aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp
blob: 6573bf010c86a94ef472c4abfaced8ce6236dde8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This header defines the implementation of the LLVM difference
// engine, which structurally compares global values within a module.
//
//===----------------------------------------------------------------------===//

#include "DifferenceEngine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/type_traits.h"
#include <utility>

using namespace llvm;

namespace {

/// A priority queue, implemented as a heap.
template <class T, class Sorter, unsigned InlineCapacity>
class PriorityQueue {
  Sorter Precedes;
  llvm::SmallVector<T, InlineCapacity> Storage;

public:
  PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}

  /// Checks whether the heap is empty.
  bool empty() const { return Storage.empty(); }

  /// Insert a new value on the heap.
  void insert(const T &V) {
    unsigned Index = Storage.size();
    Storage.push_back(V);
    if (Index == 0) return;

    T *data = Storage.data();
    while (true) {
      unsigned Target = (Index + 1) / 2 - 1;
      if (!Precedes(data[Index], data[Target])) return;
      std::swap(data[Index], data[Target]);
      if (Target == 0) return;
      Index = Target;
    }
  }

  /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
  T remove_min() {
    assert(!empty());
    T tmp = Storage[0];
    
    unsigned NewSize = Storage.size() - 1;
    if (NewSize) {
      // Move the slot at the end to the beginning.
      if (std::is_trivially_copyable<T>::value)
        Storage[0] = Storage[NewSize];
      else
        std::swap(Storage[0], Storage[NewSize]);

      // Bubble the root up as necessary.
      unsigned Index = 0;
      while (true) {
        // With a 1-based index, the children would be Index*2 and Index*2+1.
        unsigned R = (Index + 1) * 2;
        unsigned L = R - 1;

        // If R is out of bounds, we're done after this in any case.
        if (R >= NewSize) {
          // If L is also out of bounds, we're done immediately.
          if (L >= NewSize) break;

          // Otherwise, test whether we should swap L and Index.
          if (Precedes(Storage[L], Storage[Index]))
            std::swap(Storage[L], Storage[Index]);
          break;
        }

        // Otherwise, we need to compare with the smaller of L and R.
        // Prefer R because it's closer to the end of the array.
        unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);

        // If Index is >= the min of L and R, then heap ordering is restored.
        if (!Precedes(Storage[IndexToTest], Storage[Index]))
          break;

        // Otherwise, keep bubbling up.
        std::swap(Storage[IndexToTest], Storage[Index]);
        Index = IndexToTest;
      }
    }
    Storage.pop_back();

    return tmp;
  }
};

/// A function-scope difference engine.
class FunctionDifferenceEngine {
  DifferenceEngine &Engine;

  // Some initializers may reference the variable we're currently checking. This
  // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
  // recursing.
  const Value *SavedLHS;
  const Value *SavedRHS;

  // The current mapping from old local values to new local values.
  DenseMap<const Value *, const Value *> Values;

  // The current mapping from old blocks to new blocks.
  DenseMap<const BasicBlock *, const BasicBlock *> Blocks;

  // The tentative mapping from old local values while comparing a pair of
  // basic blocks. Once the pair has been processed, the tentative mapping is
  // committed to the Values map.
  DenseSet<std::pair<const Value *, const Value *>> TentativeValues;

  // Equivalence Assumptions
  //
  // For basic blocks in loops, some values in phi nodes may depend on
  // values from not yet processed basic blocks in the loop. When encountering
  // such values, we optimistically asssume their equivalence and store this
  // assumption in a BlockDiffCandidate for the pair of compared BBs.
  //
  // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
  // stored assumptions using the Values map that stores proven equivalences
  // between the old and new values, and report a diff if an assumption cannot
  // be proven to be true.
  //
  // Note that after having made an assumption, all further determined
  // equivalences implicitly depend on that assumption. These will not be
  // reverted or reported if the assumption proves to be false, because these
  // are considered indirect diffs caused by earlier direct diffs.
  //
  // We aim to avoid false negatives in llvm-diff, that is, ensure that
  // whenever no diff is reported, the functions are indeed equal. If
  // assumptions were made, this is not entirely clear, because in principle we
  // could end up with a circular proof where the proof of equivalence of two
  // nodes is depending on the assumption of their equivalence.
  //
  // To see that assumptions do not add false negatives, note that if we do not
  // report a diff, this means that there is an equivalence mapping between old
  // and new values that is consistent with all assumptions made. The circular
  // dependency that exists on an IR value level does not exist at run time,
  // because the values selected by the phi nodes must always already have been
  // computed. Hence, we can prove equivalence of the old and new functions by
  // considering step-wise parallel execution, and incrementally proving
  // equivalence of every new computed value. Another way to think about it is
  // to imagine cloning the loop BBs for every iteration, turning the loops
  // into (possibly infinite) DAGs, and proving equivalence by induction on the
  // iteration, using the computed value mapping.

  // The class BlockDiffCandidate stores pairs which either have already been
  // proven to differ, or pairs whose equivalence depends on assumptions to be
  // verified later.
  struct BlockDiffCandidate {
    const BasicBlock *LBB;
    const BasicBlock *RBB;
    // Maps old values to assumed-to-be-equivalent new values
    SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
    // If set, we already know the blocks differ.
    bool KnownToDiffer;
  };

  // List of block diff candidates in the order found by processing.
  // We generate reports in this order.
  // For every LBB, there may only be one corresponding RBB.
  SmallVector<BlockDiffCandidate> BlockDiffCandidates;
  // Maps LBB to the index of its BlockDiffCandidate, if existing.
  DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;

  // Note: Every LBB must always be queried together with the same RBB.
  // The returned reference is not permanently valid and should not be stored.
  BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
                                                    const BasicBlock *RBB) {
    auto It = BlockDiffCandidateIndices.find(LBB);
    // Check if LBB already has a diff candidate
    if (It == BlockDiffCandidateIndices.end()) {
      // Add new one
      BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
      BlockDiffCandidates.push_back(
          {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
      return BlockDiffCandidates.back();
    }
    // Use existing one
    BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
    assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
    return Result;
  }

  // Optionally passed to equivalence checker functions, so these can add
  // assumptions in BlockDiffCandidates. Its presence controls whether
  // assumptions are generated.
  struct AssumptionContext {
    // The two basic blocks that need the two compared values to be equivalent.
    const BasicBlock *LBB;
    const BasicBlock *RBB;
  };

  unsigned getUnprocPredCount(const BasicBlock *Block) const {
    unsigned Count = 0;
    for (const_pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E;
         ++I)
      if (!Blocks.count(*I)) Count++;
    return Count;
  }

  typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;

  /// A type which sorts a priority queue by the number of unprocessed
  /// predecessor blocks it has remaining.
  ///
  /// This is actually really expensive to calculate.
  struct QueueSorter {
    const FunctionDifferenceEngine &fde;
    explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}

    bool operator()(BlockPair &Old, BlockPair &New) {
      return fde.getUnprocPredCount(Old.first)
           < fde.getUnprocPredCount(New.first);
    }
  };

  /// A queue of unified blocks to process.
  PriorityQueue<BlockPair, QueueSorter, 20> Queue;

  /// Try to unify the given two blocks.  Enqueues them for processing
  /// if they haven't already been processed.
  ///
  /// Returns true if there was a problem unifying them.
  bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
    const BasicBlock *&Ref = Blocks[L];

    if (Ref) {
      if (Ref == R) return false;

      Engine.logf("successor %l cannot be equivalent to %r; "
                  "it's already equivalent to %r")
        << L << R << Ref;
      return true;
    }

    Ref = R;
    Queue.insert(BlockPair(L, R));
    return false;
  }

  /// Unifies two instructions, given that they're known not to have
  /// structural differences.
  void unify(const Instruction *L, const Instruction *R) {
    DifferenceEngine::Context C(Engine, L, R);

    bool Result = diff(L, R, true, true, true);
    assert(!Result && "structural differences second time around?");
    (void) Result;
    if (!L->use_empty())
      Values[L] = R;
  }

  void processQueue() {
    while (!Queue.empty()) {
      BlockPair Pair = Queue.remove_min();
      diff(Pair.first, Pair.second);
    }
  }

  void checkAndReportDiffCandidates() {
    for (BlockDiffCandidate &BDC : BlockDiffCandidates) {

      // Check assumptions
      for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
        auto It = Values.find(L);
        if (It == Values.end() || It->second != R) {
          BDC.KnownToDiffer = true;
          break;
        }
      }

      // Run block diff if the BBs differ
      if (BDC.KnownToDiffer) {
        DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
        runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
      }
    }
  }

  void diff(const BasicBlock *L, const BasicBlock *R) {
    DifferenceEngine::Context C(Engine, L, R);

    BasicBlock::const_iterator LI = L->begin(), LE = L->end();
    BasicBlock::const_iterator RI = R->begin();

    do {
      assert(LI != LE && RI != R->end());
      const Instruction *LeftI = &*LI, *RightI = &*RI;

      // If the instructions differ, start the more sophisticated diff
      // algorithm at the start of the block.
      if (diff(LeftI, RightI, false, false, true)) {
        TentativeValues.clear();
        // Register (L, R) as diffing pair. Note that we could directly emit a
        // block diff here, but this way we ensure all diffs are emitted in one
        // consistent order, independent of whether the diffs were detected
        // immediately or via invalid assumptions.
        getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
        return;
      }

      // Otherwise, tentatively unify them.
      if (!LeftI->use_empty())
        TentativeValues.insert(std::make_pair(LeftI, RightI));

      ++LI;
      ++RI;
    } while (LI != LE); // This is sufficient: we can't get equality of
                        // terminators if there are residual instructions.

    // Unify everything in the block, non-tentatively this time.
    TentativeValues.clear();
    for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
      unify(&*LI, &*RI);
  }

  bool matchForBlockDiff(const Instruction *L, const Instruction *R);
  void runBlockDiff(BasicBlock::const_iterator LI,
                    BasicBlock::const_iterator RI);

  bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
    // FIXME: call attributes
    AssumptionContext AC = {L.getParent(), R.getParent()};
    if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
                              &AC)) {
      if (Complain) Engine.log("called functions differ");
      return true;
    }
    if (L.arg_size() != R.arg_size()) {
      if (Complain) Engine.log("argument counts differ");
      return true;
    }
    for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
      if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
        if (Complain)
          Engine.logf("arguments %l and %r differ")
              << L.getArgOperand(I) << R.getArgOperand(I);
        return true;
      }
    return false;
  }

  // If AllowAssumptions is enabled, whenever we encounter a pair of values
  // that we cannot prove to be equivalent, we assume equivalence and store that
  // assumption to be checked later in BlockDiffCandidates.
  bool diff(const Instruction *L, const Instruction *R, bool Complain,
            bool TryUnify, bool AllowAssumptions) {
    // FIXME: metadata (if Complain is set)
    AssumptionContext ACValue = {L->getParent(), R->getParent()};
    // nullptr AssumptionContext disables assumption generation.
    const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;

    // Different opcodes always imply different operations.
    if (L->getOpcode() != R->getOpcode()) {
      if (Complain) Engine.log("different instruction types");
      return true;
    }

    if (isa<CmpInst>(L)) {
      if (cast<CmpInst>(L)->getPredicate()
            != cast<CmpInst>(R)->getPredicate()) {
        if (Complain) Engine.log("different predicates");
        return true;
      }
    } else if (isa<CallInst>(L)) {
      return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
    } else if (isa<PHINode>(L)) {
      const PHINode &LI = cast<PHINode>(*L);
      const PHINode &RI = cast<PHINode>(*R);

      // This is really weird;  type uniquing is broken?
      if (LI.getType() != RI.getType()) {
        if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
          if (Complain) Engine.log("different phi types");
          return true;
        }
      }

      if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
        if (Complain)
          Engine.log("PHI node # of incoming values differ");
        return true;
      }

      for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
        if (TryUnify)
          tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));

        if (!equivalentAsOperands(LI.getIncomingValue(I),
                                  RI.getIncomingValue(I), AC)) {
          if (Complain)
            Engine.log("PHI node incoming values differ");
          return true;
        }
      }

      return false;

    // Terminators.
    } else if (isa<InvokeInst>(L)) {
      const InvokeInst &LI = cast<InvokeInst>(*L);
      const InvokeInst &RI = cast<InvokeInst>(*R);
      if (diffCallSites(LI, RI, Complain))
        return true;

      if (TryUnify) {
        tryUnify(LI.getNormalDest(), RI.getNormalDest());
        tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
      }
      return false;

    } else if (isa<CallBrInst>(L)) {
      const CallBrInst &LI = cast<CallBrInst>(*L);
      const CallBrInst &RI = cast<CallBrInst>(*R);
      if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
        if (Complain)
          Engine.log("callbr # of indirect destinations differ");
        return true;
      }

      // Perform the "try unify" step so that we can equate the indirect
      // destinations before checking the call site.
      for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
        tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));

      if (diffCallSites(LI, RI, Complain))
        return true;

      if (TryUnify)
        tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
      return false;

    } else if (isa<BranchInst>(L)) {
      const BranchInst *LI = cast<BranchInst>(L);
      const BranchInst *RI = cast<BranchInst>(R);
      if (LI->isConditional() != RI->isConditional()) {
        if (Complain) Engine.log("branch conditionality differs");
        return true;
      }

      if (LI->isConditional()) {
        if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
          if (Complain) Engine.log("branch conditions differ");
          return true;
        }
        if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
      }
      if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
      return false;

    } else if (isa<IndirectBrInst>(L)) {
      const IndirectBrInst *LI = cast<IndirectBrInst>(L);
      const IndirectBrInst *RI = cast<IndirectBrInst>(R);
      if (LI->getNumDestinations() != RI->getNumDestinations()) {
        if (Complain) Engine.log("indirectbr # of destinations differ");
        return true;
      }

      if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
        if (Complain) Engine.log("indirectbr addresses differ");
        return true;
      }

      if (TryUnify) {
        for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
          tryUnify(LI->getDestination(i), RI->getDestination(i));
        }
      }
      return false;

    } else if (isa<SwitchInst>(L)) {
      const SwitchInst *LI = cast<SwitchInst>(L);
      const SwitchInst *RI = cast<SwitchInst>(R);
      if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
        if (Complain) Engine.log("switch conditions differ");
        return true;
      }
      if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());

      bool Difference = false;

      DenseMap<const ConstantInt *, const BasicBlock *> LCases;
      for (auto Case : LI->cases())
        LCases[Case.getCaseValue()] = Case.getCaseSuccessor();

      for (auto Case : RI->cases()) {
        const ConstantInt *CaseValue = Case.getCaseValue();
        const BasicBlock *LCase = LCases[CaseValue];
        if (LCase) {
          if (TryUnify)
            tryUnify(LCase, Case.getCaseSuccessor());
          LCases.erase(CaseValue);
        } else if (Complain || !Difference) {
          if (Complain)
            Engine.logf("right switch has extra case %r") << CaseValue;
          Difference = true;
        }
      }
      if (!Difference)
        for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
                 I = LCases.begin(),
                 E = LCases.end();
             I != E; ++I) {
          if (Complain)
            Engine.logf("left switch has extra case %l") << I->first;
          Difference = true;
        }
      return Difference;
    } else if (isa<UnreachableInst>(L)) {
      return false;
    }

    if (L->getNumOperands() != R->getNumOperands()) {
      if (Complain) Engine.log("instructions have different operand counts");
      return true;
    }

    for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
      Value *LO = L->getOperand(I), *RO = R->getOperand(I);
      if (!equivalentAsOperands(LO, RO, AC)) {
        if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
        return true;
      }
    }

    return false;
  }

public:
  bool equivalentAsOperands(const Constant *L, const Constant *R,
                            const AssumptionContext *AC) {
    // Use equality as a preliminary filter.
    if (L == R)
      return true;

    if (L->getValueID() != R->getValueID())
      return false;

    // Ask the engine about global values.
    if (isa<GlobalValue>(L))
      return Engine.equivalentAsOperands(cast<GlobalValue>(L),
                                         cast<GlobalValue>(R));

    // Compare constant expressions structurally.
    if (isa<ConstantExpr>(L))
      return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
                                  AC);

    // Constants of the "same type" don't always actually have the same
    // type; I don't know why.  Just white-list them.
    if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
      return true;

    // Block addresses only match if we've already encountered the
    // block.  FIXME: tentative matches?
    if (isa<BlockAddress>(L))
      return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
                 == cast<BlockAddress>(R)->getBasicBlock();

    // If L and R are ConstantVectors, compare each element
    if (isa<ConstantVector>(L)) {
      const ConstantVector *CVL = cast<ConstantVector>(L);
      const ConstantVector *CVR = cast<ConstantVector>(R);
      if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
        return false;
      for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
        if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
          return false;
      }
      return true;
    }

    // If L and R are ConstantArrays, compare the element count and types.
    if (isa<ConstantArray>(L)) {
      const ConstantArray *CAL = cast<ConstantArray>(L);
      const ConstantArray *CAR = cast<ConstantArray>(R);
      // Sometimes a type may be equivalent, but not uniquified---e.g. it may
      // contain a GEP instruction. Do a deeper comparison of the types.
      if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
        return false;

      for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
        if (!equivalentAsOperands(CAL->getAggregateElement(I),
                                  CAR->getAggregateElement(I), AC))
          return false;
      }

      return true;
    }

    // If L and R are ConstantStructs, compare each field and type.
    if (isa<ConstantStruct>(L)) {
      const ConstantStruct *CSL = cast<ConstantStruct>(L);
      const ConstantStruct *CSR = cast<ConstantStruct>(R);

      const StructType *LTy = cast<StructType>(CSL->getType());
      const StructType *RTy = cast<StructType>(CSR->getType());

      // The StructTypes should have the same attributes. Don't use
      // isLayoutIdentical(), because that just checks the element pointers,
      // which may not work here.
      if (LTy->getNumElements() != RTy->getNumElements() ||
          LTy->isPacked() != RTy->isPacked())
        return false;

      for (unsigned I = 0; I < LTy->getNumElements(); I++) {
        const Value *LAgg = CSL->getAggregateElement(I);
        const Value *RAgg = CSR->getAggregateElement(I);

        if (LAgg == SavedLHS || RAgg == SavedRHS) {
          if (LAgg != SavedLHS || RAgg != SavedRHS)
            // If the left and right operands aren't both re-analyzing the
            // variable, then the initialiers don't match, so report "false".
            // Otherwise, we skip these operands..
            return false;

          continue;
        }

        if (!equivalentAsOperands(LAgg, RAgg, AC)) {
          return false;
        }
      }

      return true;
    }

    return false;
  }

  bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
                            const AssumptionContext *AC) {
    if (L == R)
      return true;

    if (L->getOpcode() != R->getOpcode())
      return false;

    switch (L->getOpcode()) {
    case Instruction::ICmp:
    case Instruction::FCmp:
      if (L->getPredicate() != R->getPredicate())
        return false;
      break;

    case Instruction::GetElementPtr:
      // FIXME: inbounds?
      break;

    default:
      break;
    }

    if (L->getNumOperands() != R->getNumOperands())
      return false;

    for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
      const auto *LOp = L->getOperand(I);
      const auto *ROp = R->getOperand(I);

      if (LOp == SavedLHS || ROp == SavedRHS) {
        if (LOp != SavedLHS || ROp != SavedRHS)
          // If the left and right operands aren't both re-analyzing the
          // variable, then the initialiers don't match, so report "false".
          // Otherwise, we skip these operands..
          return false;

        continue;
      }

      if (!equivalentAsOperands(LOp, ROp, AC))
        return false;
    }

    return true;
  }

  // There are cases where we cannot determine whether two values are
  // equivalent, because it depends on not yet processed basic blocks -- see the
  // documentation on assumptions.
  //
  // AC is the context in which we are currently performing a diff.
  // When we encounter a pair of values for which we can neither prove
  // equivalence nor the opposite, we do the following:
  //  * If AC is nullptr, we treat the pair as non-equivalent.
  //  * If AC is set, we add an assumption for the basic blocks given by AC,
  //    and treat the pair as equivalent. The assumption is checked later.
  bool equivalentAsOperands(const Value *L, const Value *R,
                            const AssumptionContext *AC) {
    // Fall out if the values have different kind.
    // This possibly shouldn't take priority over oracles.
    if (L->getValueID() != R->getValueID())
      return false;

    // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
    //                  InlineAsm, MDNode, MDString, PseudoSourceValue

    if (isa<Constant>(L))
      return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);

    if (isa<Instruction>(L)) {
      auto It = Values.find(L);
      if (It != Values.end())
        return It->second == R;

      if (TentativeValues.count(std::make_pair(L, R)))
        return true;

      // L and R might be equivalent, this could depend on not yet processed
      // basic blocks, so we cannot decide here.
      if (AC) {
        // Add an assumption, unless there is a conflict with an existing one
        BlockDiffCandidate &BDC =
            getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
        auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
        if (!InsertionResult.second && InsertionResult.first->second != R) {
          // We already have a conflicting equivalence assumption for L, so at
          // least one must be wrong, and we know that there is a diff.
          BDC.KnownToDiffer = true;
          BDC.EquivalenceAssumptions.clear();
          return false;
        }
        // Optimistically assume equivalence, and check later once all BBs
        // have been processed.
        return true;
      }

      // Assumptions disabled, so pessimistically assume non-equivalence.
      return false;
    }

    if (isa<Argument>(L))
      return Values[L] == R;

    if (isa<BasicBlock>(L))
      return Blocks[cast<BasicBlock>(L)] != R;

    // Pretend everything else is identical.
    return true;
  }

  // Avoid a gcc warning about accessing 'this' in an initializer.
  FunctionDifferenceEngine *this_() { return this; }

public:
  FunctionDifferenceEngine(DifferenceEngine &Engine,
                           const Value *SavedLHS = nullptr,
                           const Value *SavedRHS = nullptr)
      : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
        Queue(QueueSorter(*this_())) {}

  void diff(const Function *L, const Function *R) {
    assert(Values.empty() && "Multiple diffs per engine are not supported!");

    if (L->arg_size() != R->arg_size())
      Engine.log("different argument counts");

    // Map the arguments.
    for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
                                      RI = R->arg_begin(), RE = R->arg_end();
         LI != LE && RI != RE; ++LI, ++RI)
      Values[&*LI] = &*RI;

    tryUnify(&*L->begin(), &*R->begin());
    processQueue();
    checkAndReportDiffCandidates();
  }
};

struct DiffEntry {
  DiffEntry() : Cost(0) {}

  unsigned Cost;
  llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
};

bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
                                                 const Instruction *R) {
  return !diff(L, R, false, false, false);
}

void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
                                            BasicBlock::const_iterator RStart) {
  BasicBlock::const_iterator LE = LStart->getParent()->end();
  BasicBlock::const_iterator RE = RStart->getParent()->end();

  unsigned NL = std::distance(LStart, LE);

  SmallVector<DiffEntry, 20> Paths1(NL+1);
  SmallVector<DiffEntry, 20> Paths2(NL+1);

  DiffEntry *Cur = Paths1.data();
  DiffEntry *Next = Paths2.data();

  const unsigned LeftCost = 2;
  const unsigned RightCost = 2;
  const unsigned MatchCost = 0;

  assert(TentativeValues.empty());

  // Initialize the first column.
  for (unsigned I = 0; I != NL+1; ++I) {
    Cur[I].Cost = I * LeftCost;
    for (unsigned J = 0; J != I; ++J)
      Cur[I].Path.push_back(DC_left);
  }

  for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
    // Initialize the first row.
    Next[0] = Cur[0];
    Next[0].Cost += RightCost;
    Next[0].Path.push_back(DC_right);

    unsigned Index = 1;
    for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
      if (matchForBlockDiff(&*LI, &*RI)) {
        Next[Index] = Cur[Index-1];
        Next[Index].Cost += MatchCost;
        Next[Index].Path.push_back(DC_match);
        TentativeValues.insert(std::make_pair(&*LI, &*RI));
      } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
        Next[Index] = Next[Index-1];
        Next[Index].Cost += LeftCost;
        Next[Index].Path.push_back(DC_left);
      } else {
        Next[Index] = Cur[Index];
        Next[Index].Cost += RightCost;
        Next[Index].Path.push_back(DC_right);
      }
    }

    std::swap(Cur, Next);
  }

  // We don't need the tentative values anymore; everything from here
  // on out should be non-tentative.
  TentativeValues.clear();

  SmallVectorImpl<char> &Path = Cur[NL].Path;
  BasicBlock::const_iterator LI = LStart, RI = RStart;

  DiffLogBuilder Diff(Engine.getConsumer());

  // Drop trailing matches.
  while (Path.size() && Path.back() == DC_match)
    Path.pop_back();

  // Skip leading matches.
  SmallVectorImpl<char>::iterator
    PI = Path.begin(), PE = Path.end();
  while (PI != PE && *PI == DC_match) {
    unify(&*LI, &*RI);
    ++PI;
    ++LI;
    ++RI;
  }

  for (; PI != PE; ++PI) {
    switch (static_cast<DiffChange>(*PI)) {
    case DC_match:
      assert(LI != LE && RI != RE);
      {
        const Instruction *L = &*LI, *R = &*RI;
        unify(L, R);
        Diff.addMatch(L, R);
      }
      ++LI; ++RI;
      break;

    case DC_left:
      assert(LI != LE);
      Diff.addLeft(&*LI);
      ++LI;
      break;

    case DC_right:
      assert(RI != RE);
      Diff.addRight(&*RI);
      ++RI;
      break;
    }
  }

  // Finishing unifying and complaining about the tails of the block,
  // which should be matches all the way through.
  while (LI != LE) {
    assert(RI != RE);
    unify(&*LI, &*RI);
    ++LI;
    ++RI;
  }

  // If the terminators have different kinds, but one is an invoke and the
  // other is an unconditional branch immediately following a call, unify
  // the results and the destinations.
  const Instruction *LTerm = LStart->getParent()->getTerminator();
  const Instruction *RTerm = RStart->getParent()->getTerminator();
  if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
    if (cast<BranchInst>(LTerm)->isConditional()) return;
    BasicBlock::const_iterator I = LTerm->getIterator();
    if (I == LStart->getParent()->begin()) return;
    --I;
    if (!isa<CallInst>(*I)) return;
    const CallInst *LCall = cast<CallInst>(&*I);
    const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
    if (!equivalentAsOperands(LCall->getCalledOperand(),
                              RInvoke->getCalledOperand(), nullptr))
      return;
    if (!LCall->use_empty())
      Values[LCall] = RInvoke;
    tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
  } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
    if (cast<BranchInst>(RTerm)->isConditional()) return;
    BasicBlock::const_iterator I = RTerm->getIterator();
    if (I == RStart->getParent()->begin()) return;
    --I;
    if (!isa<CallInst>(*I)) return;
    const CallInst *RCall = cast<CallInst>(I);
    const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
    if (!equivalentAsOperands(LInvoke->getCalledOperand(),
                              RCall->getCalledOperand(), nullptr))
      return;
    if (!LInvoke->use_empty())
      Values[LInvoke] = RCall;
    tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
  }
}
}

void DifferenceEngine::Oracle::anchor() { }

void DifferenceEngine::diff(const Function *L, const Function *R) {
  Context C(*this, L, R);

  // FIXME: types
  // FIXME: attributes and CC
  // FIXME: parameter attributes
  
  // If both are declarations, we're done.
  if (L->empty() && R->empty())
    return;
  else if (L->empty())
    log("left function is declaration, right function is definition");
  else if (R->empty())
    log("right function is declaration, left function is definition");
  else
    FunctionDifferenceEngine(*this).diff(L, R);
}

void DifferenceEngine::diff(const Module *L, const Module *R) {
  StringSet<> LNames;
  SmallVector<std::pair<const Function *, const Function *>, 20> Queue;

  unsigned LeftAnonCount = 0;
  unsigned RightAnonCount = 0;

  for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
    const Function *LFn = &*I;
    StringRef Name = LFn->getName();
    if (Name.empty()) {
      ++LeftAnonCount;
      continue;
    }

    LNames.insert(Name);

    if (Function *RFn = R->getFunction(LFn->getName()))
      Queue.push_back(std::make_pair(LFn, RFn));
    else
      logf("function %l exists only in left module") << LFn;
  }

  for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
    const Function *RFn = &*I;
    StringRef Name = RFn->getName();
    if (Name.empty()) {
      ++RightAnonCount;
      continue;
    }

    if (!LNames.count(Name))
      logf("function %r exists only in right module") << RFn;
  }

  if (LeftAnonCount != 0 || RightAnonCount != 0) {
    SmallString<32> Tmp;
    logf(("not comparing " + Twine(LeftAnonCount) +
          " anonymous functions in the left module and " +
          Twine(RightAnonCount) + " in the right module")
             .toStringRef(Tmp));
  }

  for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
           I = Queue.begin(),
           E = Queue.end();
       I != E; ++I)
    diff(I->first, I->second);
}

bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
                                            const GlobalValue *R) {
  if (globalValueOracle) return (*globalValueOracle)(L, R);

  if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
    const GlobalVariable *GVL = cast<GlobalVariable>(L);
    const GlobalVariable *GVR = cast<GlobalVariable>(R);
    if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
        GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
      return FunctionDifferenceEngine(*this, GVL, GVR)
          .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
                                nullptr);
  }

  return L->getName() == R->getName();
}