aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/llvm-exegesis/lib/LatencyBenchmarkRunner.cpp
blob: d57ee146d2a0b3a060fd868b1bbf6a7c80834891 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
//===-- LatencyBenchmarkRunner.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LatencyBenchmarkRunner.h"

#include "BenchmarkRunner.h"
#include "Target.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <cmath>

namespace llvm {
namespace exegesis {

LatencyBenchmarkRunner::LatencyBenchmarkRunner(
    const LLVMState &State, InstructionBenchmark::ModeE Mode,
    BenchmarkPhaseSelectorE BenchmarkPhaseSelector,
    InstructionBenchmark::ResultAggregationModeE ResultAgg)
    : BenchmarkRunner(State, Mode, BenchmarkPhaseSelector) {
  assert((Mode == InstructionBenchmark::Latency ||
          Mode == InstructionBenchmark::InverseThroughput) &&
         "invalid mode");
  ResultAggMode = ResultAgg;
}

LatencyBenchmarkRunner::~LatencyBenchmarkRunner() = default;

static double computeVariance(const llvm::SmallVector<int64_t, 4> &Values) {
  if (Values.empty())
    return 0.0;
  double Sum = std::accumulate(Values.begin(), Values.end(), 0.0);

  const double Mean = Sum / Values.size();
  double Ret = 0;
  for (const auto &V : Values) {
    double Delta = V - Mean;
    Ret += Delta * Delta;
  }
  return Ret / Values.size();
}

static int64_t findMin(const llvm::SmallVector<int64_t, 4> &Values) {
  if (Values.empty())
    return 0;
  return *std::min_element(Values.begin(), Values.end());
}

static int64_t findMax(const llvm::SmallVector<int64_t, 4> &Values) {
  if (Values.empty())
    return 0;
  return *std::max_element(Values.begin(), Values.end());
}

static int64_t findMean(const llvm::SmallVector<int64_t, 4> &Values) {
  if (Values.empty())
    return 0;
  return std::accumulate(Values.begin(), Values.end(), 0.0) /
         static_cast<double>(Values.size());
}

Expected<std::vector<BenchmarkMeasure>> LatencyBenchmarkRunner::runMeasurements(
    const FunctionExecutor &Executor) const {
  // Cycle measurements include some overhead from the kernel. Repeat the
  // measure several times and return the aggregated value, as specified by
  // ResultAggMode.
  constexpr const int NumMeasurements = 30;
  llvm::SmallVector<int64_t, 4> AccumulatedValues;
  double MinVariance = std::numeric_limits<double>::infinity();
  const char *CounterName = State.getPfmCounters().CycleCounter;
  // Values count for each run.
  int ValuesCount = 0;
  for (size_t I = 0; I < NumMeasurements; ++I) {
    auto ExpectedCounterValues = Executor.runAndSample(CounterName);
    if (!ExpectedCounterValues)
      return ExpectedCounterValues.takeError();
    ValuesCount = ExpectedCounterValues.get().size();
    if (ValuesCount == 1)
      AccumulatedValues.push_back(ExpectedCounterValues.get()[0]);
    else {
      // We'll keep the reading with lowest variance (ie., most stable)
      double Variance = computeVariance(*ExpectedCounterValues);
      if (MinVariance > Variance) {
        AccumulatedValues = std::move(ExpectedCounterValues.get());
        MinVariance = Variance;
      }
    }
  }

  std::string ModeName;
  switch (Mode) {
  case InstructionBenchmark::Latency:
    ModeName = "latency";
    break;
  case InstructionBenchmark::InverseThroughput:
    ModeName = "inverse_throughput";
    break;
  default:
    break;
  }

  switch (ResultAggMode) {
  case InstructionBenchmark::MinVariance: {
    if (ValuesCount == 1)
      llvm::errs() << "Each sample only has one value. result-aggregation-mode "
                      "of min-variance is probably non-sensical\n";
    std::vector<BenchmarkMeasure> Result;
    Result.reserve(AccumulatedValues.size());
    for (const int64_t Value : AccumulatedValues)
      Result.push_back(BenchmarkMeasure::Create(ModeName, Value));
    return std::move(Result);
  }
  case InstructionBenchmark::Min: {
    std::vector<BenchmarkMeasure> Result;
    Result.push_back(
        BenchmarkMeasure::Create(ModeName, findMin(AccumulatedValues)));
    return std::move(Result);
  }
  case InstructionBenchmark::Max: {
    std::vector<BenchmarkMeasure> Result;
    Result.push_back(
        BenchmarkMeasure::Create(ModeName, findMax(AccumulatedValues)));
    return std::move(Result);
  }
  case InstructionBenchmark::Mean: {
    std::vector<BenchmarkMeasure> Result;
    Result.push_back(
        BenchmarkMeasure::Create(ModeName, findMean(AccumulatedValues)));
    return std::move(Result);
  }
  }
  return llvm::make_error<Failure>(llvm::Twine("Unexpected benchmark mode(")
                                       .concat(std::to_string(Mode))
                                       .concat(" and unexpected ResultAggMode ")
                                       .concat(std::to_string(ResultAggMode)));
}

} // namespace exegesis
} // namespace llvm