to make sure that the source is
// different from the destination. For example, IDIV8r reads from GPR and
// writes to AX. We just need to ensure that the Var is assigned a
// register which is different from AX:
// idiv bx
// idiv bx
// idiv bx
// idiv bx
// The above snippet will be able to fully saturate the ports, while the same
// with ax would issue one uop every `latency(IDIV8r)` cycles.
//
// Some instructions make this harder because they both read and write from
// the same register:
// inc rax
// inc rax
// inc rax
// inc rax
// This has a data dependency from each instruction to the next, limit the
// number of instructions that can be issued in parallel.
// It turns out that this is not a big issue on recent Intel CPUs because they
// have heuristics to balance port pressure. In the snippet above, subsequent
// instructions will end up evenly distributed on {P0,P1,P5,P6}, but some CPUs
// might end up executing them all on P0 (just because they can), or try
// avoiding P5 because it's usually under high pressure from vector
// instructions.
// This issue is even more important for high-latency instructions because
// they increase the idle time of the CPU, e.g. :
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
// imul rax, rbx
//
// To avoid that, we do the renaming statically by generating as many
// independent exclusive assignments as possible (until all possible registers
// are exhausted) e.g.:
// imul rax, rbx
// imul rcx, rbx
// imul rdx, rbx
// imul r8, rbx
//
// Some instruction even make the above static renaming impossible because
// they implicitly read and write from the same operand, e.g. ADC16rr reads
// and writes from EFLAGS.
// In that case we just use a greedy register assignment and hope for the
// best.
namespace llvm {
namespace exegesis {
static bool hasVariablesWithTiedOperands(const Instruction &Instr) {
SmallVector<const Variable *, 8> Result;
for (const auto &Var : Instr.Variables)
if (Var.hasTiedOperands())
return true;
return false;
}
ParallelSnippetGenerator::~ParallelSnippetGenerator() = default;
void ParallelSnippetGenerator::instantiateMemoryOperands(
const unsigned ScratchSpacePointerInReg,
std::vector<InstructionTemplate> &Instructions) const {
if (ScratchSpacePointerInReg == 0)
return; // no memory operands.
const auto &ET = State.getExegesisTarget();
const unsigned MemStep = ET.getMaxMemoryAccessSize();
const size_t OriginalInstructionsSize = Instructions.size();
size_t I = 0;
for (InstructionTemplate &IT : Instructions) {
ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
++I;
}
while (Instructions.size() < kMinNumDifferentAddresses) {
InstructionTemplate IT = Instructions[I % OriginalInstructionsSize];
ET.fillMemoryOperands(IT, ScratchSpacePointerInReg, I * MemStep);
++I;
Instructions.push_back(std::move(IT));
}
assert(I * MemStep < BenchmarkRunner::ScratchSpace::kSize &&
"not enough scratch space");
}
enum class RegRandomizationStrategy : uint8_t {
PickRandomRegs,
SingleStaticRegPerOperand,
SingleStaticReg,
FIRST = PickRandomRegs,
LAST = SingleStaticReg,
};
} // namespace exegesis
template <> struct enum_iteration_traits<exegesis::RegRandomizationStrategy> {
static constexpr bool is_iterable = true;
};
namespace exegesis {
const char *getDescription(RegRandomizationStrategy S) {
switch (S) {
case RegRandomizationStrategy::PickRandomRegs:
return "randomizing registers";
case RegRandomizationStrategy::SingleStaticRegPerOperand:
return "one unique register for each position";
case RegRandomizationStrategy::SingleStaticReg:
return "reusing the same register for all positions";
}
llvm_unreachable("Unknown UseRegRandomizationStrategy enum");
}
static std::variant<std::nullopt_t, MCOperand, Register>
generateSingleRegisterForInstrAvoidingDefUseOverlap(
const LLVMState &State, const BitVector &ForbiddenRegisters,
const BitVector &ImplicitUseAliases, const BitVector &ImplicitDefAliases,
const BitVector &Uses, const BitVector &Defs, const InstructionTemplate &IT,
const Operand &Op, const ArrayRef<InstructionTemplate> Instructions,
RegRandomizationStrategy S) {
const Instruction &Instr = IT.getInstr();
assert(Op.isReg() && Op.isExplicit() && !Op.isMemory() &&
!IT.getValueFor(Op).isValid());
assert((!Op.isUse() || !Op.isTied()) &&
"Not expecting to see a tied use reg");
if (Op.isUse()) {
switch (S) {
case RegRandomizationStrategy::PickRandomRegs:
break;
case RegRandomizationStrategy::SingleStaticReg:
case RegRandomizationStrategy::SingleStaticRegPerOperand: {
if (!Instructions.empty())
return Instructions.front().getValueFor(Op);
if (S != RegRandomizationStrategy::SingleStaticReg)
break;
BitVector PossibleRegisters = Op.getRegisterAliasing().sourceBits();
const BitVector UseAliases = getAliasedBits(State.getRegInfo(), Uses);
if (std::optional<int> CommonBit =
getFirstCommonBit(PossibleRegisters, UseAliases))
return *CommonBit;
break;
}
}
}
BitVector PossibleRegisters = Op.getRegisterAliasing().sourceBits();
remove(PossibleRegisters, ForbiddenRegisters);
if (Op.isDef()) {
remove(PossibleRegisters, ImplicitUseAliases);
const BitVector UseAliases = getAliasedBits(State.getRegInfo(), Uses);
remove(PossibleRegisters, UseAliases);
}
if (Op.isUse()) {
remove(PossibleRegisters, ImplicitDefAliases);
// NOTE: in general, using same reg for multiple Use's is fine.
if (S == RegRandomizationStrategy::SingleStaticRegPerOperand) {
const BitVector UseAliases = getAliasedBits(State.getRegInfo(), Uses);
remove(PossibleRegisters, UseAliases);
}
}
bool IsDefWithTiedUse =
Instr.Variables[Op.getVariableIndex()].hasTiedOperands();
if (Op.isUse() || IsDefWithTiedUse) {
// Now, important bit: if we have used some register for def,
// then we can not use that same register for *any* use,
// be it either an untied use, or an use tied to a def.
// But def-ing same regs is fine, as long as there are no uses!
const BitVector DefsAliases = getAliasedBits(State.getRegInfo(), Defs);
remove(PossibleRegisters, DefsAliases);
}
if (!PossibleRegisters.any())
return std::nullopt;
return randomBit(PossibleRegisters);
}
static std::optional<InstructionTemplate>
generateSingleSnippetForInstrAvoidingDefUseOverlap(
const LLVMState &State, const BitVector &ForbiddenRegisters,
const BitVector &ImplicitUseAliases, const BitVector &ImplicitDefAliases,
BitVector &Uses, BitVector &Defs, InstructionTemplate IT,
const ArrayRef<InstructionTemplate> Instructions,
RegRandomizationStrategy S) {
const Instruction &Instr = IT.getInstr();
for (const Operand &Op : Instr.Operands) {
if (!Op.isReg() || !Op.isExplicit() || Op.isMemory() ||
IT.getValueFor(Op).isValid())
continue;
assert((!Op.isUse() || !Op.isTied()) && "Will not get tied uses.");
std::variant<std::nullopt_t, MCOperand, Register> R =
generateSingleRegisterForInstrAvoidingDefUseOverlap(
State, ForbiddenRegisters, ImplicitUseAliases, ImplicitDefAliases,
Uses, Defs, IT, Op, Instructions, S);
if (std::holds_alternative<std::nullopt_t>(R))
return {};
MCOperand MCOp;
if (std::holds_alternative<MCOperand>(R))
MCOp = std::get<MCOperand>(R);
else {
Register RandomReg = std::get<Register>(R);
if (Op.isDef())
Defs.set(RandomReg);
if (Op.isUse())
Uses.set(RandomReg);
MCOp = MCOperand::createReg(RandomReg);
}
IT.getValueFor(Op) = MCOp;
}
return IT;
}
static std::vector<InstructionTemplate>
generateSnippetForInstrAvoidingDefUseOverlap(
const LLVMState &State, const InstructionTemplate &IT,
RegRandomizationStrategy S, const BitVector &ForbiddenRegisters) {
// We don't want to accidentally serialize the instruction,
// so we must be sure that we don't pick a def that is an implicit use,
// or a use that is an implicit def, so record implicit regs now.
BitVector ImplicitUses(State.getRegInfo().getNumRegs());
BitVector ImplicitDefs(State.getRegInfo().getNumRegs());
for (const auto &Op : IT.getInstr().Operands) {
if (Op.isReg() && Op.isImplicit() && !Op.isMemory()) {
assert(Op.isImplicitReg() && "Not an implicit register operand?");
if (Op.isUse())
ImplicitUses.set(Op.getImplicitReg());
else {
assert(Op.isDef() && "Not a use and not a def?");
ImplicitDefs.set(Op.getImplicitReg());
}
}
}
const BitVector ImplicitUseAliases =
getAliasedBits(State.getRegInfo(), ImplicitUses);
const BitVector ImplicitDefAliases =
getAliasedBits(State.getRegInfo(), ImplicitDefs);
BitVector Defs(State.getRegInfo().getNumRegs());
BitVector Uses(State.getRegInfo().getNumRegs());
std::vector<InstructionTemplate> Instructions;
while (true) {
std::optional<InstructionTemplate> TmpIT =
generateSingleSnippetForInstrAvoidingDefUseOverlap(
State, ForbiddenRegisters, ImplicitUseAliases, ImplicitDefAliases,
Uses, Defs, IT, Instructions, S);
if (!TmpIT)
return Instructions;
Instructions.push_back(std::move(*TmpIT));
if (!hasVariablesWithTiedOperands(IT.getInstr()))
return Instructions;
assert(Instructions.size() <= 128 && "Stuck in endless loop?");
}
}
Expected<std::vector<CodeTemplate>>
ParallelSnippetGenerator::generateCodeTemplates(
InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
const Instruction &Instr = Variant.getInstr();
CodeTemplate CT;
CT.ScratchSpacePointerInReg =
Instr.hasMemoryOperands()
? State.getExegesisTarget().getScratchMemoryRegister(
State.getTargetMachine().getTargetTriple())
: 0;
const AliasingConfigurations SelfAliasing(Instr, Instr, ForbiddenRegisters);
if (SelfAliasing.empty()) {
CT.Info = "instruction is parallel, repeating a random one.";
CT.Instructions.push_back(std::move(Variant));
instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
return getSingleton(std::move(CT));
}
if (SelfAliasing.hasImplicitAliasing()) {
CT.Info = "instruction is serial, repeating a random one.";
CT.Instructions.push_back(std::move(Variant));
instantiateMemoryOperands(CT.ScratchSpacePointerInReg, CT.Instructions);
return getSingleton(std::move(CT));
}
std::vector<CodeTemplate> Result;
bool HasTiedOperands = hasVariablesWithTiedOperands(Instr);
// If there are no tied operands, then we don't want to "saturate backedge",
// and the template we will produce will have only a single instruction.
unsigned NumUntiedUseRegs = count_if(Instr.Operands, [](const Operand &Op) {
return Op.isReg() && Op.isExplicit() && !Op.isMemory() && Op.isUse() &&
!Op.isTied();
});
SmallVector<RegRandomizationStrategy, 3> Strategies;
if (HasTiedOperands || NumUntiedUseRegs >= 3)
Strategies.push_back(RegRandomizationStrategy::PickRandomRegs);
if (NumUntiedUseRegs >= 2)
Strategies.push_back(RegRandomizationStrategy::SingleStaticRegPerOperand);
Strategies.push_back(RegRandomizationStrategy::SingleStaticReg);
for (RegRandomizationStrategy S : Strategies) {
CodeTemplate CurrCT = CT.clone();
CurrCT.Info =
Twine("instruction has ")
.concat(HasTiedOperands ? "" : "no ")
.concat("tied variables, avoiding "
"Read-After-Write issue, picking random def and use "
"registers not aliasing each other, for uses, ")
.concat(getDescription(S))
.str();
CurrCT.Instructions = generateSnippetForInstrAvoidingDefUseOverlap(
State, Variant, S, ForbiddenRegisters);
if (CurrCT.Instructions.empty())
return make_error<StringError>(
Twine("Failed to produce any snippet via: ").concat(CurrCT.Info),
inconvertibleErrorCode());
instantiateMemoryOperands(CurrCT.ScratchSpacePointerInReg,
CurrCT.Instructions);
Result.push_back(std::move(CurrCT));
}
return Result;
}
constexpr const size_t ParallelSnippetGenerator::kMinNumDifferentAddresses;
} // namespace exegesis
} // namespace llvm
|