aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorize.cpp
blob: 148f2c545b411be1ac08ccc7063c69d4ef56def2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
//    of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
//    widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
//    of vectorization. It decides on the optimal vector width, which
//    can be one, if vectorization is not profitable.
//
// There is a development effort going on to migrate loop vectorizer to the
// VPlan infrastructure and to introduce outer loop vectorization support (see
// docs/Proposal/VectorizationPlan.rst and
// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
// purpose, we temporarily introduced the VPlan-native vectorization path: an
// alternative vectorization path that is natively implemented on top of the
// VPlan infrastructure. See EnableVPlanNativePath for enabling.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// The interleaved access vectorization is based on the paper:
//  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
//  Data for SIMD
//
// Other ideas/concepts are from:
//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
//  Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "LoopVectorizationPlanner.h"
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanHCFGBuilder.h"
#include "VPlanTransforms.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <tuple>
#include <utility>

using namespace llvm;

#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME

#ifndef NDEBUG
const char VerboseDebug[] = DEBUG_TYPE "-verbose";
#endif

/// @{
/// Metadata attribute names
const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
const char LLVMLoopVectorizeFollowupVectorized[] =
    "llvm.loop.vectorize.followup_vectorized";
const char LLVMLoopVectorizeFollowupEpilogue[] =
    "llvm.loop.vectorize.followup_epilogue";
/// @}

STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");

static cl::opt<bool> EnableEpilogueVectorization(
    "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
    cl::desc("Enable vectorization of epilogue loops."));

static cl::opt<unsigned> EpilogueVectorizationForceVF(
    "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
    cl::desc("When epilogue vectorization is enabled, and a value greater than "
             "1 is specified, forces the given VF for all applicable epilogue "
             "loops."));

static cl::opt<unsigned> EpilogueVectorizationMinVF(
    "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
    cl::desc("Only loops with vectorization factor equal to or larger than "
             "the specified value are considered for epilogue vectorization."));

/// Loops with a known constant trip count below this number are vectorized only
/// if no scalar iteration overheads are incurred.
static cl::opt<unsigned> TinyTripCountVectorThreshold(
    "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
    cl::desc("Loops with a constant trip count that is smaller than this "
             "value are vectorized only if no scalar iteration overheads "
             "are incurred."));

static cl::opt<unsigned> VectorizeMemoryCheckThreshold(
    "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
    cl::desc("The maximum allowed number of runtime memory checks"));

// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
// that predication is preferred, and this lists all options. I.e., the
// vectorizer will try to fold the tail-loop (epilogue) into the vector body
// and predicate the instructions accordingly. If tail-folding fails, there are
// different fallback strategies depending on these values:
namespace PreferPredicateTy {
  enum Option {
    ScalarEpilogue = 0,
    PredicateElseScalarEpilogue,
    PredicateOrDontVectorize
  };
} // namespace PreferPredicateTy

static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
    "prefer-predicate-over-epilogue",
    cl::init(PreferPredicateTy::ScalarEpilogue),
    cl::Hidden,
    cl::desc("Tail-folding and predication preferences over creating a scalar "
             "epilogue loop."),
    cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
                         "scalar-epilogue",
                         "Don't tail-predicate loops, create scalar epilogue"),
              clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
                         "predicate-else-scalar-epilogue",
                         "prefer tail-folding, create scalar epilogue if tail "
                         "folding fails."),
              clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
                         "predicate-dont-vectorize",
                         "prefers tail-folding, don't attempt vectorization if "
                         "tail-folding fails.")));

static cl::opt<bool> MaximizeBandwidth(
    "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
    cl::desc("Maximize bandwidth when selecting vectorization factor which "
             "will be determined by the smallest type in loop."));

static cl::opt<bool> EnableInterleavedMemAccesses(
    "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
    cl::desc("Enable vectorization on interleaved memory accesses in a loop"));

/// An interleave-group may need masking if it resides in a block that needs
/// predication, or in order to mask away gaps.
static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
    "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
    cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));

static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
    "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
    cl::desc("We don't interleave loops with a estimated constant trip count "
             "below this number"));

static cl::opt<unsigned> ForceTargetNumScalarRegs(
    "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's number of scalar registers."));

static cl::opt<unsigned> ForceTargetNumVectorRegs(
    "force-target-num-vector-regs", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's number of vector registers."));

static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
    "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's max interleave factor for "
             "scalar loops."));

static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
    "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's max interleave factor for "
             "vectorized loops."));

static cl::opt<unsigned> ForceTargetInstructionCost(
    "force-target-instruction-cost", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's expected cost for "
             "an instruction to a single constant value. Mostly "
             "useful for getting consistent testing."));

static cl::opt<bool> ForceTargetSupportsScalableVectors(
    "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
    cl::desc(
        "Pretend that scalable vectors are supported, even if the target does "
        "not support them. This flag should only be used for testing."));

static cl::opt<unsigned> SmallLoopCost(
    "small-loop-cost", cl::init(20), cl::Hidden,
    cl::desc(
        "The cost of a loop that is considered 'small' by the interleaver."));

static cl::opt<bool> LoopVectorizeWithBlockFrequency(
    "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
    cl::desc("Enable the use of the block frequency analysis to access PGO "
             "heuristics minimizing code growth in cold regions and being more "
             "aggressive in hot regions."));

// Runtime interleave loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
    "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
    cl::desc(
        "Enable runtime interleaving until load/store ports are saturated"));

/// Interleave small loops with scalar reductions.
static cl::opt<bool> InterleaveSmallLoopScalarReduction(
    "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
    cl::desc("Enable interleaving for loops with small iteration counts that "
             "contain scalar reductions to expose ILP."));

/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
    "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
    cl::desc("Max number of stores to be predicated behind an if."));

static cl::opt<bool> EnableIndVarRegisterHeur(
    "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
    cl::desc("Count the induction variable only once when interleaving"));

static cl::opt<bool> EnableCondStoresVectorization(
    "enable-cond-stores-vec", cl::init(true), cl::Hidden,
    cl::desc("Enable if predication of stores during vectorization."));

static cl::opt<unsigned> MaxNestedScalarReductionIC(
    "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
    cl::desc("The maximum interleave count to use when interleaving a scalar "
             "reduction in a nested loop."));

static cl::opt<bool>
    PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
                           cl::Hidden,
                           cl::desc("Prefer in-loop vector reductions, "
                                    "overriding the targets preference."));

static cl::opt<bool> ForceOrderedReductions(
    "force-ordered-reductions", cl::init(false), cl::Hidden,
    cl::desc("Enable the vectorisation of loops with in-order (strict) "
             "FP reductions"));

static cl::opt<bool> PreferPredicatedReductionSelect(
    "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
    cl::desc(
        "Prefer predicating a reduction operation over an after loop select."));

cl::opt<bool> EnableVPlanNativePath(
    "enable-vplan-native-path", cl::init(false), cl::Hidden,
    cl::desc("Enable VPlan-native vectorization path with "
             "support for outer loop vectorization."));

// This flag enables the stress testing of the VPlan H-CFG construction in the
// VPlan-native vectorization path. It must be used in conjuction with
// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
// verification of the H-CFGs built.
static cl::opt<bool> VPlanBuildStressTest(
    "vplan-build-stress-test", cl::init(false), cl::Hidden,
    cl::desc(
        "Build VPlan for every supported loop nest in the function and bail "
        "out right after the build (stress test the VPlan H-CFG construction "
        "in the VPlan-native vectorization path)."));

cl::opt<bool> llvm::EnableLoopInterleaving(
    "interleave-loops", cl::init(true), cl::Hidden,
    cl::desc("Enable loop interleaving in Loop vectorization passes"));
cl::opt<bool> llvm::EnableLoopVectorization(
    "vectorize-loops", cl::init(true), cl::Hidden,
    cl::desc("Run the Loop vectorization passes"));

static cl::opt<bool> PrintVPlansInDotFormat(
    "vplan-print-in-dot-format", cl::Hidden,
    cl::desc("Use dot format instead of plain text when dumping VPlans"));

static cl::opt<cl::boolOrDefault> ForceSafeDivisor(
    "force-widen-divrem-via-safe-divisor", cl::Hidden,
    cl::desc(
        "Override cost based safe divisor widening for div/rem instructions"));

/// A helper function that returns true if the given type is irregular. The
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type.
static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
  // Determine if an array of N elements of type Ty is "bitcast compatible"
  // with a <N x Ty> vector.
  // This is only true if there is no padding between the array elements.
  return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}

/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
///       we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }

/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
  return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
                           : ConstantFP::get(Ty, C);
}

/// Returns "best known" trip count for the specified loop \p L as defined by
/// the following procedure:
///   1) Returns exact trip count if it is known.
///   2) Returns expected trip count according to profile data if any.
///   3) Returns upper bound estimate if it is known.
///   4) Returns std::nullopt if all of the above failed.
static std::optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE,
                                                   Loop *L) {
  // Check if exact trip count is known.
  if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
    return ExpectedTC;

  // Check if there is an expected trip count available from profile data.
  if (LoopVectorizeWithBlockFrequency)
    if (auto EstimatedTC = getLoopEstimatedTripCount(L))
      return *EstimatedTC;

  // Check if upper bound estimate is known.
  if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
    return ExpectedTC;

  return std::nullopt;
}

namespace {
// Forward declare GeneratedRTChecks.
class GeneratedRTChecks;
} // namespace

namespace llvm {

AnalysisKey ShouldRunExtraVectorPasses::Key;

/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
///   counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
///   instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
  InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
                      LoopInfo *LI, DominatorTree *DT,
                      const TargetLibraryInfo *TLI,
                      const TargetTransformInfo *TTI, AssumptionCache *AC,
                      OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
                      ElementCount MinProfitableTripCount,
                      unsigned UnrollFactor, LoopVectorizationLegality *LVL,
                      LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
                      ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
      : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
        AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
        Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
        PSI(PSI), RTChecks(RTChecks) {
    // Query this against the original loop and save it here because the profile
    // of the original loop header may change as the transformation happens.
    OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
        OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);

    if (MinProfitableTripCount.isZero())
      this->MinProfitableTripCount = VecWidth;
    else
      this->MinProfitableTripCount = MinProfitableTripCount;
  }

  virtual ~InnerLoopVectorizer() = default;

  /// Create a new empty loop that will contain vectorized instructions later
  /// on, while the old loop will be used as the scalar remainder. Control flow
  /// is generated around the vectorized (and scalar epilogue) loops consisting
  /// of various checks and bypasses. Return the pre-header block of the new
  /// loop and the start value for the canonical induction, if it is != 0. The
  /// latter is the case when vectorizing the epilogue loop. In the case of
  /// epilogue vectorization, this function is overriden to handle the more
  /// complex control flow around the loops.
  virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();

  /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
  void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);

  // Return true if any runtime check is added.
  bool areSafetyChecksAdded() { return AddedSafetyChecks; }

  /// A type for vectorized values in the new loop. Each value from the
  /// original loop, when vectorized, is represented by UF vector values in the
  /// new unrolled loop, where UF is the unroll factor.
  using VectorParts = SmallVector<Value *, 2>;

  /// A helper function to scalarize a single Instruction in the innermost loop.
  /// Generates a sequence of scalar instances for each lane between \p MinLane
  /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
  /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
  /// Instr's operands.
  void scalarizeInstruction(const Instruction *Instr,
                            VPReplicateRecipe *RepRecipe,
                            const VPIteration &Instance, bool IfPredicateInstr,
                            VPTransformState &State);

  /// Construct the vector value of a scalarized value \p V one lane at a time.
  void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
                                 VPTransformState &State);

  /// Try to vectorize interleaved access group \p Group with the base address
  /// given in \p Addr, optionally masking the vector operations if \p
  /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
  /// values in the vectorized loop.
  void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
                                ArrayRef<VPValue *> VPDefs,
                                VPTransformState &State, VPValue *Addr,
                                ArrayRef<VPValue *> StoredValues,
                                VPValue *BlockInMask = nullptr);

  /// Fix the non-induction PHIs in \p Plan.
  void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);

  /// Returns true if the reordering of FP operations is not allowed, but we are
  /// able to vectorize with strict in-order reductions for the given RdxDesc.
  bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);

  /// Create a broadcast instruction. This method generates a broadcast
  /// instruction (shuffle) for loop invariant values and for the induction
  /// value. If this is the induction variable then we extend it to N, N+1, ...
  /// this is needed because each iteration in the loop corresponds to a SIMD
  /// element.
  virtual Value *getBroadcastInstrs(Value *V);

  // Returns the resume value (bc.merge.rdx) for a reduction as
  // generated by fixReduction.
  PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);

  /// Create a new phi node for the induction variable \p OrigPhi to resume
  /// iteration count in the scalar epilogue, from where the vectorized loop
  /// left off. In cases where the loop skeleton is more complicated (eg.
  /// epilogue vectorization) and the resume values can come from an additional
  /// bypass block, the \p AdditionalBypass pair provides information about the
  /// bypass block and the end value on the edge from bypass to this loop.
  PHINode *createInductionResumeValue(
      PHINode *OrigPhi, const InductionDescriptor &ID,
      ArrayRef<BasicBlock *> BypassBlocks,
      std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});

protected:
  friend class LoopVectorizationPlanner;

  /// A small list of PHINodes.
  using PhiVector = SmallVector<PHINode *, 4>;

  /// A type for scalarized values in the new loop. Each value from the
  /// original loop, when scalarized, is represented by UF x VF scalar values
  /// in the new unrolled loop, where UF is the unroll factor and VF is the
  /// vectorization factor.
  using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;

  /// Set up the values of the IVs correctly when exiting the vector loop.
  void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
                    Value *VectorTripCount, Value *EndValue,
                    BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
                    VPlan &Plan);

  /// Handle all cross-iteration phis in the header.
  void fixCrossIterationPHIs(VPTransformState &State);

  /// Create the exit value of first order recurrences in the middle block and
  /// update their users.
  void fixFixedOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
                               VPTransformState &State);

  /// Create code for the loop exit value of the reduction.
  void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);

  /// Clear NSW/NUW flags from reduction instructions if necessary.
  void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
                               VPTransformState &State);

  /// Iteratively sink the scalarized operands of a predicated instruction into
  /// the block that was created for it.
  void sinkScalarOperands(Instruction *PredInst);

  /// Shrinks vector element sizes to the smallest bitwidth they can be legally
  /// represented as.
  void truncateToMinimalBitwidths(VPTransformState &State);

  /// Returns (and creates if needed) the original loop trip count.
  Value *getOrCreateTripCount(BasicBlock *InsertBlock);

  /// Returns (and creates if needed) the trip count of the widened loop.
  Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);

  /// Returns a bitcasted value to the requested vector type.
  /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
  Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
                                const DataLayout &DL);

  /// Emit a bypass check to see if the vector trip count is zero, including if
  /// it overflows.
  void emitIterationCountCheck(BasicBlock *Bypass);

  /// Emit a bypass check to see if all of the SCEV assumptions we've
  /// had to make are correct. Returns the block containing the checks or
  /// nullptr if no checks have been added.
  BasicBlock *emitSCEVChecks(BasicBlock *Bypass);

  /// Emit bypass checks to check any memory assumptions we may have made.
  /// Returns the block containing the checks or nullptr if no checks have been
  /// added.
  BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);

  /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
  /// vector loop preheader, middle block and scalar preheader.
  void createVectorLoopSkeleton(StringRef Prefix);

  /// Create new phi nodes for the induction variables to resume iteration count
  /// in the scalar epilogue, from where the vectorized loop left off.
  /// In cases where the loop skeleton is more complicated (eg. epilogue
  /// vectorization) and the resume values can come from an additional bypass
  /// block, the \p AdditionalBypass pair provides information about the bypass
  /// block and the end value on the edge from bypass to this loop.
  void createInductionResumeValues(
      std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});

  /// Complete the loop skeleton by adding debug MDs, creating appropriate
  /// conditional branches in the middle block, preparing the builder and
  /// running the verifier. Return the preheader of the completed vector loop.
  BasicBlock *completeLoopSkeleton();

  /// Collect poison-generating recipes that may generate a poison value that is
  /// used after vectorization, even when their operands are not poison. Those
  /// recipes meet the following conditions:
  ///  * Contribute to the address computation of a recipe generating a widen
  ///    memory load/store (VPWidenMemoryInstructionRecipe or
  ///    VPInterleaveRecipe).
  ///  * Such a widen memory load/store has at least one underlying Instruction
  ///    that is in a basic block that needs predication and after vectorization
  ///    the generated instruction won't be predicated.
  void collectPoisonGeneratingRecipes(VPTransformState &State);

  /// Allow subclasses to override and print debug traces before/after vplan
  /// execution, when trace information is requested.
  virtual void printDebugTracesAtStart(){};
  virtual void printDebugTracesAtEnd(){};

  /// The original loop.
  Loop *OrigLoop;

  /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
  /// dynamic knowledge to simplify SCEV expressions and converts them to a
  /// more usable form.
  PredicatedScalarEvolution &PSE;

  /// Loop Info.
  LoopInfo *LI;

  /// Dominator Tree.
  DominatorTree *DT;

  /// Target Library Info.
  const TargetLibraryInfo *TLI;

  /// Target Transform Info.
  const TargetTransformInfo *TTI;

  /// Assumption Cache.
  AssumptionCache *AC;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  /// The vectorization SIMD factor to use. Each vector will have this many
  /// vector elements.
  ElementCount VF;

  ElementCount MinProfitableTripCount;

  /// The vectorization unroll factor to use. Each scalar is vectorized to this
  /// many different vector instructions.
  unsigned UF;

  /// The builder that we use
  IRBuilder<> Builder;

  // --- Vectorization state ---

  /// The vector-loop preheader.
  BasicBlock *LoopVectorPreHeader;

  /// The scalar-loop preheader.
  BasicBlock *LoopScalarPreHeader;

  /// Middle Block between the vector and the scalar.
  BasicBlock *LoopMiddleBlock;

  /// The unique ExitBlock of the scalar loop if one exists.  Note that
  /// there can be multiple exiting edges reaching this block.
  BasicBlock *LoopExitBlock;

  /// The scalar loop body.
  BasicBlock *LoopScalarBody;

  /// A list of all bypass blocks. The first block is the entry of the loop.
  SmallVector<BasicBlock *, 4> LoopBypassBlocks;

  /// Store instructions that were predicated.
  SmallVector<Instruction *, 4> PredicatedInstructions;

  /// Trip count of the original loop.
  Value *TripCount = nullptr;

  /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
  Value *VectorTripCount = nullptr;

  /// The legality analysis.
  LoopVectorizationLegality *Legal;

  /// The profitablity analysis.
  LoopVectorizationCostModel *Cost;

  // Record whether runtime checks are added.
  bool AddedSafetyChecks = false;

  // Holds the end values for each induction variable. We save the end values
  // so we can later fix-up the external users of the induction variables.
  DenseMap<PHINode *, Value *> IVEndValues;

  /// BFI and PSI are used to check for profile guided size optimizations.
  BlockFrequencyInfo *BFI;
  ProfileSummaryInfo *PSI;

  // Whether this loop should be optimized for size based on profile guided size
  // optimizatios.
  bool OptForSizeBasedOnProfile;

  /// Structure to hold information about generated runtime checks, responsible
  /// for cleaning the checks, if vectorization turns out unprofitable.
  GeneratedRTChecks &RTChecks;

  // Holds the resume values for reductions in the loops, used to set the
  // correct start value of reduction PHIs when vectorizing the epilogue.
  SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
      ReductionResumeValues;
};

class InnerLoopUnroller : public InnerLoopVectorizer {
public:
  InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
                    LoopInfo *LI, DominatorTree *DT,
                    const TargetLibraryInfo *TLI,
                    const TargetTransformInfo *TTI, AssumptionCache *AC,
                    OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
                    LoopVectorizationLegality *LVL,
                    LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
                    ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
      : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
                            ElementCount::getFixed(1),
                            ElementCount::getFixed(1), UnrollFactor, LVL, CM,
                            BFI, PSI, Check) {}

private:
  Value *getBroadcastInstrs(Value *V) override;
};

/// Encapsulate information regarding vectorization of a loop and its epilogue.
/// This information is meant to be updated and used across two stages of
/// epilogue vectorization.
struct EpilogueLoopVectorizationInfo {
  ElementCount MainLoopVF = ElementCount::getFixed(0);
  unsigned MainLoopUF = 0;
  ElementCount EpilogueVF = ElementCount::getFixed(0);
  unsigned EpilogueUF = 0;
  BasicBlock *MainLoopIterationCountCheck = nullptr;
  BasicBlock *EpilogueIterationCountCheck = nullptr;
  BasicBlock *SCEVSafetyCheck = nullptr;
  BasicBlock *MemSafetyCheck = nullptr;
  Value *TripCount = nullptr;
  Value *VectorTripCount = nullptr;

  EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
                                ElementCount EVF, unsigned EUF)
      : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
    assert(EUF == 1 &&
           "A high UF for the epilogue loop is likely not beneficial.");
  }
};

/// An extension of the inner loop vectorizer that creates a skeleton for a
/// vectorized loop that has its epilogue (residual) also vectorized.
/// The idea is to run the vplan on a given loop twice, firstly to setup the
/// skeleton and vectorize the main loop, and secondly to complete the skeleton
/// from the first step and vectorize the epilogue.  This is achieved by
/// deriving two concrete strategy classes from this base class and invoking
/// them in succession from the loop vectorizer planner.
class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
public:
  InnerLoopAndEpilogueVectorizer(
      Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
      DominatorTree *DT, const TargetLibraryInfo *TLI,
      const TargetTransformInfo *TTI, AssumptionCache *AC,
      OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
      LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
      BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
      GeneratedRTChecks &Checks)
      : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
                            EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL,
                            CM, BFI, PSI, Checks),
        EPI(EPI) {}

  // Override this function to handle the more complex control flow around the
  // three loops.
  std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton() final {
    return createEpilogueVectorizedLoopSkeleton();
  }

  /// The interface for creating a vectorized skeleton using one of two
  /// different strategies, each corresponding to one execution of the vplan
  /// as described above.
  virtual std::pair<BasicBlock *, Value *>
  createEpilogueVectorizedLoopSkeleton() = 0;

  /// Holds and updates state information required to vectorize the main loop
  /// and its epilogue in two separate passes. This setup helps us avoid
  /// regenerating and recomputing runtime safety checks. It also helps us to
  /// shorten the iteration-count-check path length for the cases where the
  /// iteration count of the loop is so small that the main vector loop is
  /// completely skipped.
  EpilogueLoopVectorizationInfo &EPI;
};

/// A specialized derived class of inner loop vectorizer that performs
/// vectorization of *main* loops in the process of vectorizing loops and their
/// epilogues.
class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
public:
  EpilogueVectorizerMainLoop(
      Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
      DominatorTree *DT, const TargetLibraryInfo *TLI,
      const TargetTransformInfo *TTI, AssumptionCache *AC,
      OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
      LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
      BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
      GeneratedRTChecks &Check)
      : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
                                       EPI, LVL, CM, BFI, PSI, Check) {}
  /// Implements the interface for creating a vectorized skeleton using the
  /// *main loop* strategy (ie the first pass of vplan execution).
  std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final;

protected:
  /// Emits an iteration count bypass check once for the main loop (when \p
  /// ForEpilogue is false) and once for the epilogue loop (when \p
  /// ForEpilogue is true).
  BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
  void printDebugTracesAtStart() override;
  void printDebugTracesAtEnd() override;
};

// A specialized derived class of inner loop vectorizer that performs
// vectorization of *epilogue* loops in the process of vectorizing loops and
// their epilogues.
class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
public:
  EpilogueVectorizerEpilogueLoop(
      Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
      DominatorTree *DT, const TargetLibraryInfo *TLI,
      const TargetTransformInfo *TTI, AssumptionCache *AC,
      OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
      LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
      BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
      GeneratedRTChecks &Checks)
      : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
                                       EPI, LVL, CM, BFI, PSI, Checks) {
    TripCount = EPI.TripCount;
  }
  /// Implements the interface for creating a vectorized skeleton using the
  /// *epilogue loop* strategy (ie the second pass of vplan execution).
  std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final;

protected:
  /// Emits an iteration count bypass check after the main vector loop has
  /// finished to see if there are any iterations left to execute by either
  /// the vector epilogue or the scalar epilogue.
  BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
                                                      BasicBlock *Bypass,
                                                      BasicBlock *Insert);
  void printDebugTracesAtStart() override;
  void printDebugTracesAtEnd() override;
};
} // end namespace llvm

/// Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
  if (!I)
    return I;

  DebugLoc Empty;
  if (I->getDebugLoc() != Empty)
    return I;

  for (Use &Op : I->operands()) {
    if (Instruction *OpInst = dyn_cast<Instruction>(Op))
      if (OpInst->getDebugLoc() != Empty)
        return OpInst;
  }

  return I;
}

/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
/// is passed, the message relates to that particular instruction.
#ifndef NDEBUG
static void debugVectorizationMessage(const StringRef Prefix,
                                      const StringRef DebugMsg,
                                      Instruction *I) {
  dbgs() << "LV: " << Prefix << DebugMsg;
  if (I != nullptr)
    dbgs() << " " << *I;
  else
    dbgs() << '.';
  dbgs() << '\n';
}
#endif

/// Create an analysis remark that explains why vectorization failed
///
/// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
/// RemarkName is the identifier for the remark.  If \p I is passed it is an
/// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
/// the location of the remark.  \return the remark object that can be
/// streamed to.
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
    StringRef RemarkName, Loop *TheLoop, Instruction *I) {
  Value *CodeRegion = TheLoop->getHeader();
  DebugLoc DL = TheLoop->getStartLoc();

  if (I) {
    CodeRegion = I->getParent();
    // If there is no debug location attached to the instruction, revert back to
    // using the loop's.
    if (I->getDebugLoc())
      DL = I->getDebugLoc();
  }

  return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
}

namespace llvm {

/// Return a value for Step multiplied by VF.
Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
                       int64_t Step) {
  assert(Ty->isIntegerTy() && "Expected an integer step");
  Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
  return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
}

/// Return the runtime value for VF.
Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
  Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
  return VF.isScalable() ? B.CreateVScale(EC) : EC;
}

const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE) {
  const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
  assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count");

  ScalarEvolution &SE = *PSE.getSE();

  // The exit count might have the type of i64 while the phi is i32. This can
  // happen if we have an induction variable that is sign extended before the
  // compare. The only way that we get a backedge taken count is that the
  // induction variable was signed and as such will not overflow. In such a case
  // truncation is legal.
  if (SE.getTypeSizeInBits(BackedgeTakenCount->getType()) >
      IdxTy->getPrimitiveSizeInBits())
    BackedgeTakenCount = SE.getTruncateOrNoop(BackedgeTakenCount, IdxTy);
  BackedgeTakenCount = SE.getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);

  // Get the total trip count from the count by adding 1.
  return SE.getAddExpr(BackedgeTakenCount,
                       SE.getOne(BackedgeTakenCount->getType()));
}

static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
                                  ElementCount VF) {
  assert(FTy->isFloatingPointTy() && "Expected floating point type!");
  Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
  Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
  return B.CreateUIToFP(RuntimeVF, FTy);
}

void reportVectorizationFailure(const StringRef DebugMsg,
                                const StringRef OREMsg, const StringRef ORETag,
                                OptimizationRemarkEmitter *ORE, Loop *TheLoop,
                                Instruction *I) {
  LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
  LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
  ORE->emit(
      createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
      << "loop not vectorized: " << OREMsg);
}

void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
                             OptimizationRemarkEmitter *ORE, Loop *TheLoop,
                             Instruction *I) {
  LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
  LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
  ORE->emit(
      createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
      << Msg);
}

} // end namespace llvm

#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
  std::string Result;
  if (L) {
    raw_string_ostream OS(Result);
    if (const DebugLoc LoopDbgLoc = L->getStartLoc())
      LoopDbgLoc.print(OS);
    else
      // Just print the module name.
      OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
    OS.flush();
  }
  return Result;
}
#endif

void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
    VPTransformState &State) {

  // Collect recipes in the backward slice of `Root` that may generate a poison
  // value that is used after vectorization.
  SmallPtrSet<VPRecipeBase *, 16> Visited;
  auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
    SmallVector<VPRecipeBase *, 16> Worklist;
    Worklist.push_back(Root);

    // Traverse the backward slice of Root through its use-def chain.
    while (!Worklist.empty()) {
      VPRecipeBase *CurRec = Worklist.back();
      Worklist.pop_back();

      if (!Visited.insert(CurRec).second)
        continue;

      // Prune search if we find another recipe generating a widen memory
      // instruction. Widen memory instructions involved in address computation
      // will lead to gather/scatter instructions, which don't need to be
      // handled.
      if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
          isa<VPInterleaveRecipe>(CurRec) ||
          isa<VPScalarIVStepsRecipe>(CurRec) ||
          isa<VPCanonicalIVPHIRecipe>(CurRec) ||
          isa<VPActiveLaneMaskPHIRecipe>(CurRec))
        continue;

      // This recipe contributes to the address computation of a widen
      // load/store. Collect recipe if its underlying instruction has
      // poison-generating flags.
      Instruction *Instr = CurRec->getUnderlyingInstr();
      if (Instr && Instr->hasPoisonGeneratingFlags())
        State.MayGeneratePoisonRecipes.insert(CurRec);

      // Add new definitions to the worklist.
      for (VPValue *operand : CurRec->operands())
        if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
          Worklist.push_back(OpDef);
    }
  });

  // Traverse all the recipes in the VPlan and collect the poison-generating
  // recipes in the backward slice starting at the address of a VPWidenRecipe or
  // VPInterleaveRecipe.
  auto Iter = vp_depth_first_deep(State.Plan->getEntry());
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
    for (VPRecipeBase &Recipe : *VPBB) {
      if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
        Instruction &UnderlyingInstr = WidenRec->getIngredient();
        VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
        if (AddrDef && WidenRec->isConsecutive() &&
            Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
          collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
      } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
        VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
        if (AddrDef) {
          // Check if any member of the interleave group needs predication.
          const InterleaveGroup<Instruction> *InterGroup =
              InterleaveRec->getInterleaveGroup();
          bool NeedPredication = false;
          for (int I = 0, NumMembers = InterGroup->getNumMembers();
               I < NumMembers; ++I) {
            Instruction *Member = InterGroup->getMember(I);
            if (Member)
              NeedPredication |=
                  Legal->blockNeedsPredication(Member->getParent());
          }

          if (NeedPredication)
            collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
        }
      }
    }
  }
}

PHINode *InnerLoopVectorizer::getReductionResumeValue(
    const RecurrenceDescriptor &RdxDesc) {
  auto It = ReductionResumeValues.find(&RdxDesc);
  assert(It != ReductionResumeValues.end() &&
         "Expected to find a resume value for the reduction.");
  return It->second;
}

namespace llvm {

// Loop vectorization cost-model hints how the scalar epilogue loop should be
// lowered.
enum ScalarEpilogueLowering {

  // The default: allowing scalar epilogues.
  CM_ScalarEpilogueAllowed,

  // Vectorization with OptForSize: don't allow epilogues.
  CM_ScalarEpilogueNotAllowedOptSize,

  // A special case of vectorisation with OptForSize: loops with a very small
  // trip count are considered for vectorization under OptForSize, thereby
  // making sure the cost of their loop body is dominant, free of runtime
  // guards and scalar iteration overheads.
  CM_ScalarEpilogueNotAllowedLowTripLoop,

  // Loop hint predicate indicating an epilogue is undesired.
  CM_ScalarEpilogueNotNeededUsePredicate,

  // Directive indicating we must either tail fold or not vectorize
  CM_ScalarEpilogueNotAllowedUsePredicate
};

/// ElementCountComparator creates a total ordering for ElementCount
/// for the purposes of using it in a set structure.
struct ElementCountComparator {
  bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
    return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
           std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
  }
};
using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;

/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
  LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
                             PredicatedScalarEvolution &PSE, LoopInfo *LI,
                             LoopVectorizationLegality *Legal,
                             const TargetTransformInfo &TTI,
                             const TargetLibraryInfo *TLI, DemandedBits *DB,
                             AssumptionCache *AC,
                             OptimizationRemarkEmitter *ORE, const Function *F,
                             const LoopVectorizeHints *Hints,
                             InterleavedAccessInfo &IAI)
      : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
        TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
        Hints(Hints), InterleaveInfo(IAI) {}

  /// \return An upper bound for the vectorization factors (both fixed and
  /// scalable). If the factors are 0, vectorization and interleaving should be
  /// avoided up front.
  FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);

  /// \return True if runtime checks are required for vectorization, and false
  /// otherwise.
  bool runtimeChecksRequired();

  /// \return The most profitable vectorization factor and the cost of that VF.
  /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
  /// then this vectorization factor will be selected if vectorization is
  /// possible.
  VectorizationFactor
  selectVectorizationFactor(const ElementCountSet &CandidateVFs);

  VectorizationFactor
  selectEpilogueVectorizationFactor(const ElementCount MaxVF,
                                    const LoopVectorizationPlanner &LVP);

  /// Setup cost-based decisions for user vectorization factor.
  /// \return true if the UserVF is a feasible VF to be chosen.
  bool selectUserVectorizationFactor(ElementCount UserVF) {
    collectUniformsAndScalars(UserVF);
    collectInstsToScalarize(UserVF);
    return expectedCost(UserVF).first.isValid();
  }

  /// \return The size (in bits) of the smallest and widest types in the code
  /// that needs to be vectorized. We ignore values that remain scalar such as
  /// 64 bit loop indices.
  std::pair<unsigned, unsigned> getSmallestAndWidestTypes();

  /// \return The desired interleave count.
  /// If interleave count has been specified by metadata it will be returned.
  /// Otherwise, the interleave count is computed and returned. VF and LoopCost
  /// are the selected vectorization factor and the cost of the selected VF.
  unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost);

  /// Memory access instruction may be vectorized in more than one way.
  /// Form of instruction after vectorization depends on cost.
  /// This function takes cost-based decisions for Load/Store instructions
  /// and collects them in a map. This decisions map is used for building
  /// the lists of loop-uniform and loop-scalar instructions.
  /// The calculated cost is saved with widening decision in order to
  /// avoid redundant calculations.
  void setCostBasedWideningDecision(ElementCount VF);

  /// A struct that represents some properties of the register usage
  /// of a loop.
  struct RegisterUsage {
    /// Holds the number of loop invariant values that are used in the loop.
    /// The key is ClassID of target-provided register class.
    SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
    /// Holds the maximum number of concurrent live intervals in the loop.
    /// The key is ClassID of target-provided register class.
    SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
  };

  /// \return Returns information about the register usages of the loop for the
  /// given vectorization factors.
  SmallVector<RegisterUsage, 8>
  calculateRegisterUsage(ArrayRef<ElementCount> VFs);

  /// Collect values we want to ignore in the cost model.
  void collectValuesToIgnore();

  /// Collect all element types in the loop for which widening is needed.
  void collectElementTypesForWidening();

  /// Split reductions into those that happen in the loop, and those that happen
  /// outside. In loop reductions are collected into InLoopReductionChains.
  void collectInLoopReductions();

  /// Returns true if we should use strict in-order reductions for the given
  /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
  /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
  /// of FP operations.
  bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
    return !Hints->allowReordering() && RdxDesc.isOrdered();
  }

  /// \returns The smallest bitwidth each instruction can be represented with.
  /// The vector equivalents of these instructions should be truncated to this
  /// type.
  const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
    return MinBWs;
  }

  /// \returns True if it is more profitable to scalarize instruction \p I for
  /// vectorization factor \p VF.
  bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
    assert(VF.isVector() &&
           "Profitable to scalarize relevant only for VF > 1.");

    // Cost model is not run in the VPlan-native path - return conservative
    // result until this changes.
    if (EnableVPlanNativePath)
      return false;

    auto Scalars = InstsToScalarize.find(VF);
    assert(Scalars != InstsToScalarize.end() &&
           "VF not yet analyzed for scalarization profitability");
    return Scalars->second.find(I) != Scalars->second.end();
  }

  /// Returns true if \p I is known to be uniform after vectorization.
  bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
    if (VF.isScalar())
      return true;

    // Cost model is not run in the VPlan-native path - return conservative
    // result until this changes.
    if (EnableVPlanNativePath)
      return false;

    auto UniformsPerVF = Uniforms.find(VF);
    assert(UniformsPerVF != Uniforms.end() &&
           "VF not yet analyzed for uniformity");
    return UniformsPerVF->second.count(I);
  }

  /// Returns true if \p I is known to be scalar after vectorization.
  bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
    if (VF.isScalar())
      return true;

    // Cost model is not run in the VPlan-native path - return conservative
    // result until this changes.
    if (EnableVPlanNativePath)
      return false;

    auto ScalarsPerVF = Scalars.find(VF);
    assert(ScalarsPerVF != Scalars.end() &&
           "Scalar values are not calculated for VF");
    return ScalarsPerVF->second.count(I);
  }

  /// \returns True if instruction \p I can be truncated to a smaller bitwidth
  /// for vectorization factor \p VF.
  bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
    return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
           !isProfitableToScalarize(I, VF) &&
           !isScalarAfterVectorization(I, VF);
  }

  /// Decision that was taken during cost calculation for memory instruction.
  enum InstWidening {
    CM_Unknown,
    CM_Widen,         // For consecutive accesses with stride +1.
    CM_Widen_Reverse, // For consecutive accesses with stride -1.
    CM_Interleave,
    CM_GatherScatter,
    CM_Scalarize
  };

  /// Save vectorization decision \p W and \p Cost taken by the cost model for
  /// instruction \p I and vector width \p VF.
  void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
                           InstructionCost Cost) {
    assert(VF.isVector() && "Expected VF >=2");
    WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
  }

  /// Save vectorization decision \p W and \p Cost taken by the cost model for
  /// interleaving group \p Grp and vector width \p VF.
  void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
                           ElementCount VF, InstWidening W,
                           InstructionCost Cost) {
    assert(VF.isVector() && "Expected VF >=2");
    /// Broadcast this decicion to all instructions inside the group.
    /// But the cost will be assigned to one instruction only.
    for (unsigned i = 0; i < Grp->getFactor(); ++i) {
      if (auto *I = Grp->getMember(i)) {
        if (Grp->getInsertPos() == I)
          WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
        else
          WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
      }
    }
  }

  /// Return the cost model decision for the given instruction \p I and vector
  /// width \p VF. Return CM_Unknown if this instruction did not pass
  /// through the cost modeling.
  InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
    assert(VF.isVector() && "Expected VF to be a vector VF");
    // Cost model is not run in the VPlan-native path - return conservative
    // result until this changes.
    if (EnableVPlanNativePath)
      return CM_GatherScatter;

    std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
    auto Itr = WideningDecisions.find(InstOnVF);
    if (Itr == WideningDecisions.end())
      return CM_Unknown;
    return Itr->second.first;
  }

  /// Return the vectorization cost for the given instruction \p I and vector
  /// width \p VF.
  InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
    assert(VF.isVector() && "Expected VF >=2");
    std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
    assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
           "The cost is not calculated");
    return WideningDecisions[InstOnVF].second;
  }

  /// Return True if instruction \p I is an optimizable truncate whose operand
  /// is an induction variable. Such a truncate will be removed by adding a new
  /// induction variable with the destination type.
  bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
    // If the instruction is not a truncate, return false.
    auto *Trunc = dyn_cast<TruncInst>(I);
    if (!Trunc)
      return false;

    // Get the source and destination types of the truncate.
    Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
    Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);

    // If the truncate is free for the given types, return false. Replacing a
    // free truncate with an induction variable would add an induction variable
    // update instruction to each iteration of the loop. We exclude from this
    // check the primary induction variable since it will need an update
    // instruction regardless.
    Value *Op = Trunc->getOperand(0);
    if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
      return false;

    // If the truncated value is not an induction variable, return false.
    return Legal->isInductionPhi(Op);
  }

  /// Collects the instructions to scalarize for each predicated instruction in
  /// the loop.
  void collectInstsToScalarize(ElementCount VF);

  /// Collect Uniform and Scalar values for the given \p VF.
  /// The sets depend on CM decision for Load/Store instructions
  /// that may be vectorized as interleave, gather-scatter or scalarized.
  void collectUniformsAndScalars(ElementCount VF) {
    // Do the analysis once.
    if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
      return;
    setCostBasedWideningDecision(VF);
    collectLoopUniforms(VF);
    collectLoopScalars(VF);
  }

  /// Returns true if the target machine supports masked store operation
  /// for the given \p DataType and kind of access to \p Ptr.
  bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
    return Legal->isConsecutivePtr(DataType, Ptr) &&
           TTI.isLegalMaskedStore(DataType, Alignment);
  }

  /// Returns true if the target machine supports masked load operation
  /// for the given \p DataType and kind of access to \p Ptr.
  bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
    return Legal->isConsecutivePtr(DataType, Ptr) &&
           TTI.isLegalMaskedLoad(DataType, Alignment);
  }

  /// Returns true if the target machine can represent \p V as a masked gather
  /// or scatter operation.
  bool isLegalGatherOrScatter(Value *V,
                              ElementCount VF = ElementCount::getFixed(1)) {
    bool LI = isa<LoadInst>(V);
    bool SI = isa<StoreInst>(V);
    if (!LI && !SI)
      return false;
    auto *Ty = getLoadStoreType(V);
    Align Align = getLoadStoreAlignment(V);
    if (VF.isVector())
      Ty = VectorType::get(Ty, VF);
    return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
           (SI && TTI.isLegalMaskedScatter(Ty, Align));
  }

  /// Returns true if the target machine supports all of the reduction
  /// variables found for the given VF.
  bool canVectorizeReductions(ElementCount VF) const {
    return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
      const RecurrenceDescriptor &RdxDesc = Reduction.second;
      return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
    }));
  }

  /// Given costs for both strategies, return true if the scalar predication
  /// lowering should be used for div/rem.  This incorporates an override
  /// option so it is not simply a cost comparison.
  bool isDivRemScalarWithPredication(InstructionCost ScalarCost,
                                     InstructionCost SafeDivisorCost) const {
    switch (ForceSafeDivisor) {
    case cl::BOU_UNSET:
      return ScalarCost < SafeDivisorCost;
    case cl::BOU_TRUE:
      return false;
    case cl::BOU_FALSE:
      return true;
    };
    llvm_unreachable("impossible case value");
  }

  /// Returns true if \p I is an instruction which requires predication and
  /// for which our chosen predication strategy is scalarization (i.e. we
  /// don't have an alternate strategy such as masking available).
  /// \p VF is the vectorization factor that will be used to vectorize \p I.
  bool isScalarWithPredication(Instruction *I, ElementCount VF) const;

  /// Returns true if \p I is an instruction that needs to be predicated
  /// at runtime.  The result is independent of the predication mechanism.
  /// Superset of instructions that return true for isScalarWithPredication.
  bool isPredicatedInst(Instruction *I) const;

  /// Return the costs for our two available strategies for lowering a
  /// div/rem operation which requires speculating at least one lane.
  /// First result is for scalarization (will be invalid for scalable
  /// vectors); second is for the safe-divisor strategy.
  std::pair<InstructionCost, InstructionCost>
  getDivRemSpeculationCost(Instruction *I,
                           ElementCount VF) const;

  /// Returns true if \p I is a memory instruction with consecutive memory
  /// access that can be widened.
  bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);

  /// Returns true if \p I is a memory instruction in an interleaved-group
  /// of memory accesses that can be vectorized with wide vector loads/stores
  /// and shuffles.
  bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF);

  /// Check if \p Instr belongs to any interleaved access group.
  bool isAccessInterleaved(Instruction *Instr) {
    return InterleaveInfo.isInterleaved(Instr);
  }

  /// Get the interleaved access group that \p Instr belongs to.
  const InterleaveGroup<Instruction> *
  getInterleavedAccessGroup(Instruction *Instr) {
    return InterleaveInfo.getInterleaveGroup(Instr);
  }

  /// Returns true if we're required to use a scalar epilogue for at least
  /// the final iteration of the original loop.
  bool requiresScalarEpilogue(ElementCount VF) const {
    if (!isScalarEpilogueAllowed())
      return false;
    // If we might exit from anywhere but the latch, must run the exiting
    // iteration in scalar form.
    if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
      return true;
    return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
  }

  /// Returns true if a scalar epilogue is not allowed due to optsize or a
  /// loop hint annotation.
  bool isScalarEpilogueAllowed() const {
    return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
  }

  /// Returns true if all loop blocks should be masked to fold tail loop.
  bool foldTailByMasking() const { return FoldTailByMasking; }

  /// Returns true if were tail-folding and want to use the active lane mask
  /// for vector loop control flow.
  bool useActiveLaneMaskForControlFlow() const {
    return FoldTailByMasking &&
           TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow;
  }

  /// Returns true if the instructions in this block requires predication
  /// for any reason, e.g. because tail folding now requires a predicate
  /// or because the block in the original loop was predicated.
  bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
    return foldTailByMasking() || Legal->blockNeedsPredication(BB);
  }

  /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
  /// nodes to the chain of instructions representing the reductions. Uses a
  /// MapVector to ensure deterministic iteration order.
  using ReductionChainMap =
      SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;

  /// Return the chain of instructions representing an inloop reduction.
  const ReductionChainMap &getInLoopReductionChains() const {
    return InLoopReductionChains;
  }

  /// Returns true if the Phi is part of an inloop reduction.
  bool isInLoopReduction(PHINode *Phi) const {
    return InLoopReductionChains.count(Phi);
  }

  /// Estimate cost of an intrinsic call instruction CI if it were vectorized
  /// with factor VF.  Return the cost of the instruction, including
  /// scalarization overhead if it's needed.
  InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;

  /// Estimate cost of a call instruction CI if it were vectorized with factor
  /// VF. Return the cost of the instruction, including scalarization overhead
  /// if it's needed. The flag NeedToScalarize shows if the call needs to be
  /// scalarized -
  /// i.e. either vector version isn't available, or is too expensive.
  InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
                                    bool &NeedToScalarize) const;

  /// Returns true if the per-lane cost of VectorizationFactor A is lower than
  /// that of B.
  bool isMoreProfitable(const VectorizationFactor &A,
                        const VectorizationFactor &B) const;

  /// Invalidates decisions already taken by the cost model.
  void invalidateCostModelingDecisions() {
    WideningDecisions.clear();
    Uniforms.clear();
    Scalars.clear();
  }

  /// Convenience function that returns the value of vscale_range iff
  /// vscale_range.min == vscale_range.max or otherwise returns the value
  /// returned by the corresponding TLI method.
  std::optional<unsigned> getVScaleForTuning() const;

private:
  unsigned NumPredStores = 0;

  /// \return An upper bound for the vectorization factors for both
  /// fixed and scalable vectorization, where the minimum-known number of
  /// elements is a power-of-2 larger than zero. If scalable vectorization is
  /// disabled or unsupported, then the scalable part will be equal to
  /// ElementCount::getScalable(0).
  FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
                                           ElementCount UserVF,
                                           bool FoldTailByMasking);

  /// \return the maximized element count based on the targets vector
  /// registers and the loop trip-count, but limited to a maximum safe VF.
  /// This is a helper function of computeFeasibleMaxVF.
  ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
                                       unsigned SmallestType,
                                       unsigned WidestType,
                                       ElementCount MaxSafeVF,
                                       bool FoldTailByMasking);

  /// \return the maximum legal scalable VF, based on the safe max number
  /// of elements.
  ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);

  /// The vectorization cost is a combination of the cost itself and a boolean
  /// indicating whether any of the contributing operations will actually
  /// operate on vector values after type legalization in the backend. If this
  /// latter value is false, then all operations will be scalarized (i.e. no
  /// vectorization has actually taken place).
  using VectorizationCostTy = std::pair<InstructionCost, bool>;

  /// Returns the expected execution cost. The unit of the cost does
  /// not matter because we use the 'cost' units to compare different
  /// vector widths. The cost that is returned is *not* normalized by
  /// the factor width. If \p Invalid is not nullptr, this function
  /// will add a pair(Instruction*, ElementCount) to \p Invalid for
  /// each instruction that has an Invalid cost for the given VF.
  using InstructionVFPair = std::pair<Instruction *, ElementCount>;
  VectorizationCostTy
  expectedCost(ElementCount VF,
               SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);

  /// Returns the execution time cost of an instruction for a given vector
  /// width. Vector width of one means scalar.
  VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);

  /// The cost-computation logic from getInstructionCost which provides
  /// the vector type as an output parameter.
  InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
                                     Type *&VectorTy);

  /// Return the cost of instructions in an inloop reduction pattern, if I is
  /// part of that pattern.
  std::optional<InstructionCost>
  getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
                          TTI::TargetCostKind CostKind);

  /// Calculate vectorization cost of memory instruction \p I.
  InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);

  /// The cost computation for scalarized memory instruction.
  InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);

  /// The cost computation for interleaving group of memory instructions.
  InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);

  /// The cost computation for Gather/Scatter instruction.
  InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);

  /// The cost computation for widening instruction \p I with consecutive
  /// memory access.
  InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);

  /// The cost calculation for Load/Store instruction \p I with uniform pointer -
  /// Load: scalar load + broadcast.
  /// Store: scalar store + (loop invariant value stored? 0 : extract of last
  /// element)
  InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);

  /// Estimate the overhead of scalarizing an instruction. This is a
  /// convenience wrapper for the type-based getScalarizationOverhead API.
  InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF,
                                           TTI::TargetCostKind CostKind) const;

  /// Returns true if an artificially high cost for emulated masked memrefs
  /// should be used.
  bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);

  /// Map of scalar integer values to the smallest bitwidth they can be legally
  /// represented as. The vector equivalents of these values should be truncated
  /// to this type.
  MapVector<Instruction *, uint64_t> MinBWs;

  /// A type representing the costs for instructions if they were to be
  /// scalarized rather than vectorized. The entries are Instruction-Cost
  /// pairs.
  using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;

  /// A set containing all BasicBlocks that are known to present after
  /// vectorization as a predicated block.
  DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
      PredicatedBBsAfterVectorization;

  /// Records whether it is allowed to have the original scalar loop execute at
  /// least once. This may be needed as a fallback loop in case runtime
  /// aliasing/dependence checks fail, or to handle the tail/remainder
  /// iterations when the trip count is unknown or doesn't divide by the VF,
  /// or as a peel-loop to handle gaps in interleave-groups.
  /// Under optsize and when the trip count is very small we don't allow any
  /// iterations to execute in the scalar loop.
  ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;

  /// All blocks of loop are to be masked to fold tail of scalar iterations.
  bool FoldTailByMasking = false;

  /// A map holding scalar costs for different vectorization factors. The
  /// presence of a cost for an instruction in the mapping indicates that the
  /// instruction will be scalarized when vectorizing with the associated
  /// vectorization factor. The entries are VF-ScalarCostTy pairs.
  DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;

  /// Holds the instructions known to be uniform after vectorization.
  /// The data is collected per VF.
  DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;

  /// Holds the instructions known to be scalar after vectorization.
  /// The data is collected per VF.
  DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;

  /// Holds the instructions (address computations) that are forced to be
  /// scalarized.
  DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;

  /// PHINodes of the reductions that should be expanded in-loop along with
  /// their associated chains of reduction operations, in program order from top
  /// (PHI) to bottom
  ReductionChainMap InLoopReductionChains;

  /// A Map of inloop reduction operations and their immediate chain operand.
  /// FIXME: This can be removed once reductions can be costed correctly in
  /// vplan. This was added to allow quick lookup to the inloop operations,
  /// without having to loop through InLoopReductionChains.
  DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;

  /// Returns the expected difference in cost from scalarizing the expression
  /// feeding a predicated instruction \p PredInst. The instructions to
  /// scalarize and their scalar costs are collected in \p ScalarCosts. A
  /// non-negative return value implies the expression will be scalarized.
  /// Currently, only single-use chains are considered for scalarization.
  InstructionCost computePredInstDiscount(Instruction *PredInst,
                                          ScalarCostsTy &ScalarCosts,
                                          ElementCount VF);

  /// Collect the instructions that are uniform after vectorization. An
  /// instruction is uniform if we represent it with a single scalar value in
  /// the vectorized loop corresponding to each vector iteration. Examples of
  /// uniform instructions include pointer operands of consecutive or
  /// interleaved memory accesses. Note that although uniformity implies an
  /// instruction will be scalar, the reverse is not true. In general, a
  /// scalarized instruction will be represented by VF scalar values in the
  /// vectorized loop, each corresponding to an iteration of the original
  /// scalar loop.
  void collectLoopUniforms(ElementCount VF);

  /// Collect the instructions that are scalar after vectorization. An
  /// instruction is scalar if it is known to be uniform or will be scalarized
  /// during vectorization. collectLoopScalars should only add non-uniform nodes
  /// to the list if they are used by a load/store instruction that is marked as
  /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
  /// VF values in the vectorized loop, each corresponding to an iteration of
  /// the original scalar loop.
  void collectLoopScalars(ElementCount VF);

  /// Keeps cost model vectorization decision and cost for instructions.
  /// Right now it is used for memory instructions only.
  using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
                                std::pair<InstWidening, InstructionCost>>;

  DecisionList WideningDecisions;

  /// Returns true if \p V is expected to be vectorized and it needs to be
  /// extracted.
  bool needsExtract(Value *V, ElementCount VF) const {
    Instruction *I = dyn_cast<Instruction>(V);
    if (VF.isScalar() || !I || !TheLoop->contains(I) ||
        TheLoop->isLoopInvariant(I))
      return false;

    // Assume we can vectorize V (and hence we need extraction) if the
    // scalars are not computed yet. This can happen, because it is called
    // via getScalarizationOverhead from setCostBasedWideningDecision, before
    // the scalars are collected. That should be a safe assumption in most
    // cases, because we check if the operands have vectorizable types
    // beforehand in LoopVectorizationLegality.
    return Scalars.find(VF) == Scalars.end() ||
           !isScalarAfterVectorization(I, VF);
  };

  /// Returns a range containing only operands needing to be extracted.
  SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
                                                   ElementCount VF) const {
    return SmallVector<Value *, 4>(make_filter_range(
        Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
  }

  /// Determines if we have the infrastructure to vectorize loop \p L and its
  /// epilogue, assuming the main loop is vectorized by \p VF.
  bool isCandidateForEpilogueVectorization(const Loop &L,
                                           const ElementCount VF) const;

  /// Returns true if epilogue vectorization is considered profitable, and
  /// false otherwise.
  /// \p VF is the vectorization factor chosen for the original loop.
  bool isEpilogueVectorizationProfitable(const ElementCount VF) const;

public:
  /// The loop that we evaluate.
  Loop *TheLoop;

  /// Predicated scalar evolution analysis.
  PredicatedScalarEvolution &PSE;

  /// Loop Info analysis.
  LoopInfo *LI;

  /// Vectorization legality.
  LoopVectorizationLegality *Legal;

  /// Vector target information.
  const TargetTransformInfo &TTI;

  /// Target Library Info.
  const TargetLibraryInfo *TLI;

  /// Demanded bits analysis.
  DemandedBits *DB;

  /// Assumption cache.
  AssumptionCache *AC;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  const Function *TheFunction;

  /// Loop Vectorize Hint.
  const LoopVectorizeHints *Hints;

  /// The interleave access information contains groups of interleaved accesses
  /// with the same stride and close to each other.
  InterleavedAccessInfo &InterleaveInfo;

  /// Values to ignore in the cost model.
  SmallPtrSet<const Value *, 16> ValuesToIgnore;

  /// Values to ignore in the cost model when VF > 1.
  SmallPtrSet<const Value *, 16> VecValuesToIgnore;

  /// All element types found in the loop.
  SmallPtrSet<Type *, 16> ElementTypesInLoop;

  /// Profitable vector factors.
  SmallVector<VectorizationFactor, 8> ProfitableVFs;
};
} // end namespace llvm

namespace {
/// Helper struct to manage generating runtime checks for vectorization.
///
/// The runtime checks are created up-front in temporary blocks to allow better
/// estimating the cost and un-linked from the existing IR. After deciding to
/// vectorize, the checks are moved back. If deciding not to vectorize, the
/// temporary blocks are completely removed.
class GeneratedRTChecks {
  /// Basic block which contains the generated SCEV checks, if any.
  BasicBlock *SCEVCheckBlock = nullptr;

  /// The value representing the result of the generated SCEV checks. If it is
  /// nullptr, either no SCEV checks have been generated or they have been used.
  Value *SCEVCheckCond = nullptr;

  /// Basic block which contains the generated memory runtime checks, if any.
  BasicBlock *MemCheckBlock = nullptr;

  /// The value representing the result of the generated memory runtime checks.
  /// If it is nullptr, either no memory runtime checks have been generated or
  /// they have been used.
  Value *MemRuntimeCheckCond = nullptr;

  DominatorTree *DT;
  LoopInfo *LI;
  TargetTransformInfo *TTI;

  SCEVExpander SCEVExp;
  SCEVExpander MemCheckExp;

  bool CostTooHigh = false;

public:
  GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
                    TargetTransformInfo *TTI, const DataLayout &DL)
      : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"),
        MemCheckExp(SE, DL, "scev.check") {}

  /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
  /// accurately estimate the cost of the runtime checks. The blocks are
  /// un-linked from the IR and is added back during vector code generation. If
  /// there is no vector code generation, the check blocks are removed
  /// completely.
  void Create(Loop *L, const LoopAccessInfo &LAI,
              const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {

    // Hard cutoff to limit compile-time increase in case a very large number of
    // runtime checks needs to be generated.
    // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
    // profile info.
    CostTooHigh =
        LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold;
    if (CostTooHigh)
      return;

    BasicBlock *LoopHeader = L->getHeader();
    BasicBlock *Preheader = L->getLoopPreheader();

    // Use SplitBlock to create blocks for SCEV & memory runtime checks to
    // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
    // may be used by SCEVExpander. The blocks will be un-linked from their
    // predecessors and removed from LI & DT at the end of the function.
    if (!UnionPred.isAlwaysTrue()) {
      SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
                                  nullptr, "vector.scevcheck");

      SCEVCheckCond = SCEVExp.expandCodeForPredicate(
          &UnionPred, SCEVCheckBlock->getTerminator());
    }

    const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
    if (RtPtrChecking.Need) {
      auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
      MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
                                 "vector.memcheck");

      auto DiffChecks = RtPtrChecking.getDiffChecks();
      if (DiffChecks) {
        Value *RuntimeVF = nullptr;
        MemRuntimeCheckCond = addDiffRuntimeChecks(
            MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
            [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
              if (!RuntimeVF)
                RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
              return RuntimeVF;
            },
            IC);
      } else {
        MemRuntimeCheckCond =
            addRuntimeChecks(MemCheckBlock->getTerminator(), L,
                             RtPtrChecking.getChecks(), MemCheckExp);
      }
      assert(MemRuntimeCheckCond &&
             "no RT checks generated although RtPtrChecking "
             "claimed checks are required");
    }

    if (!MemCheckBlock && !SCEVCheckBlock)
      return;

    // Unhook the temporary block with the checks, update various places
    // accordingly.
    if (SCEVCheckBlock)
      SCEVCheckBlock->replaceAllUsesWith(Preheader);
    if (MemCheckBlock)
      MemCheckBlock->replaceAllUsesWith(Preheader);

    if (SCEVCheckBlock) {
      SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
      new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
      Preheader->getTerminator()->eraseFromParent();
    }
    if (MemCheckBlock) {
      MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
      new UnreachableInst(Preheader->getContext(), MemCheckBlock);
      Preheader->getTerminator()->eraseFromParent();
    }

    DT->changeImmediateDominator(LoopHeader, Preheader);
    if (MemCheckBlock) {
      DT->eraseNode(MemCheckBlock);
      LI->removeBlock(MemCheckBlock);
    }
    if (SCEVCheckBlock) {
      DT->eraseNode(SCEVCheckBlock);
      LI->removeBlock(SCEVCheckBlock);
    }
  }

  InstructionCost getCost() {
    if (SCEVCheckBlock || MemCheckBlock)
      LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");

    if (CostTooHigh) {
      InstructionCost Cost;
      Cost.setInvalid();
      LLVM_DEBUG(dbgs() << "  number of checks exceeded threshold\n");
      return Cost;
    }

    InstructionCost RTCheckCost = 0;
    if (SCEVCheckBlock)
      for (Instruction &I : *SCEVCheckBlock) {
        if (SCEVCheckBlock->getTerminator() == &I)
          continue;
        InstructionCost C =
            TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
        LLVM_DEBUG(dbgs() << "  " << C << "  for " << I << "\n");
        RTCheckCost += C;
      }
    if (MemCheckBlock)
      for (Instruction &I : *MemCheckBlock) {
        if (MemCheckBlock->getTerminator() == &I)
          continue;
        InstructionCost C =
            TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
        LLVM_DEBUG(dbgs() << "  " << C << "  for " << I << "\n");
        RTCheckCost += C;
      }

    if (SCEVCheckBlock || MemCheckBlock)
      LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
                        << "\n");

    return RTCheckCost;
  }

  /// Remove the created SCEV & memory runtime check blocks & instructions, if
  /// unused.
  ~GeneratedRTChecks() {
    SCEVExpanderCleaner SCEVCleaner(SCEVExp);
    SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
    if (!SCEVCheckCond)
      SCEVCleaner.markResultUsed();

    if (!MemRuntimeCheckCond)
      MemCheckCleaner.markResultUsed();

    if (MemRuntimeCheckCond) {
      auto &SE = *MemCheckExp.getSE();
      // Memory runtime check generation creates compares that use expanded
      // values. Remove them before running the SCEVExpanderCleaners.
      for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
        if (MemCheckExp.isInsertedInstruction(&I))
          continue;
        SE.forgetValue(&I);
        I.eraseFromParent();
      }
    }
    MemCheckCleaner.cleanup();
    SCEVCleaner.cleanup();

    if (SCEVCheckCond)
      SCEVCheckBlock->eraseFromParent();
    if (MemRuntimeCheckCond)
      MemCheckBlock->eraseFromParent();
  }

  /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
  /// adjusts the branches to branch to the vector preheader or \p Bypass,
  /// depending on the generated condition.
  BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
                             BasicBlock *LoopVectorPreHeader,
                             BasicBlock *LoopExitBlock) {
    if (!SCEVCheckCond)
      return nullptr;

    Value *Cond = SCEVCheckCond;
    // Mark the check as used, to prevent it from being removed during cleanup.
    SCEVCheckCond = nullptr;
    if (auto *C = dyn_cast<ConstantInt>(Cond))
      if (C->isZero())
        return nullptr;

    auto *Pred = LoopVectorPreHeader->getSinglePredecessor();

    BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
    // Create new preheader for vector loop.
    if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
      PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);

    SCEVCheckBlock->getTerminator()->eraseFromParent();
    SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
    Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
                                                SCEVCheckBlock);

    DT->addNewBlock(SCEVCheckBlock, Pred);
    DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);

    ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
                        BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
    return SCEVCheckBlock;
  }

  /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
  /// the branches to branch to the vector preheader or \p Bypass, depending on
  /// the generated condition.
  BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
                                   BasicBlock *LoopVectorPreHeader) {
    // Check if we generated code that checks in runtime if arrays overlap.
    if (!MemRuntimeCheckCond)
      return nullptr;

    auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
    Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
                                                MemCheckBlock);

    DT->addNewBlock(MemCheckBlock, Pred);
    DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
    MemCheckBlock->moveBefore(LoopVectorPreHeader);

    if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
      PL->addBasicBlockToLoop(MemCheckBlock, *LI);

    ReplaceInstWithInst(
        MemCheckBlock->getTerminator(),
        BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
    MemCheckBlock->getTerminator()->setDebugLoc(
        Pred->getTerminator()->getDebugLoc());

    // Mark the check as used, to prevent it from being removed during cleanup.
    MemRuntimeCheckCond = nullptr;
    return MemCheckBlock;
  }
};
} // namespace

// Return true if \p OuterLp is an outer loop annotated with hints for explicit
// vectorization. The loop needs to be annotated with #pragma omp simd
// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
// vector length information is not provided, vectorization is not considered
// explicit. Interleave hints are not allowed either. These limitations will be
// relaxed in the future.
// Please, note that we are currently forced to abuse the pragma 'clang
// vectorize' semantics. This pragma provides *auto-vectorization hints*
// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
// provides *explicit vectorization hints* (LV can bypass legal checks and
// assume that vectorization is legal). However, both hints are implemented
// using the same metadata (llvm.loop.vectorize, processed by
// LoopVectorizeHints). This will be fixed in the future when the native IR
// representation for pragma 'omp simd' is introduced.
static bool isExplicitVecOuterLoop(Loop *OuterLp,
                                   OptimizationRemarkEmitter *ORE) {
  assert(!OuterLp->isInnermost() && "This is not an outer loop");
  LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);

  // Only outer loops with an explicit vectorization hint are supported.
  // Unannotated outer loops are ignored.
  if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
    return false;

  Function *Fn = OuterLp->getHeader()->getParent();
  if (!Hints.allowVectorization(Fn, OuterLp,
                                true /*VectorizeOnlyWhenForced*/)) {
    LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
    return false;
  }

  if (Hints.getInterleave() > 1) {
    // TODO: Interleave support is future work.
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
                         "outer loops.\n");
    Hints.emitRemarkWithHints();
    return false;
  }

  return true;
}

static void collectSupportedLoops(Loop &L, LoopInfo *LI,
                                  OptimizationRemarkEmitter *ORE,
                                  SmallVectorImpl<Loop *> &V) {
  // Collect inner loops and outer loops without irreducible control flow. For
  // now, only collect outer loops that have explicit vectorization hints. If we
  // are stress testing the VPlan H-CFG construction, we collect the outermost
  // loop of every loop nest.
  if (L.isInnermost() || VPlanBuildStressTest ||
      (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
    LoopBlocksRPO RPOT(&L);
    RPOT.perform(LI);
    if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
      V.push_back(&L);
      // TODO: Collect inner loops inside marked outer loops in case
      // vectorization fails for the outer loop. Do not invoke
      // 'containsIrreducibleCFG' again for inner loops when the outer loop is
      // already known to be reducible. We can use an inherited attribute for
      // that.
      return;
    }
  }
  for (Loop *InnerL : L)
    collectSupportedLoops(*InnerL, LI, ORE, V);
}

namespace {

/// The LoopVectorize Pass.
struct LoopVectorize : public FunctionPass {
  /// Pass identification, replacement for typeid
  static char ID;

  LoopVectorizePass Impl;

  explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
                         bool VectorizeOnlyWhenForced = false)
      : FunctionPass(ID),
        Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
    auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs();
    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
    auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();

    return Impl
        .runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AC, LAIs, *ORE, PSI)
        .MadeAnyChange;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<LoopAccessLegacyAnalysis>();
    AU.addRequired<DemandedBitsWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<InjectTLIMappingsLegacy>();

    // We currently do not preserve loopinfo/dominator analyses with outer loop
    // vectorization. Until this is addressed, mark these analyses as preserved
    // only for non-VPlan-native path.
    // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
    if (!EnableVPlanNativePath) {
      AU.addPreserved<LoopInfoWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
    }

    AU.addPreserved<BasicAAWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel and LoopVectorizationPlanner.
//===----------------------------------------------------------------------===//

Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
  // We need to place the broadcast of invariant variables outside the loop,
  // but only if it's proven safe to do so. Else, broadcast will be inside
  // vector loop body.
  Instruction *Instr = dyn_cast<Instruction>(V);
  bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
                     (!Instr ||
                      DT->dominates(Instr->getParent(), LoopVectorPreHeader));
  // Place the code for broadcasting invariant variables in the new preheader.
  IRBuilder<>::InsertPointGuard Guard(Builder);
  if (SafeToHoist)
    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());

  // Broadcast the scalar into all locations in the vector.
  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");

  return Shuf;
}

/// This function adds
/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
                            Instruction::BinaryOps BinOp, ElementCount VF,
                            IRBuilderBase &Builder) {
  assert(VF.isVector() && "only vector VFs are supported");

  // Create and check the types.
  auto *ValVTy = cast<VectorType>(Val->getType());
  ElementCount VLen = ValVTy->getElementCount();

  Type *STy = Val->getType()->getScalarType();
  assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
         "Induction Step must be an integer or FP");
  assert(Step->getType() == STy && "Step has wrong type");

  SmallVector<Constant *, 8> Indices;

  // Create a vector of consecutive numbers from zero to VF.
  VectorType *InitVecValVTy = ValVTy;
  if (STy->isFloatingPointTy()) {
    Type *InitVecValSTy =
        IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
    InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
  }
  Value *InitVec = Builder.CreateStepVector(InitVecValVTy);

  // Splat the StartIdx
  Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);

  if (STy->isIntegerTy()) {
    InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
    Step = Builder.CreateVectorSplat(VLen, Step);
    assert(Step->getType() == Val->getType() && "Invalid step vec");
    // FIXME: The newly created binary instructions should contain nsw/nuw
    // flags, which can be found from the original scalar operations.
    Step = Builder.CreateMul(InitVec, Step);
    return Builder.CreateAdd(Val, Step, "induction");
  }

  // Floating point induction.
  assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
         "Binary Opcode should be specified for FP induction");
  InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
  InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);

  Step = Builder.CreateVectorSplat(VLen, Step);
  Value *MulOp = Builder.CreateFMul(InitVec, Step);
  return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
}

/// Compute scalar induction steps. \p ScalarIV is the scalar induction
/// variable on which to base the steps, \p Step is the size of the step.
static void buildScalarSteps(Value *ScalarIV, Value *Step,
                             const InductionDescriptor &ID, VPValue *Def,
                             VPTransformState &State) {
  IRBuilderBase &Builder = State.Builder;

  // Ensure step has the same type as that of scalar IV.
  Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
  if (ScalarIVTy != Step->getType()) {
    // TODO: Also use VPDerivedIVRecipe when only the step needs truncating, to
    // avoid separate truncate here.
    assert(Step->getType()->isIntegerTy() &&
           "Truncation requires an integer step");
    Step = State.Builder.CreateTrunc(Step, ScalarIVTy);
  }

  // We build scalar steps for both integer and floating-point induction
  // variables. Here, we determine the kind of arithmetic we will perform.
  Instruction::BinaryOps AddOp;
  Instruction::BinaryOps MulOp;
  if (ScalarIVTy->isIntegerTy()) {
    AddOp = Instruction::Add;
    MulOp = Instruction::Mul;
  } else {
    AddOp = ID.getInductionOpcode();
    MulOp = Instruction::FMul;
  }

  // Determine the number of scalars we need to generate for each unroll
  // iteration.
  bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
  // Compute the scalar steps and save the results in State.
  Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
                                     ScalarIVTy->getScalarSizeInBits());
  Type *VecIVTy = nullptr;
  Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
  if (!FirstLaneOnly && State.VF.isScalable()) {
    VecIVTy = VectorType::get(ScalarIVTy, State.VF);
    UnitStepVec =
        Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
    SplatStep = Builder.CreateVectorSplat(State.VF, Step);
    SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
  }

  unsigned StartPart = 0;
  unsigned EndPart = State.UF;
  unsigned StartLane = 0;
  unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
  if (State.Instance) {
    StartPart = State.Instance->Part;
    EndPart = StartPart + 1;
    StartLane = State.Instance->Lane.getKnownLane();
    EndLane = StartLane + 1;
  }
  for (unsigned Part = StartPart; Part < EndPart; ++Part) {
    Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);

    if (!FirstLaneOnly && State.VF.isScalable()) {
      auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
      auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
      if (ScalarIVTy->isFloatingPointTy())
        InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
      auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
      auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
      State.set(Def, Add, Part);
      // It's useful to record the lane values too for the known minimum number
      // of elements so we do those below. This improves the code quality when
      // trying to extract the first element, for example.
    }

    if (ScalarIVTy->isFloatingPointTy())
      StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);

    for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
      Value *StartIdx = Builder.CreateBinOp(
          AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
      // The step returned by `createStepForVF` is a runtime-evaluated value
      // when VF is scalable. Otherwise, it should be folded into a Constant.
      assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
             "Expected StartIdx to be folded to a constant when VF is not "
             "scalable");
      auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
      auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
      State.set(Def, Add, VPIteration(Part, Lane));
    }
  }
}

// Generate code for the induction step. Note that induction steps are
// required to be loop-invariant
static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
                              Instruction *InsertBefore,
                              Loop *OrigLoop = nullptr) {
  const DataLayout &DL = SE.getDataLayout();
  assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
         "Induction step should be loop invariant");
  if (auto *E = dyn_cast<SCEVUnknown>(Step))
    return E->getValue();

  SCEVExpander Exp(SE, DL, "induction");
  return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
}

/// Compute the transformed value of Index at offset StartValue using step
/// StepValue.
/// For integer induction, returns StartValue + Index * StepValue.
/// For pointer induction, returns StartValue[Index * StepValue].
/// FIXME: The newly created binary instructions should contain nsw/nuw
/// flags, which can be found from the original scalar operations.
static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
                                   Value *StartValue, Value *Step,
                                   const InductionDescriptor &ID) {
  Type *StepTy = Step->getType();
  Value *CastedIndex = StepTy->isIntegerTy()
                           ? B.CreateSExtOrTrunc(Index, StepTy)
                           : B.CreateCast(Instruction::SIToFP, Index, StepTy);
  if (CastedIndex != Index) {
    CastedIndex->setName(CastedIndex->getName() + ".cast");
    Index = CastedIndex;
  }

  // Note: the IR at this point is broken. We cannot use SE to create any new
  // SCEV and then expand it, hoping that SCEV's simplification will give us
  // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
  // lead to various SCEV crashes. So all we can do is to use builder and rely
  // on InstCombine for future simplifications. Here we handle some trivial
  // cases only.
  auto CreateAdd = [&B](Value *X, Value *Y) {
    assert(X->getType() == Y->getType() && "Types don't match!");
    if (auto *CX = dyn_cast<ConstantInt>(X))
      if (CX->isZero())
        return Y;
    if (auto *CY = dyn_cast<ConstantInt>(Y))
      if (CY->isZero())
        return X;
    return B.CreateAdd(X, Y);
  };

  // We allow X to be a vector type, in which case Y will potentially be
  // splatted into a vector with the same element count.
  auto CreateMul = [&B](Value *X, Value *Y) {
    assert(X->getType()->getScalarType() == Y->getType() &&
           "Types don't match!");
    if (auto *CX = dyn_cast<ConstantInt>(X))
      if (CX->isOne())
        return Y;
    if (auto *CY = dyn_cast<ConstantInt>(Y))
      if (CY->isOne())
        return X;
    VectorType *XVTy = dyn_cast<VectorType>(X->getType());
    if (XVTy && !isa<VectorType>(Y->getType()))
      Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
    return B.CreateMul(X, Y);
  };

  switch (ID.getKind()) {
  case InductionDescriptor::IK_IntInduction: {
    assert(!isa<VectorType>(Index->getType()) &&
           "Vector indices not supported for integer inductions yet");
    assert(Index->getType() == StartValue->getType() &&
           "Index type does not match StartValue type");
    if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
      return B.CreateSub(StartValue, Index);
    auto *Offset = CreateMul(Index, Step);
    return CreateAdd(StartValue, Offset);
  }
  case InductionDescriptor::IK_PtrInduction: {
    assert(isa<Constant>(Step) &&
           "Expected constant step for pointer induction");
    return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
  }
  case InductionDescriptor::IK_FpInduction: {
    assert(!isa<VectorType>(Index->getType()) &&
           "Vector indices not supported for FP inductions yet");
    assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
    auto InductionBinOp = ID.getInductionBinOp();
    assert(InductionBinOp &&
           (InductionBinOp->getOpcode() == Instruction::FAdd ||
            InductionBinOp->getOpcode() == Instruction::FSub) &&
           "Original bin op should be defined for FP induction");

    Value *MulExp = B.CreateFMul(Step, Index);
    return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
                         "induction");
  }
  case InductionDescriptor::IK_NoInduction:
    return nullptr;
  }
  llvm_unreachable("invalid enum");
}

void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
                                                    const VPIteration &Instance,
                                                    VPTransformState &State) {
  Value *ScalarInst = State.get(Def, Instance);
  Value *VectorValue = State.get(Def, Instance.Part);
  VectorValue = Builder.CreateInsertElement(
      VectorValue, ScalarInst,
      Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
  State.set(Def, VectorValue, Instance.Part);
}

// Return whether we allow using masked interleave-groups (for dealing with
// strided loads/stores that reside in predicated blocks, or for dealing
// with gaps).
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
  // If an override option has been passed in for interleaved accesses, use it.
  if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
    return EnableMaskedInterleavedMemAccesses;

  return TTI.enableMaskedInterleavedAccessVectorization();
}

// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
//   for (i = 0; i < N; i+=3) {
//     R = Pic[i];             // Member of index 0
//     G = Pic[i+1];           // Member of index 1
//     B = Pic[i+2];           // Member of index 2
//     ... // do something to R, G, B
//   }
// To:
//   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
//   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
//   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
//   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
//
// Or translate following interleaved store group (factor = 3):
//   for (i = 0; i < N; i+=3) {
//     ... do something to R, G, B
//     Pic[i]   = R;           // Member of index 0
//     Pic[i+1] = G;           // Member of index 1
//     Pic[i+2] = B;           // Member of index 2
//   }
// To:
//   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
//   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
//   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
//        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
//   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
void InnerLoopVectorizer::vectorizeInterleaveGroup(
    const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
    VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
    VPValue *BlockInMask) {
  Instruction *Instr = Group->getInsertPos();
  const DataLayout &DL = Instr->getModule()->getDataLayout();

  // Prepare for the vector type of the interleaved load/store.
  Type *ScalarTy = getLoadStoreType(Instr);
  unsigned InterleaveFactor = Group->getFactor();
  assert(!VF.isScalable() && "scalable vectors not yet supported.");
  auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);

  // Prepare for the new pointers.
  SmallVector<Value *, 2> AddrParts;
  unsigned Index = Group->getIndex(Instr);

  // TODO: extend the masked interleaved-group support to reversed access.
  assert((!BlockInMask || !Group->isReverse()) &&
         "Reversed masked interleave-group not supported.");

  // If the group is reverse, adjust the index to refer to the last vector lane
  // instead of the first. We adjust the index from the first vector lane,
  // rather than directly getting the pointer for lane VF - 1, because the
  // pointer operand of the interleaved access is supposed to be uniform. For
  // uniform instructions, we're only required to generate a value for the
  // first vector lane in each unroll iteration.
  if (Group->isReverse())
    Index += (VF.getKnownMinValue() - 1) * Group->getFactor();

  for (unsigned Part = 0; Part < UF; Part++) {
    Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
    State.setDebugLocFromInst(AddrPart);

    // Notice current instruction could be any index. Need to adjust the address
    // to the member of index 0.
    //
    // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
    //       b = A[i];       // Member of index 0
    // Current pointer is pointed to A[i+1], adjust it to A[i].
    //
    // E.g.  A[i+1] = a;     // Member of index 1
    //       A[i]   = b;     // Member of index 0
    //       A[i+2] = c;     // Member of index 2 (Current instruction)
    // Current pointer is pointed to A[i+2], adjust it to A[i].

    bool InBounds = false;
    if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
      InBounds = gep->isInBounds();
    AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
    cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);

    // Cast to the vector pointer type.
    unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
    Type *PtrTy = VecTy->getPointerTo(AddressSpace);
    AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
  }

  State.setDebugLocFromInst(Instr);
  Value *PoisonVec = PoisonValue::get(VecTy);

  Value *MaskForGaps = nullptr;
  if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
    MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
    assert(MaskForGaps && "Mask for Gaps is required but it is null");
  }

  // Vectorize the interleaved load group.
  if (isa<LoadInst>(Instr)) {
    // For each unroll part, create a wide load for the group.
    SmallVector<Value *, 2> NewLoads;
    for (unsigned Part = 0; Part < UF; Part++) {
      Instruction *NewLoad;
      if (BlockInMask || MaskForGaps) {
        assert(useMaskedInterleavedAccesses(*TTI) &&
               "masked interleaved groups are not allowed.");
        Value *GroupMask = MaskForGaps;
        if (BlockInMask) {
          Value *BlockInMaskPart = State.get(BlockInMask, Part);
          Value *ShuffledMask = Builder.CreateShuffleVector(
              BlockInMaskPart,
              createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
              "interleaved.mask");
          GroupMask = MaskForGaps
                          ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
                                                MaskForGaps)
                          : ShuffledMask;
        }
        NewLoad =
            Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
                                     GroupMask, PoisonVec, "wide.masked.vec");
      }
      else
        NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
                                            Group->getAlign(), "wide.vec");
      Group->addMetadata(NewLoad);
      NewLoads.push_back(NewLoad);
    }

    // For each member in the group, shuffle out the appropriate data from the
    // wide loads.
    unsigned J = 0;
    for (unsigned I = 0; I < InterleaveFactor; ++I) {
      Instruction *Member = Group->getMember(I);

      // Skip the gaps in the group.
      if (!Member)
        continue;

      auto StrideMask =
          createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
      for (unsigned Part = 0; Part < UF; Part++) {
        Value *StridedVec = Builder.CreateShuffleVector(
            NewLoads[Part], StrideMask, "strided.vec");

        // If this member has different type, cast the result type.
        if (Member->getType() != ScalarTy) {
          assert(!VF.isScalable() && "VF is assumed to be non scalable.");
          VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
          StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
        }

        if (Group->isReverse())
          StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");

        State.set(VPDefs[J], StridedVec, Part);
      }
      ++J;
    }
    return;
  }

  // The sub vector type for current instruction.
  auto *SubVT = VectorType::get(ScalarTy, VF);

  // Vectorize the interleaved store group.
  MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
  assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
         "masked interleaved groups are not allowed.");
  assert((!MaskForGaps || !VF.isScalable()) &&
         "masking gaps for scalable vectors is not yet supported.");
  for (unsigned Part = 0; Part < UF; Part++) {
    // Collect the stored vector from each member.
    SmallVector<Value *, 4> StoredVecs;
    unsigned StoredIdx = 0;
    for (unsigned i = 0; i < InterleaveFactor; i++) {
      assert((Group->getMember(i) || MaskForGaps) &&
             "Fail to get a member from an interleaved store group");
      Instruction *Member = Group->getMember(i);

      // Skip the gaps in the group.
      if (!Member) {
        Value *Undef = PoisonValue::get(SubVT);
        StoredVecs.push_back(Undef);
        continue;
      }

      Value *StoredVec = State.get(StoredValues[StoredIdx], Part);
      ++StoredIdx;

      if (Group->isReverse())
        StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");

      // If this member has different type, cast it to a unified type.

      if (StoredVec->getType() != SubVT)
        StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);

      StoredVecs.push_back(StoredVec);
    }

    // Concatenate all vectors into a wide vector.
    Value *WideVec = concatenateVectors(Builder, StoredVecs);

    // Interleave the elements in the wide vector.
    Value *IVec = Builder.CreateShuffleVector(
        WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
        "interleaved.vec");

    Instruction *NewStoreInstr;
    if (BlockInMask || MaskForGaps) {
      Value *GroupMask = MaskForGaps;
      if (BlockInMask) {
        Value *BlockInMaskPart = State.get(BlockInMask, Part);
        Value *ShuffledMask = Builder.CreateShuffleVector(
            BlockInMaskPart,
            createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
            "interleaved.mask");
        GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
                                                      ShuffledMask, MaskForGaps)
                                : ShuffledMask;
      }
      NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
                                                Group->getAlign(), GroupMask);
    } else
      NewStoreInstr =
          Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());

    Group->addMetadata(NewStoreInstr);
  }
}

void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr,
                                               VPReplicateRecipe *RepRecipe,
                                               const VPIteration &Instance,
                                               bool IfPredicateInstr,
                                               VPTransformState &State) {
  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");

  // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
  // the first lane and part.
  if (isa<NoAliasScopeDeclInst>(Instr))
    if (!Instance.isFirstIteration())
      return;

  // Does this instruction return a value ?
  bool IsVoidRetTy = Instr->getType()->isVoidTy();

  Instruction *Cloned = Instr->clone();
  if (!IsVoidRetTy)
    Cloned->setName(Instr->getName() + ".cloned");

  // If the scalarized instruction contributes to the address computation of a
  // widen masked load/store which was in a basic block that needed predication
  // and is not predicated after vectorization, we can't propagate
  // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
  // instruction could feed a poison value to the base address of the widen
  // load/store.
  if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
    Cloned->dropPoisonGeneratingFlags();

  if (Instr->getDebugLoc())
    State.setDebugLocFromInst(Instr);

  // Replace the operands of the cloned instructions with their scalar
  // equivalents in the new loop.
  for (const auto &I : enumerate(RepRecipe->operands())) {
    auto InputInstance = Instance;
    VPValue *Operand = I.value();
    if (vputils::isUniformAfterVectorization(Operand))
      InputInstance.Lane = VPLane::getFirstLane();
    Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
  }
  State.addNewMetadata(Cloned, Instr);

  // Place the cloned scalar in the new loop.
  State.Builder.Insert(Cloned);

  State.set(RepRecipe, Cloned, Instance);

  // If we just cloned a new assumption, add it the assumption cache.
  if (auto *II = dyn_cast<AssumeInst>(Cloned))
    AC->registerAssumption(II);

  // End if-block.
  if (IfPredicateInstr)
    PredicatedInstructions.push_back(Cloned);
}

Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
  if (TripCount)
    return TripCount;

  assert(InsertBlock);
  IRBuilder<> Builder(InsertBlock->getTerminator());
  // Find the loop boundaries.
  Type *IdxTy = Legal->getWidestInductionType();
  assert(IdxTy && "No type for induction");
  const SCEV *ExitCount = createTripCountSCEV(IdxTy, PSE);

  const DataLayout &DL = InsertBlock->getModule()->getDataLayout();

  // Expand the trip count and place the new instructions in the preheader.
  // Notice that the pre-header does not change, only the loop body.
  SCEVExpander Exp(*PSE.getSE(), DL, "induction");

  // Count holds the overall loop count (N).
  TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
                                InsertBlock->getTerminator());

  if (TripCount->getType()->isPointerTy())
    TripCount =
        CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
                                    InsertBlock->getTerminator());

  return TripCount;
}

Value *
InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
  if (VectorTripCount)
    return VectorTripCount;

  Value *TC = getOrCreateTripCount(InsertBlock);
  IRBuilder<> Builder(InsertBlock->getTerminator());

  Type *Ty = TC->getType();
  // This is where we can make the step a runtime constant.
  Value *Step = createStepForVF(Builder, Ty, VF, UF);

  // If the tail is to be folded by masking, round the number of iterations N
  // up to a multiple of Step instead of rounding down. This is done by first
  // adding Step-1 and then rounding down. Note that it's ok if this addition
  // overflows: the vector induction variable will eventually wrap to zero given
  // that it starts at zero and its Step is a power of two; the loop will then
  // exit, with the last early-exit vector comparison also producing all-true.
  // For scalable vectors the VF is not guaranteed to be a power of 2, but this
  // is accounted for in emitIterationCountCheck that adds an overflow check.
  if (Cost->foldTailByMasking()) {
    assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
           "VF*UF must be a power of 2 when folding tail by masking");
    Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
    TC = Builder.CreateAdd(
        TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
  }

  // Now we need to generate the expression for the part of the loop that the
  // vectorized body will execute. This is equal to N - (N % Step) if scalar
  // iterations are not required for correctness, or N - Step, otherwise. Step
  // is equal to the vectorization factor (number of SIMD elements) times the
  // unroll factor (number of SIMD instructions).
  Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");

  // There are cases where we *must* run at least one iteration in the remainder
  // loop.  See the cost model for when this can happen.  If the step evenly
  // divides the trip count, we set the remainder to be equal to the step. If
  // the step does not evenly divide the trip count, no adjustment is necessary
  // since there will already be scalar iterations. Note that the minimum
  // iterations check ensures that N >= Step.
  if (Cost->requiresScalarEpilogue(VF)) {
    auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
    R = Builder.CreateSelect(IsZero, Step, R);
  }

  VectorTripCount = Builder.CreateSub(TC, R, "n.vec");

  return VectorTripCount;
}

Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
                                                   const DataLayout &DL) {
  // Verify that V is a vector type with same number of elements as DstVTy.
  auto *DstFVTy = cast<FixedVectorType>(DstVTy);
  unsigned VF = DstFVTy->getNumElements();
  auto *SrcVecTy = cast<FixedVectorType>(V->getType());
  assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
  Type *SrcElemTy = SrcVecTy->getElementType();
  Type *DstElemTy = DstFVTy->getElementType();
  assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
         "Vector elements must have same size");

  // Do a direct cast if element types are castable.
  if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
    return Builder.CreateBitOrPointerCast(V, DstFVTy);
  }
  // V cannot be directly casted to desired vector type.
  // May happen when V is a floating point vector but DstVTy is a vector of
  // pointers or vice-versa. Handle this using a two-step bitcast using an
  // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
  assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
         "Only one type should be a pointer type");
  assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
         "Only one type should be a floating point type");
  Type *IntTy =
      IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
  auto *VecIntTy = FixedVectorType::get(IntTy, VF);
  Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
  return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
}

void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
  Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
  // Reuse existing vector loop preheader for TC checks.
  // Note that new preheader block is generated for vector loop.
  BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
  IRBuilder<> Builder(TCCheckBlock->getTerminator());

  // Generate code to check if the loop's trip count is less than VF * UF, or
  // equal to it in case a scalar epilogue is required; this implies that the
  // vector trip count is zero. This check also covers the case where adding one
  // to the backedge-taken count overflowed leading to an incorrect trip count
  // of zero. In this case we will also jump to the scalar loop.
  auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
                                            : ICmpInst::ICMP_ULT;

  // If tail is to be folded, vector loop takes care of all iterations.
  Type *CountTy = Count->getType();
  Value *CheckMinIters = Builder.getFalse();
  auto CreateStep = [&]() -> Value * {
    // Create step with max(MinProTripCount, UF * VF).
    if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
      return createStepForVF(Builder, CountTy, VF, UF);

    Value *MinProfTC =
        createStepForVF(Builder, CountTy, MinProfitableTripCount, 1);
    if (!VF.isScalable())
      return MinProfTC;
    return Builder.CreateBinaryIntrinsic(
        Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
  };

  if (!Cost->foldTailByMasking())
    CheckMinIters =
        Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check");
  else if (VF.isScalable()) {
    // vscale is not necessarily a power-of-2, which means we cannot guarantee
    // an overflow to zero when updating induction variables and so an
    // additional overflow check is required before entering the vector loop.

    // Get the maximum unsigned value for the type.
    Value *MaxUIntTripCount =
        ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
    Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);

    // Don't execute the vector loop if (UMax - n) < (VF * UF).
    CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
  }

  // Create new preheader for vector loop.
  LoopVectorPreHeader =
      SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
                 "vector.ph");

  assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
                               DT->getNode(Bypass)->getIDom()) &&
         "TC check is expected to dominate Bypass");

  // Update dominator for Bypass & LoopExit (if needed).
  DT->changeImmediateDominator(Bypass, TCCheckBlock);
  if (!Cost->requiresScalarEpilogue(VF))
    // If there is an epilogue which must run, there's no edge from the
    // middle block to exit blocks  and thus no need to update the immediate
    // dominator of the exit blocks.
    DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);

  ReplaceInstWithInst(
      TCCheckBlock->getTerminator(),
      BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
  LoopBypassBlocks.push_back(TCCheckBlock);
}

BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
  BasicBlock *const SCEVCheckBlock =
      RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
  if (!SCEVCheckBlock)
    return nullptr;

  assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
           (OptForSizeBasedOnProfile &&
            Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
         "Cannot SCEV check stride or overflow when optimizing for size");


  // Update dominator only if this is first RT check.
  if (LoopBypassBlocks.empty()) {
    DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
    if (!Cost->requiresScalarEpilogue(VF))
      // If there is an epilogue which must run, there's no edge from the
      // middle block to exit blocks  and thus no need to update the immediate
      // dominator of the exit blocks.
      DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
  }

  LoopBypassBlocks.push_back(SCEVCheckBlock);
  AddedSafetyChecks = true;
  return SCEVCheckBlock;
}

BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
  // VPlan-native path does not do any analysis for runtime checks currently.
  if (EnableVPlanNativePath)
    return nullptr;

  BasicBlock *const MemCheckBlock =
      RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);

  // Check if we generated code that checks in runtime if arrays overlap. We put
  // the checks into a separate block to make the more common case of few
  // elements faster.
  if (!MemCheckBlock)
    return nullptr;

  if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
    assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
           "Cannot emit memory checks when optimizing for size, unless forced "
           "to vectorize.");
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
                                        OrigLoop->getStartLoc(),
                                        OrigLoop->getHeader())
             << "Code-size may be reduced by not forcing "
                "vectorization, or by source-code modifications "
                "eliminating the need for runtime checks "
                "(e.g., adding 'restrict').";
    });
  }

  LoopBypassBlocks.push_back(MemCheckBlock);

  AddedSafetyChecks = true;

  return MemCheckBlock;
}

void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
  LoopScalarBody = OrigLoop->getHeader();
  LoopVectorPreHeader = OrigLoop->getLoopPreheader();
  assert(LoopVectorPreHeader && "Invalid loop structure");
  LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
  assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
         "multiple exit loop without required epilogue?");

  LoopMiddleBlock =
      SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
                 LI, nullptr, Twine(Prefix) + "middle.block");
  LoopScalarPreHeader =
      SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
                 nullptr, Twine(Prefix) + "scalar.ph");

  auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();

  // Set up the middle block terminator.  Two cases:
  // 1) If we know that we must execute the scalar epilogue, emit an
  //    unconditional branch.
  // 2) Otherwise, we must have a single unique exit block (due to how we
  //    implement the multiple exit case).  In this case, set up a conditional
  //    branch from the middle block to the loop scalar preheader, and the
  //    exit block.  completeLoopSkeleton will update the condition to use an
  //    iteration check, if required to decide whether to execute the remainder.
  BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
    BranchInst::Create(LoopScalarPreHeader) :
    BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
                       Builder.getTrue());
  BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
  ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);

  // Update dominator for loop exit. During skeleton creation, only the vector
  // pre-header and the middle block are created. The vector loop is entirely
  // created during VPlan exection.
  if (!Cost->requiresScalarEpilogue(VF))
    // If there is an epilogue which must run, there's no edge from the
    // middle block to exit blocks  and thus no need to update the immediate
    // dominator of the exit blocks.
    DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
}

PHINode *InnerLoopVectorizer::createInductionResumeValue(
    PHINode *OrigPhi, const InductionDescriptor &II,
    ArrayRef<BasicBlock *> BypassBlocks,
    std::pair<BasicBlock *, Value *> AdditionalBypass) {
  Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
  assert(VectorTripCount && "Expected valid arguments");

  Instruction *OldInduction = Legal->getPrimaryInduction();
  Value *&EndValue = IVEndValues[OrigPhi];
  Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
  if (OrigPhi == OldInduction) {
    // We know what the end value is.
    EndValue = VectorTripCount;
  } else {
    IRBuilder<> B(LoopVectorPreHeader->getTerminator());

    // Fast-math-flags propagate from the original induction instruction.
    if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
      B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());

    Value *Step =
        CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
    EndValue =
        emitTransformedIndex(B, VectorTripCount, II.getStartValue(), Step, II);
    EndValue->setName("ind.end");

    // Compute the end value for the additional bypass (if applicable).
    if (AdditionalBypass.first) {
      B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
      Value *Step =
          CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
      EndValueFromAdditionalBypass = emitTransformedIndex(
          B, AdditionalBypass.second, II.getStartValue(), Step, II);
      EndValueFromAdditionalBypass->setName("ind.end");
    }
  }

  // Create phi nodes to merge from the  backedge-taken check block.
  PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
                                         LoopScalarPreHeader->getTerminator());
  // Copy original phi DL over to the new one.
  BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());

  // The new PHI merges the original incoming value, in case of a bypass,
  // or the value at the end of the vectorized loop.
  BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);

  // Fix the scalar body counter (PHI node).
  // The old induction's phi node in the scalar body needs the truncated
  // value.
  for (BasicBlock *BB : BypassBlocks)
    BCResumeVal->addIncoming(II.getStartValue(), BB);

  if (AdditionalBypass.first)
    BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
                                          EndValueFromAdditionalBypass);
  return BCResumeVal;
}

void InnerLoopVectorizer::createInductionResumeValues(
    std::pair<BasicBlock *, Value *> AdditionalBypass) {
  assert(((AdditionalBypass.first && AdditionalBypass.second) ||
          (!AdditionalBypass.first && !AdditionalBypass.second)) &&
         "Inconsistent information about additional bypass.");
  // We are going to resume the execution of the scalar loop.
  // Go over all of the induction variables that we found and fix the
  // PHIs that are left in the scalar version of the loop.
  // The starting values of PHI nodes depend on the counter of the last
  // iteration in the vectorized loop.
  // If we come from a bypass edge then we need to start from the original
  // start value.
  for (const auto &InductionEntry : Legal->getInductionVars()) {
    PHINode *OrigPhi = InductionEntry.first;
    const InductionDescriptor &II = InductionEntry.second;
    PHINode *BCResumeVal = createInductionResumeValue(
        OrigPhi, II, LoopBypassBlocks, AdditionalBypass);
    OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
  }
}

BasicBlock *InnerLoopVectorizer::completeLoopSkeleton() {
  // The trip counts should be cached by now.
  Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
  Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);

  auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();

  // Add a check in the middle block to see if we have completed
  // all of the iterations in the first vector loop.  Three cases:
  // 1) If we require a scalar epilogue, there is no conditional branch as
  //    we unconditionally branch to the scalar preheader.  Do nothing.
  // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
  //    Thus if tail is to be folded, we know we don't need to run the
  //    remainder and we can use the previous value for the condition (true).
  // 3) Otherwise, construct a runtime check.
  if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
    Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
                                        Count, VectorTripCount, "cmp.n",
                                        LoopMiddleBlock->getTerminator());

    // Here we use the same DebugLoc as the scalar loop latch terminator instead
    // of the corresponding compare because they may have ended up with
    // different line numbers and we want to avoid awkward line stepping while
    // debugging. Eg. if the compare has got a line number inside the loop.
    CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
    cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
  }

#ifdef EXPENSIVE_CHECKS
  assert(DT->verify(DominatorTree::VerificationLevel::Fast));
#endif

  return LoopVectorPreHeader;
}

std::pair<BasicBlock *, Value *>
InnerLoopVectorizer::createVectorizedLoopSkeleton() {
  /*
   In this function we generate a new loop. The new loop will contain
   the vectorized instructions while the old loop will continue to run the
   scalar remainder.

       [ ] <-- loop iteration number check.
    /   |
   /    v
  |    [ ] <-- vector loop bypass (may consist of multiple blocks).
  |  /  |
  | /   v
  ||   [ ]     <-- vector pre header.
  |/    |
  |     v
  |    [  ] \
  |    [  ]_|   <-- vector loop (created during VPlan execution).
  |     |
  |     v
  \   -[ ]   <--- middle-block.
   \/   |
   /\   v
   | ->[ ]     <--- new preheader.
   |    |
 (opt)  v      <-- edge from middle to exit iff epilogue is not required.
   |   [ ] \
   |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
    \   |
     \  v
      >[ ]     <-- exit block(s).
   ...
   */

  // Create an empty vector loop, and prepare basic blocks for the runtime
  // checks.
  createVectorLoopSkeleton("");

  // Now, compare the new count to zero. If it is zero skip the vector loop and
  // jump to the scalar loop. This check also covers the case where the
  // backedge-taken count is uint##_max: adding one to it will overflow leading
  // to an incorrect trip count of zero. In this (rare) case we will also jump
  // to the scalar loop.
  emitIterationCountCheck(LoopScalarPreHeader);

  // Generate the code to check any assumptions that we've made for SCEV
  // expressions.
  emitSCEVChecks(LoopScalarPreHeader);

  // Generate the code that checks in runtime if arrays overlap. We put the
  // checks into a separate block to make the more common case of few elements
  // faster.
  emitMemRuntimeChecks(LoopScalarPreHeader);

  // Emit phis for the new starting index of the scalar loop.
  createInductionResumeValues();

  return {completeLoopSkeleton(), nullptr};
}

// Fix up external users of the induction variable. At this point, we are
// in LCSSA form, with all external PHIs that use the IV having one input value,
// coming from the remainder loop. We need those PHIs to also have a correct
// value for the IV when arriving directly from the middle block.
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
                                       const InductionDescriptor &II,
                                       Value *VectorTripCount, Value *EndValue,
                                       BasicBlock *MiddleBlock,
                                       BasicBlock *VectorHeader, VPlan &Plan) {
  // There are two kinds of external IV usages - those that use the value
  // computed in the last iteration (the PHI) and those that use the penultimate
  // value (the value that feeds into the phi from the loop latch).
  // We allow both, but they, obviously, have different values.

  assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");

  DenseMap<Value *, Value *> MissingVals;

  // An external user of the last iteration's value should see the value that
  // the remainder loop uses to initialize its own IV.
  Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
  for (User *U : PostInc->users()) {
    Instruction *UI = cast<Instruction>(U);
    if (!OrigLoop->contains(UI)) {
      assert(isa<PHINode>(UI) && "Expected LCSSA form");
      MissingVals[UI] = EndValue;
    }
  }

  // An external user of the penultimate value need to see EndValue - Step.
  // The simplest way to get this is to recompute it from the constituent SCEVs,
  // that is Start + (Step * (CRD - 1)).
  for (User *U : OrigPhi->users()) {
    auto *UI = cast<Instruction>(U);
    if (!OrigLoop->contains(UI)) {
      assert(isa<PHINode>(UI) && "Expected LCSSA form");

      IRBuilder<> B(MiddleBlock->getTerminator());

      // Fast-math-flags propagate from the original induction instruction.
      if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
        B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());

      Value *CountMinusOne = B.CreateSub(
          VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
      CountMinusOne->setName("cmo");
      Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
                                    VectorHeader->getTerminator());
      Value *Escape =
          emitTransformedIndex(B, CountMinusOne, II.getStartValue(), Step, II);
      Escape->setName("ind.escape");
      MissingVals[UI] = Escape;
    }
  }

  for (auto &I : MissingVals) {
    PHINode *PHI = cast<PHINode>(I.first);
    // One corner case we have to handle is two IVs "chasing" each-other,
    // that is %IV2 = phi [...], [ %IV1, %latch ]
    // In this case, if IV1 has an external use, we need to avoid adding both
    // "last value of IV1" and "penultimate value of IV2". So, verify that we
    // don't already have an incoming value for the middle block.
    if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
      PHI->addIncoming(I.second, MiddleBlock);
      Plan.removeLiveOut(PHI);
    }
  }
}

namespace {

struct CSEDenseMapInfo {
  static bool canHandle(const Instruction *I) {
    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
  }

  static inline Instruction *getEmptyKey() {
    return DenseMapInfo<Instruction *>::getEmptyKey();
  }

  static inline Instruction *getTombstoneKey() {
    return DenseMapInfo<Instruction *>::getTombstoneKey();
  }

  static unsigned getHashValue(const Instruction *I) {
    assert(canHandle(I) && "Unknown instruction!");
    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
                                                           I->value_op_end()));
  }

  static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
        LHS == getTombstoneKey() || RHS == getTombstoneKey())
      return LHS == RHS;
    return LHS->isIdenticalTo(RHS);
  }
};

} // end anonymous namespace

///Perform cse of induction variable instructions.
static void cse(BasicBlock *BB) {
  // Perform simple cse.
  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
  for (Instruction &In : llvm::make_early_inc_range(*BB)) {
    if (!CSEDenseMapInfo::canHandle(&In))
      continue;

    // Check if we can replace this instruction with any of the
    // visited instructions.
    if (Instruction *V = CSEMap.lookup(&In)) {
      In.replaceAllUsesWith(V);
      In.eraseFromParent();
      continue;
    }

    CSEMap[&In] = &In;
  }
}

InstructionCost
LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
                                              bool &NeedToScalarize) const {
  Function *F = CI->getCalledFunction();
  Type *ScalarRetTy = CI->getType();
  SmallVector<Type *, 4> Tys, ScalarTys;
  for (auto &ArgOp : CI->args())
    ScalarTys.push_back(ArgOp->getType());

  // Estimate cost of scalarized vector call. The source operands are assumed
  // to be vectors, so we need to extract individual elements from there,
  // execute VF scalar calls, and then gather the result into the vector return
  // value.
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  InstructionCost ScalarCallCost =
      TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, CostKind);
  if (VF.isScalar())
    return ScalarCallCost;

  // Compute corresponding vector type for return value and arguments.
  Type *RetTy = ToVectorTy(ScalarRetTy, VF);
  for (Type *ScalarTy : ScalarTys)
    Tys.push_back(ToVectorTy(ScalarTy, VF));

  // Compute costs of unpacking argument values for the scalar calls and
  // packing the return values to a vector.
  InstructionCost ScalarizationCost =
      getScalarizationOverhead(CI, VF, CostKind);

  InstructionCost Cost =
      ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;

  // If we can't emit a vector call for this function, then the currently found
  // cost is the cost we need to return.
  NeedToScalarize = true;
  VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
  Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);

  if (!TLI || CI->isNoBuiltin() || !VecFunc)
    return Cost;

  // If the corresponding vector cost is cheaper, return its cost.
  InstructionCost VectorCallCost =
      TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
  if (VectorCallCost < Cost) {
    NeedToScalarize = false;
    Cost = VectorCallCost;
  }
  return Cost;
}

static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
  if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
    return Elt;
  return VectorType::get(Elt, VF);
}

InstructionCost
LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
                                                   ElementCount VF) const {
  Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
  assert(ID && "Expected intrinsic call!");
  Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
  FastMathFlags FMF;
  if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
    FMF = FPMO->getFastMathFlags();

  SmallVector<const Value *> Arguments(CI->args());
  FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
  SmallVector<Type *> ParamTys;
  std::transform(FTy->param_begin(), FTy->param_end(),
                 std::back_inserter(ParamTys),
                 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });

  IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
                                    dyn_cast<IntrinsicInst>(CI));
  return TTI.getIntrinsicInstrCost(CostAttrs,
                                   TargetTransformInfo::TCK_RecipThroughput);
}

static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
  auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
  auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
  return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
}

static Type *largestIntegerVectorType(Type *T1, Type *T2) {
  auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
  auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
  return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
}

void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
  // For every instruction `I` in MinBWs, truncate the operands, create a
  // truncated version of `I` and reextend its result. InstCombine runs
  // later and will remove any ext/trunc pairs.
  SmallPtrSet<Value *, 4> Erased;
  for (const auto &KV : Cost->getMinimalBitwidths()) {
    // If the value wasn't vectorized, we must maintain the original scalar
    // type. The absence of the value from State indicates that it
    // wasn't vectorized.
    // FIXME: Should not rely on getVPValue at this point.
    VPValue *Def = State.Plan->getVPValue(KV.first, true);
    if (!State.hasAnyVectorValue(Def))
      continue;
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *I = State.get(Def, Part);
      if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
        continue;
      Type *OriginalTy = I->getType();
      Type *ScalarTruncatedTy =
          IntegerType::get(OriginalTy->getContext(), KV.second);
      auto *TruncatedTy = VectorType::get(
          ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
      if (TruncatedTy == OriginalTy)
        continue;

      IRBuilder<> B(cast<Instruction>(I));
      auto ShrinkOperand = [&](Value *V) -> Value * {
        if (auto *ZI = dyn_cast<ZExtInst>(V))
          if (ZI->getSrcTy() == TruncatedTy)
            return ZI->getOperand(0);
        return B.CreateZExtOrTrunc(V, TruncatedTy);
      };

      // The actual instruction modification depends on the instruction type,
      // unfortunately.
      Value *NewI = nullptr;
      if (auto *BO = dyn_cast<BinaryOperator>(I)) {
        NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
                             ShrinkOperand(BO->getOperand(1)));

        // Any wrapping introduced by shrinking this operation shouldn't be
        // considered undefined behavior. So, we can't unconditionally copy
        // arithmetic wrapping flags to NewI.
        cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
      } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
        NewI =
            B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
                         ShrinkOperand(CI->getOperand(1)));
      } else if (auto *SI = dyn_cast<SelectInst>(I)) {
        NewI = B.CreateSelect(SI->getCondition(),
                              ShrinkOperand(SI->getTrueValue()),
                              ShrinkOperand(SI->getFalseValue()));
      } else if (auto *CI = dyn_cast<CastInst>(I)) {
        switch (CI->getOpcode()) {
        default:
          llvm_unreachable("Unhandled cast!");
        case Instruction::Trunc:
          NewI = ShrinkOperand(CI->getOperand(0));
          break;
        case Instruction::SExt:
          NewI = B.CreateSExtOrTrunc(
              CI->getOperand(0),
              smallestIntegerVectorType(OriginalTy, TruncatedTy));
          break;
        case Instruction::ZExt:
          NewI = B.CreateZExtOrTrunc(
              CI->getOperand(0),
              smallestIntegerVectorType(OriginalTy, TruncatedTy));
          break;
        }
      } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
        auto Elements0 =
            cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
        auto *O0 = B.CreateZExtOrTrunc(
            SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
        auto Elements1 =
            cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
        auto *O1 = B.CreateZExtOrTrunc(
            SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));

        NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
      } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
        // Don't do anything with the operands, just extend the result.
        continue;
      } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
        auto Elements =
            cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
        auto *O0 = B.CreateZExtOrTrunc(
            IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
        auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
        NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
        auto Elements =
            cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
        auto *O0 = B.CreateZExtOrTrunc(
            EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
        NewI = B.CreateExtractElement(O0, EE->getOperand(2));
      } else {
        // If we don't know what to do, be conservative and don't do anything.
        continue;
      }

      // Lastly, extend the result.
      NewI->takeName(cast<Instruction>(I));
      Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
      I->replaceAllUsesWith(Res);
      cast<Instruction>(I)->eraseFromParent();
      Erased.insert(I);
      State.reset(Def, Res, Part);
    }
  }

  // We'll have created a bunch of ZExts that are now parentless. Clean up.
  for (const auto &KV : Cost->getMinimalBitwidths()) {
    // If the value wasn't vectorized, we must maintain the original scalar
    // type. The absence of the value from State indicates that it
    // wasn't vectorized.
    // FIXME: Should not rely on getVPValue at this point.
    VPValue *Def = State.Plan->getVPValue(KV.first, true);
    if (!State.hasAnyVectorValue(Def))
      continue;
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *I = State.get(Def, Part);
      ZExtInst *Inst = dyn_cast<ZExtInst>(I);
      if (Inst && Inst->use_empty()) {
        Value *NewI = Inst->getOperand(0);
        Inst->eraseFromParent();
        State.reset(Def, NewI, Part);
      }
    }
  }
}

void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
                                            VPlan &Plan) {
  // Insert truncates and extends for any truncated instructions as hints to
  // InstCombine.
  if (VF.isVector())
    truncateToMinimalBitwidths(State);

  // Fix widened non-induction PHIs by setting up the PHI operands.
  if (EnableVPlanNativePath)
    fixNonInductionPHIs(Plan, State);

  // At this point every instruction in the original loop is widened to a
  // vector form. Now we need to fix the recurrences in the loop. These PHI
  // nodes are currently empty because we did not want to introduce cycles.
  // This is the second stage of vectorizing recurrences.
  fixCrossIterationPHIs(State);

  // Forget the original basic block.
  PSE.getSE()->forgetLoop(OrigLoop);

  VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
  Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
  if (Cost->requiresScalarEpilogue(VF)) {
    // No edge from the middle block to the unique exit block has been inserted
    // and there is nothing to fix from vector loop; phis should have incoming
    // from scalar loop only.
    Plan.clearLiveOuts();
  } else {
    // If we inserted an edge from the middle block to the unique exit block,
    // update uses outside the loop (phis) to account for the newly inserted
    // edge.

    // Fix-up external users of the induction variables.
    for (const auto &Entry : Legal->getInductionVars())
      fixupIVUsers(Entry.first, Entry.second,
                   getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
                   IVEndValues[Entry.first], LoopMiddleBlock,
                   VectorLoop->getHeader(), Plan);
  }

  // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
  // in the exit block, so update the builder.
  State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
  for (const auto &KV : Plan.getLiveOuts())
    KV.second->fixPhi(Plan, State);

  for (Instruction *PI : PredicatedInstructions)
    sinkScalarOperands(&*PI);

  // Remove redundant induction instructions.
  cse(VectorLoop->getHeader());

  // Set/update profile weights for the vector and remainder loops as original
  // loop iterations are now distributed among them. Note that original loop
  // represented by LoopScalarBody becomes remainder loop after vectorization.
  //
  // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
  // end up getting slightly roughened result but that should be OK since
  // profile is not inherently precise anyway. Note also possible bypass of
  // vector code caused by legality checks is ignored, assigning all the weight
  // to the vector loop, optimistically.
  //
  // For scalable vectorization we can't know at compile time how many iterations
  // of the loop are handled in one vector iteration, so instead assume a pessimistic
  // vscale of '1'.
  setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
                               LI->getLoopFor(LoopScalarBody),
                               VF.getKnownMinValue() * UF);
}

void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
  // In order to support recurrences we need to be able to vectorize Phi nodes.
  // Phi nodes have cycles, so we need to vectorize them in two stages. This is
  // stage #2: We now need to fix the recurrences by adding incoming edges to
  // the currently empty PHI nodes. At this point every instruction in the
  // original loop is widened to a vector form so we can use them to construct
  // the incoming edges.
  VPBasicBlock *Header =
      State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
  for (VPRecipeBase &R : Header->phis()) {
    if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
      fixReduction(ReductionPhi, State);
    else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
      fixFixedOrderRecurrence(FOR, State);
  }
}

void InnerLoopVectorizer::fixFixedOrderRecurrence(
    VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
  // This is the second phase of vectorizing first-order recurrences. An
  // overview of the transformation is described below. Suppose we have the
  // following loop.
  //
  //   for (int i = 0; i < n; ++i)
  //     b[i] = a[i] - a[i - 1];
  //
  // There is a first-order recurrence on "a". For this loop, the shorthand
  // scalar IR looks like:
  //
  //   scalar.ph:
  //     s_init = a[-1]
  //     br scalar.body
  //
  //   scalar.body:
  //     i = phi [0, scalar.ph], [i+1, scalar.body]
  //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
  //     s2 = a[i]
  //     b[i] = s2 - s1
  //     br cond, scalar.body, ...
  //
  // In this example, s1 is a recurrence because it's value depends on the
  // previous iteration. In the first phase of vectorization, we created a
  // vector phi v1 for s1. We now complete the vectorization and produce the
  // shorthand vector IR shown below (for VF = 4, UF = 1).
  //
  //   vector.ph:
  //     v_init = vector(..., ..., ..., a[-1])
  //     br vector.body
  //
  //   vector.body
  //     i = phi [0, vector.ph], [i+4, vector.body]
  //     v1 = phi [v_init, vector.ph], [v2, vector.body]
  //     v2 = a[i, i+1, i+2, i+3];
  //     v3 = vector(v1(3), v2(0, 1, 2))
  //     b[i, i+1, i+2, i+3] = v2 - v3
  //     br cond, vector.body, middle.block
  //
  //   middle.block:
  //     x = v2(3)
  //     br scalar.ph
  //
  //   scalar.ph:
  //     s_init = phi [x, middle.block], [a[-1], otherwise]
  //     br scalar.body
  //
  // After execution completes the vector loop, we extract the next value of
  // the recurrence (x) to use as the initial value in the scalar loop.

  // Extract the last vector element in the middle block. This will be the
  // initial value for the recurrence when jumping to the scalar loop.
  VPValue *PreviousDef = PhiR->getBackedgeValue();
  Value *Incoming = State.get(PreviousDef, UF - 1);
  auto *ExtractForScalar = Incoming;
  auto *IdxTy = Builder.getInt32Ty();
  if (VF.isVector()) {
    auto *One = ConstantInt::get(IdxTy, 1);
    Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
    auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
    auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
    ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
                                                    "vector.recur.extract");
  }
  // Extract the second last element in the middle block if the
  // Phi is used outside the loop. We need to extract the phi itself
  // and not the last element (the phi update in the current iteration). This
  // will be the value when jumping to the exit block from the LoopMiddleBlock,
  // when the scalar loop is not run at all.
  Value *ExtractForPhiUsedOutsideLoop = nullptr;
  if (VF.isVector()) {
    auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
    auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
    ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
        Incoming, Idx, "vector.recur.extract.for.phi");
  } else if (UF > 1)
    // When loop is unrolled without vectorizing, initialize
    // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
    // of `Incoming`. This is analogous to the vectorized case above: extracting
    // the second last element when VF > 1.
    ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);

  // Fix the initial value of the original recurrence in the scalar loop.
  Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
  PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
  auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
  auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
  for (auto *BB : predecessors(LoopScalarPreHeader)) {
    auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
    Start->addIncoming(Incoming, BB);
  }

  Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
  Phi->setName("scalar.recur");

  // Finally, fix users of the recurrence outside the loop. The users will need
  // either the last value of the scalar recurrence or the last value of the
  // vector recurrence we extracted in the middle block. Since the loop is in
  // LCSSA form, we just need to find all the phi nodes for the original scalar
  // recurrence in the exit block, and then add an edge for the middle block.
  // Note that LCSSA does not imply single entry when the original scalar loop
  // had multiple exiting edges (as we always run the last iteration in the
  // scalar epilogue); in that case, there is no edge from middle to exit and
  // and thus no phis which needed updated.
  if (!Cost->requiresScalarEpilogue(VF))
    for (PHINode &LCSSAPhi : LoopExitBlock->phis())
      if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
        LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
        State.Plan->removeLiveOut(&LCSSAPhi);
      }
}

void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
                                       VPTransformState &State) {
  PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
  // Get it's reduction variable descriptor.
  assert(Legal->isReductionVariable(OrigPhi) &&
         "Unable to find the reduction variable");
  const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();

  RecurKind RK = RdxDesc.getRecurrenceKind();
  TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
  Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
  State.setDebugLocFromInst(ReductionStartValue);

  VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
  // This is the vector-clone of the value that leaves the loop.
  Type *VecTy = State.get(LoopExitInstDef, 0)->getType();

  // Wrap flags are in general invalid after vectorization, clear them.
  clearReductionWrapFlags(PhiR, State);

  // Before each round, move the insertion point right between
  // the PHIs and the values we are going to write.
  // This allows us to write both PHINodes and the extractelement
  // instructions.
  Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());

  State.setDebugLocFromInst(LoopExitInst);

  Type *PhiTy = OrigPhi->getType();

  VPBasicBlock *LatchVPBB =
      PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
  BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
  // If tail is folded by masking, the vector value to leave the loop should be
  // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
  // instead of the former. For an inloop reduction the reduction will already
  // be predicated, and does not need to be handled here.
  if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
      SelectInst *Sel = nullptr;
      for (User *U : VecLoopExitInst->users()) {
        if (isa<SelectInst>(U)) {
          assert(!Sel && "Reduction exit feeding two selects");
          Sel = cast<SelectInst>(U);
        } else
          assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
      }
      assert(Sel && "Reduction exit feeds no select");
      State.reset(LoopExitInstDef, Sel, Part);

      if (isa<FPMathOperator>(Sel))
        Sel->setFastMathFlags(RdxDesc.getFastMathFlags());

      // If the target can create a predicated operator for the reduction at no
      // extra cost in the loop (for example a predicated vadd), it can be
      // cheaper for the select to remain in the loop than be sunk out of it,
      // and so use the select value for the phi instead of the old
      // LoopExitValue.
      if (PreferPredicatedReductionSelect ||
          TTI->preferPredicatedReductionSelect(
              RdxDesc.getOpcode(), PhiTy,
              TargetTransformInfo::ReductionFlags())) {
        auto *VecRdxPhi =
            cast<PHINode>(State.get(PhiR, Part));
        VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
      }
    }
  }

  // If the vector reduction can be performed in a smaller type, we truncate
  // then extend the loop exit value to enable InstCombine to evaluate the
  // entire expression in the smaller type.
  if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
    assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
    Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
    Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
    VectorParts RdxParts(UF);
    for (unsigned Part = 0; Part < UF; ++Part) {
      RdxParts[Part] = State.get(LoopExitInstDef, Part);
      Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
      Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
                                        : Builder.CreateZExt(Trunc, VecTy);
      for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
        if (U != Trunc) {
          U->replaceUsesOfWith(RdxParts[Part], Extnd);
          RdxParts[Part] = Extnd;
        }
    }
    Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
    for (unsigned Part = 0; Part < UF; ++Part) {
      RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
      State.reset(LoopExitInstDef, RdxParts[Part], Part);
    }
  }

  // Reduce all of the unrolled parts into a single vector.
  Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
  unsigned Op = RecurrenceDescriptor::getOpcode(RK);

  // The middle block terminator has already been assigned a DebugLoc here (the
  // OrigLoop's single latch terminator). We want the whole middle block to
  // appear to execute on this line because: (a) it is all compiler generated,
  // (b) these instructions are always executed after evaluating the latch
  // conditional branch, and (c) other passes may add new predecessors which
  // terminate on this line. This is the easiest way to ensure we don't
  // accidentally cause an extra step back into the loop while debugging.
  State.setDebugLocFromInst(LoopMiddleBlock->getTerminator());
  if (PhiR->isOrdered())
    ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
  else {
    // Floating-point operations should have some FMF to enable the reduction.
    IRBuilderBase::FastMathFlagGuard FMFG(Builder);
    Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
    for (unsigned Part = 1; Part < UF; ++Part) {
      Value *RdxPart = State.get(LoopExitInstDef, Part);
      if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
        ReducedPartRdx = Builder.CreateBinOp(
            (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
      } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
        ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
                                           ReducedPartRdx, RdxPart);
      else
        ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
    }
  }

  // Create the reduction after the loop. Note that inloop reductions create the
  // target reduction in the loop using a Reduction recipe.
  if (VF.isVector() && !PhiR->isInLoop()) {
    ReducedPartRdx =
        createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
    // If the reduction can be performed in a smaller type, we need to extend
    // the reduction to the wider type before we branch to the original loop.
    if (PhiTy != RdxDesc.getRecurrenceType())
      ReducedPartRdx = RdxDesc.isSigned()
                           ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
                           : Builder.CreateZExt(ReducedPartRdx, PhiTy);
  }

  PHINode *ResumePhi =
      dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());

  // Create a phi node that merges control-flow from the backedge-taken check
  // block and the middle block.
  PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
                                        LoopScalarPreHeader->getTerminator());

  // If we are fixing reductions in the epilogue loop then we should already
  // have created a bc.merge.rdx Phi after the main vector body. Ensure that
  // we carry over the incoming values correctly.
  for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
    if (Incoming == LoopMiddleBlock)
      BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
    else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
      BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
                              Incoming);
    else
      BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
  }

  // Set the resume value for this reduction
  ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});

  // If there were stores of the reduction value to a uniform memory address
  // inside the loop, create the final store here.
  if (StoreInst *SI = RdxDesc.IntermediateStore) {
    StoreInst *NewSI =
        Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
    propagateMetadata(NewSI, SI);

    // If the reduction value is used in other places,
    // then let the code below create PHI's for that.
  }

  // Now, we need to fix the users of the reduction variable
  // inside and outside of the scalar remainder loop.

  // We know that the loop is in LCSSA form. We need to update the PHI nodes
  // in the exit blocks.  See comment on analogous loop in
  // fixFixedOrderRecurrence for a more complete explaination of the logic.
  if (!Cost->requiresScalarEpilogue(VF))
    for (PHINode &LCSSAPhi : LoopExitBlock->phis())
      if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
        LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
        State.Plan->removeLiveOut(&LCSSAPhi);
      }

  // Fix the scalar loop reduction variable with the incoming reduction sum
  // from the vector body and from the backedge value.
  int IncomingEdgeBlockIdx =
      OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
  assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
  // Pick the other block.
  int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
  OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
  OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
}

void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
                                                  VPTransformState &State) {
  const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
  RecurKind RK = RdxDesc.getRecurrenceKind();
  if (RK != RecurKind::Add && RK != RecurKind::Mul)
    return;

  SmallVector<VPValue *, 8> Worklist;
  SmallPtrSet<VPValue *, 8> Visited;
  Worklist.push_back(PhiR);
  Visited.insert(PhiR);

  while (!Worklist.empty()) {
    VPValue *Cur = Worklist.pop_back_val();
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *V = State.get(Cur, Part);
      if (!isa<OverflowingBinaryOperator>(V))
        break;
      cast<Instruction>(V)->dropPoisonGeneratingFlags();
      }

      for (VPUser *U : Cur->users()) {
        auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
        if (!UserRecipe)
          continue;
        for (VPValue *V : UserRecipe->definedValues())
          if (Visited.insert(V).second)
            Worklist.push_back(V);
      }
  }
}

void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
  // The basic block and loop containing the predicated instruction.
  auto *PredBB = PredInst->getParent();
  auto *VectorLoop = LI->getLoopFor(PredBB);

  // Initialize a worklist with the operands of the predicated instruction.
  SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());

  // Holds instructions that we need to analyze again. An instruction may be
  // reanalyzed if we don't yet know if we can sink it or not.
  SmallVector<Instruction *, 8> InstsToReanalyze;

  // Returns true if a given use occurs in the predicated block. Phi nodes use
  // their operands in their corresponding predecessor blocks.
  auto isBlockOfUsePredicated = [&](Use &U) -> bool {
    auto *I = cast<Instruction>(U.getUser());
    BasicBlock *BB = I->getParent();
    if (auto *Phi = dyn_cast<PHINode>(I))
      BB = Phi->getIncomingBlock(
          PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
    return BB == PredBB;
  };

  // Iteratively sink the scalarized operands of the predicated instruction
  // into the block we created for it. When an instruction is sunk, it's
  // operands are then added to the worklist. The algorithm ends after one pass
  // through the worklist doesn't sink a single instruction.
  bool Changed;
  do {
    // Add the instructions that need to be reanalyzed to the worklist, and
    // reset the changed indicator.
    Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
    InstsToReanalyze.clear();
    Changed = false;

    while (!Worklist.empty()) {
      auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());

      // We can't sink an instruction if it is a phi node, is not in the loop,
      // or may have side effects.
      if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
          I->mayHaveSideEffects())
        continue;

      // If the instruction is already in PredBB, check if we can sink its
      // operands. In that case, VPlan's sinkScalarOperands() succeeded in
      // sinking the scalar instruction I, hence it appears in PredBB; but it
      // may have failed to sink I's operands (recursively), which we try
      // (again) here.
      if (I->getParent() == PredBB) {
        Worklist.insert(I->op_begin(), I->op_end());
        continue;
      }

      // It's legal to sink the instruction if all its uses occur in the
      // predicated block. Otherwise, there's nothing to do yet, and we may
      // need to reanalyze the instruction.
      if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
        InstsToReanalyze.push_back(I);
        continue;
      }

      // Move the instruction to the beginning of the predicated block, and add
      // it's operands to the worklist.
      I->moveBefore(&*PredBB->getFirstInsertionPt());
      Worklist.insert(I->op_begin(), I->op_end());

      // The sinking may have enabled other instructions to be sunk, so we will
      // need to iterate.
      Changed = true;
    }
  } while (Changed);
}

void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
                                              VPTransformState &State) {
  auto Iter = vp_depth_first_deep(Plan.getEntry());
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
    for (VPRecipeBase &P : VPBB->phis()) {
      VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
      if (!VPPhi)
        continue;
      PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
      // Make sure the builder has a valid insert point.
      Builder.SetInsertPoint(NewPhi);
      for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
        VPValue *Inc = VPPhi->getIncomingValue(i);
        VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
        NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
      }
    }
  }
}

bool InnerLoopVectorizer::useOrderedReductions(
    const RecurrenceDescriptor &RdxDesc) {
  return Cost->useOrderedReductions(RdxDesc);
}

void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
  // We should not collect Scalars more than once per VF. Right now, this
  // function is called from collectUniformsAndScalars(), which already does
  // this check. Collecting Scalars for VF=1 does not make any sense.
  assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
         "This function should not be visited twice for the same VF");

  // This avoids any chances of creating a REPLICATE recipe during planning
  // since that would result in generation of scalarized code during execution,
  // which is not supported for scalable vectors.
  if (VF.isScalable()) {
    Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
    return;
  }

  SmallSetVector<Instruction *, 8> Worklist;

  // These sets are used to seed the analysis with pointers used by memory
  // accesses that will remain scalar.
  SmallSetVector<Instruction *, 8> ScalarPtrs;
  SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
  auto *Latch = TheLoop->getLoopLatch();

  // A helper that returns true if the use of Ptr by MemAccess will be scalar.
  // The pointer operands of loads and stores will be scalar as long as the
  // memory access is not a gather or scatter operation. The value operand of a
  // store will remain scalar if the store is scalarized.
  auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
    InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
    assert(WideningDecision != CM_Unknown &&
           "Widening decision should be ready at this moment");
    if (auto *Store = dyn_cast<StoreInst>(MemAccess))
      if (Ptr == Store->getValueOperand())
        return WideningDecision == CM_Scalarize;
    assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
           "Ptr is neither a value or pointer operand");
    return WideningDecision != CM_GatherScatter;
  };

  // A helper that returns true if the given value is a bitcast or
  // getelementptr instruction contained in the loop.
  auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
    return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
            isa<GetElementPtrInst>(V)) &&
           !TheLoop->isLoopInvariant(V);
  };

  // A helper that evaluates a memory access's use of a pointer. If the use will
  // be a scalar use and the pointer is only used by memory accesses, we place
  // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
  // PossibleNonScalarPtrs.
  auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
    // We only care about bitcast and getelementptr instructions contained in
    // the loop.
    if (!isLoopVaryingBitCastOrGEP(Ptr))
      return;

    // If the pointer has already been identified as scalar (e.g., if it was
    // also identified as uniform), there's nothing to do.
    auto *I = cast<Instruction>(Ptr);
    if (Worklist.count(I))
      return;

    // If the use of the pointer will be a scalar use, and all users of the
    // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
    // place the pointer in PossibleNonScalarPtrs.
    if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
          return isa<LoadInst>(U) || isa<StoreInst>(U);
        }))
      ScalarPtrs.insert(I);
    else
      PossibleNonScalarPtrs.insert(I);
  };

  // We seed the scalars analysis with three classes of instructions: (1)
  // instructions marked uniform-after-vectorization and (2) bitcast,
  // getelementptr and (pointer) phi instructions used by memory accesses
  // requiring a scalar use.
  //
  // (1) Add to the worklist all instructions that have been identified as
  // uniform-after-vectorization.
  Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());

  // (2) Add to the worklist all bitcast and getelementptr instructions used by
  // memory accesses requiring a scalar use. The pointer operands of loads and
  // stores will be scalar as long as the memory accesses is not a gather or
  // scatter operation. The value operand of a store will remain scalar if the
  // store is scalarized.
  for (auto *BB : TheLoop->blocks())
    for (auto &I : *BB) {
      if (auto *Load = dyn_cast<LoadInst>(&I)) {
        evaluatePtrUse(Load, Load->getPointerOperand());
      } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
        evaluatePtrUse(Store, Store->getPointerOperand());
        evaluatePtrUse(Store, Store->getValueOperand());
      }
    }
  for (auto *I : ScalarPtrs)
    if (!PossibleNonScalarPtrs.count(I)) {
      LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
      Worklist.insert(I);
    }

  // Insert the forced scalars.
  // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
  // induction variable when the PHI user is scalarized.
  auto ForcedScalar = ForcedScalars.find(VF);
  if (ForcedScalar != ForcedScalars.end())
    for (auto *I : ForcedScalar->second) {
      LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
      Worklist.insert(I);
    }

  // Expand the worklist by looking through any bitcasts and getelementptr
  // instructions we've already identified as scalar. This is similar to the
  // expansion step in collectLoopUniforms(); however, here we're only
  // expanding to include additional bitcasts and getelementptr instructions.
  unsigned Idx = 0;
  while (Idx != Worklist.size()) {
    Instruction *Dst = Worklist[Idx++];
    if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
      continue;
    auto *Src = cast<Instruction>(Dst->getOperand(0));
    if (llvm::all_of(Src->users(), [&](User *U) -> bool {
          auto *J = cast<Instruction>(U);
          return !TheLoop->contains(J) || Worklist.count(J) ||
                 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
                  isScalarUse(J, Src));
        })) {
      Worklist.insert(Src);
      LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
    }
  }

  // An induction variable will remain scalar if all users of the induction
  // variable and induction variable update remain scalar.
  for (const auto &Induction : Legal->getInductionVars()) {
    auto *Ind = Induction.first;
    auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));

    // If tail-folding is applied, the primary induction variable will be used
    // to feed a vector compare.
    if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
      continue;

    // Returns true if \p Indvar is a pointer induction that is used directly by
    // load/store instruction \p I.
    auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
                                              Instruction *I) {
      return Induction.second.getKind() ==
                 InductionDescriptor::IK_PtrInduction &&
             (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
             Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
    };

    // Determine if all users of the induction variable are scalar after
    // vectorization.
    auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
      auto *I = cast<Instruction>(U);
      return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
             IsDirectLoadStoreFromPtrIndvar(Ind, I);
    });
    if (!ScalarInd)
      continue;

    // Determine if all users of the induction variable update instruction are
    // scalar after vectorization.
    auto ScalarIndUpdate =
        llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
          auto *I = cast<Instruction>(U);
          return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
                 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
        });
    if (!ScalarIndUpdate)
      continue;

    // The induction variable and its update instruction will remain scalar.
    Worklist.insert(Ind);
    Worklist.insert(IndUpdate);
    LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
    LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
                      << "\n");
  }

  Scalars[VF].insert(Worklist.begin(), Worklist.end());
}

bool LoopVectorizationCostModel::isScalarWithPredication(
    Instruction *I, ElementCount VF) const {
  if (!isPredicatedInst(I))
    return false;

  // Do we have a non-scalar lowering for this predicated
  // instruction? No - it is scalar with predication.
  switch(I->getOpcode()) {
  default:
    return true;
  case Instruction::Load:
  case Instruction::Store: {
    auto *Ptr = getLoadStorePointerOperand(I);
    auto *Ty = getLoadStoreType(I);
    Type *VTy = Ty;
    if (VF.isVector())
      VTy = VectorType::get(Ty, VF);
    const Align Alignment = getLoadStoreAlignment(I);
    return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
                                TTI.isLegalMaskedGather(VTy, Alignment))
                            : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
                                TTI.isLegalMaskedScatter(VTy, Alignment));
  }
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::SRem:
  case Instruction::URem: {
    // We have the option to use the safe-divisor idiom to avoid predication.
    // The cost based decision here will always select safe-divisor for
    // scalable vectors as scalarization isn't legal.
    const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
    return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
  }
  }
}

bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const {
  if (!blockNeedsPredicationForAnyReason(I->getParent()))
    return false;

  // Can we prove this instruction is safe to unconditionally execute?
  // If not, we must use some form of predication.
  switch(I->getOpcode()) {
  default:
    return false;
  case Instruction::Load:
  case Instruction::Store: {
    if (!Legal->isMaskRequired(I))
      return false;
    // When we know the load's address is loop invariant and the instruction
    // in the original scalar loop was unconditionally executed then we
    // don't need to mark it as a predicated instruction. Tail folding may
    // introduce additional predication, but we're guaranteed to always have
    // at least one active lane.  We call Legal->blockNeedsPredication here
    // because it doesn't query tail-folding.  For stores, we need to prove
    // both speculation safety (which follows from the same argument as loads),
    // but also must prove the value being stored is correct.  The easiest
    // form of the later is to require that all values stored are the same.
    if (Legal->isUniformMemOp(*I) &&
      (isa<LoadInst>(I) ||
       (isa<StoreInst>(I) &&
        TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()))) &&
        !Legal->blockNeedsPredication(I->getParent()))
      return false;
    return true;
  }
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::SRem:
  case Instruction::URem:
    // TODO: We can use the loop-preheader as context point here and get
    // context sensitive reasoning
    return !isSafeToSpeculativelyExecute(I);
  }
}

std::pair<InstructionCost, InstructionCost>
LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I,
                                                    ElementCount VF) const {
  assert(I->getOpcode() == Instruction::UDiv ||
         I->getOpcode() == Instruction::SDiv ||
         I->getOpcode() == Instruction::SRem ||
         I->getOpcode() == Instruction::URem);
  assert(!isSafeToSpeculativelyExecute(I));

  const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  // Scalarization isn't legal for scalable vector types
  InstructionCost ScalarizationCost = InstructionCost::getInvalid();
  if (!VF.isScalable()) {
    // Get the scalarization cost and scale this amount by the probability of
    // executing the predicated block. If the instruction is not predicated,
    // we fall through to the next case.
    ScalarizationCost = 0;

    // These instructions have a non-void type, so account for the phi nodes
    // that we will create. This cost is likely to be zero. The phi node
    // cost, if any, should be scaled by the block probability because it
    // models a copy at the end of each predicated block.
    ScalarizationCost += VF.getKnownMinValue() *
      TTI.getCFInstrCost(Instruction::PHI, CostKind);

    // The cost of the non-predicated instruction.
    ScalarizationCost += VF.getKnownMinValue() *
      TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);

    // The cost of insertelement and extractelement instructions needed for
    // scalarization.
    ScalarizationCost += getScalarizationOverhead(I, VF, CostKind);

    // Scale the cost by the probability of executing the predicated blocks.
    // This assumes the predicated block for each vector lane is equally
    // likely.
    ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb();
  }
  InstructionCost SafeDivisorCost = 0;

  auto *VecTy = ToVectorTy(I->getType(), VF);

  // The cost of the select guard to ensure all lanes are well defined
  // after we speculate above any internal control flow.
  SafeDivisorCost += TTI.getCmpSelInstrCost(
    Instruction::Select, VecTy,
    ToVectorTy(Type::getInt1Ty(I->getContext()), VF),
    CmpInst::BAD_ICMP_PREDICATE, CostKind);

  // Certain instructions can be cheaper to vectorize if they have a constant
  // second vector operand. One example of this are shifts on x86.
  Value *Op2 = I->getOperand(1);
  auto Op2Info = TTI.getOperandInfo(Op2);
  if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
    Op2Info.Kind = TargetTransformInfo::OK_UniformValue;

  SmallVector<const Value *, 4> Operands(I->operand_values());
  SafeDivisorCost += TTI.getArithmeticInstrCost(
    I->getOpcode(), VecTy, CostKind,
    {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
    Op2Info, Operands, I);
  return {ScalarizationCost, SafeDivisorCost};
}

bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
    Instruction *I, ElementCount VF) {
  assert(isAccessInterleaved(I) && "Expecting interleaved access.");
  assert(getWideningDecision(I, VF) == CM_Unknown &&
         "Decision should not be set yet.");
  auto *Group = getInterleavedAccessGroup(I);
  assert(Group && "Must have a group.");

  // If the instruction's allocated size doesn't equal it's type size, it
  // requires padding and will be scalarized.
  auto &DL = I->getModule()->getDataLayout();
  auto *ScalarTy = getLoadStoreType(I);
  if (hasIrregularType(ScalarTy, DL))
    return false;

  // If the group involves a non-integral pointer, we may not be able to
  // losslessly cast all values to a common type.
  unsigned InterleaveFactor = Group->getFactor();
  bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
  for (unsigned i = 0; i < InterleaveFactor; i++) {
    Instruction *Member = Group->getMember(i);
    if (!Member)
      continue;
    auto *MemberTy = getLoadStoreType(Member);
    bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
    // Don't coerce non-integral pointers to integers or vice versa.
    if (MemberNI != ScalarNI) {
      // TODO: Consider adding special nullptr value case here
      return false;
    } else if (MemberNI && ScalarNI &&
               ScalarTy->getPointerAddressSpace() !=
               MemberTy->getPointerAddressSpace()) {
      return false;
    }
  }

  // Check if masking is required.
  // A Group may need masking for one of two reasons: it resides in a block that
  // needs predication, or it was decided to use masking to deal with gaps
  // (either a gap at the end of a load-access that may result in a speculative
  // load, or any gaps in a store-access).
  bool PredicatedAccessRequiresMasking =
      blockNeedsPredicationForAnyReason(I->getParent()) &&
      Legal->isMaskRequired(I);
  bool LoadAccessWithGapsRequiresEpilogMasking =
      isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
      !isScalarEpilogueAllowed();
  bool StoreAccessWithGapsRequiresMasking =
      isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
  if (!PredicatedAccessRequiresMasking &&
      !LoadAccessWithGapsRequiresEpilogMasking &&
      !StoreAccessWithGapsRequiresMasking)
    return true;

  // If masked interleaving is required, we expect that the user/target had
  // enabled it, because otherwise it either wouldn't have been created or
  // it should have been invalidated by the CostModel.
  assert(useMaskedInterleavedAccesses(TTI) &&
         "Masked interleave-groups for predicated accesses are not enabled.");

  if (Group->isReverse())
    return false;

  auto *Ty = getLoadStoreType(I);
  const Align Alignment = getLoadStoreAlignment(I);
  return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
                          : TTI.isLegalMaskedStore(Ty, Alignment);
}

bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
    Instruction *I, ElementCount VF) {
  // Get and ensure we have a valid memory instruction.
  assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");

  auto *Ptr = getLoadStorePointerOperand(I);
  auto *ScalarTy = getLoadStoreType(I);

  // In order to be widened, the pointer should be consecutive, first of all.
  if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
    return false;

  // If the instruction is a store located in a predicated block, it will be
  // scalarized.
  if (isScalarWithPredication(I, VF))
    return false;

  // If the instruction's allocated size doesn't equal it's type size, it
  // requires padding and will be scalarized.
  auto &DL = I->getModule()->getDataLayout();
  if (hasIrregularType(ScalarTy, DL))
    return false;

  return true;
}

void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
  // We should not collect Uniforms more than once per VF. Right now,
  // this function is called from collectUniformsAndScalars(), which
  // already does this check. Collecting Uniforms for VF=1 does not make any
  // sense.

  assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
         "This function should not be visited twice for the same VF");

  // Visit the list of Uniforms. If we'll not find any uniform value, we'll
  // not analyze again.  Uniforms.count(VF) will return 1.
  Uniforms[VF].clear();

  // We now know that the loop is vectorizable!
  // Collect instructions inside the loop that will remain uniform after
  // vectorization.

  // Global values, params and instructions outside of current loop are out of
  // scope.
  auto isOutOfScope = [&](Value *V) -> bool {
    Instruction *I = dyn_cast<Instruction>(V);
    return (!I || !TheLoop->contains(I));
  };

  // Worklist containing uniform instructions demanding lane 0.
  SetVector<Instruction *> Worklist;
  BasicBlock *Latch = TheLoop->getLoopLatch();

  // Add uniform instructions demanding lane 0 to the worklist. Instructions
  // that are scalar with predication must not be considered uniform after
  // vectorization, because that would create an erroneous replicating region
  // where only a single instance out of VF should be formed.
  // TODO: optimize such seldom cases if found important, see PR40816.
  auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
    if (isOutOfScope(I)) {
      LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
                        << *I << "\n");
      return;
    }
    if (isScalarWithPredication(I, VF)) {
      LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
                        << *I << "\n");
      return;
    }
    LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
    Worklist.insert(I);
  };

  // Start with the conditional branch. If the branch condition is an
  // instruction contained in the loop that is only used by the branch, it is
  // uniform.
  auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
  if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
    addToWorklistIfAllowed(Cmp);

  // Return true if all lanes perform the same memory operation, and we can
  // thus chose to execute only one.
  auto isUniformMemOpUse = [&](Instruction *I) {
    if (!Legal->isUniformMemOp(*I))
      return false;
    if (isa<LoadInst>(I))
      // Loading the same address always produces the same result - at least
      // assuming aliasing and ordering which have already been checked.
      return true;
    // Storing the same value on every iteration.
    return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
  };

  auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
    InstWidening WideningDecision = getWideningDecision(I, VF);
    assert(WideningDecision != CM_Unknown &&
           "Widening decision should be ready at this moment");

    if (isUniformMemOpUse(I))
      return true;

    return (WideningDecision == CM_Widen ||
            WideningDecision == CM_Widen_Reverse ||
            WideningDecision == CM_Interleave);
  };


  // Returns true if Ptr is the pointer operand of a memory access instruction
  // I, and I is known to not require scalarization.
  auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
    return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
  };

  // Holds a list of values which are known to have at least one uniform use.
  // Note that there may be other uses which aren't uniform.  A "uniform use"
  // here is something which only demands lane 0 of the unrolled iterations;
  // it does not imply that all lanes produce the same value (e.g. this is not
  // the usual meaning of uniform)
  SetVector<Value *> HasUniformUse;

  // Scan the loop for instructions which are either a) known to have only
  // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
  for (auto *BB : TheLoop->blocks())
    for (auto &I : *BB) {
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
        switch (II->getIntrinsicID()) {
        case Intrinsic::sideeffect:
        case Intrinsic::experimental_noalias_scope_decl:
        case Intrinsic::assume:
        case Intrinsic::lifetime_start:
        case Intrinsic::lifetime_end:
          if (TheLoop->hasLoopInvariantOperands(&I))
            addToWorklistIfAllowed(&I);
          break;
        default:
          break;
        }
      }

      // ExtractValue instructions must be uniform, because the operands are
      // known to be loop-invariant.
      if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
        assert(isOutOfScope(EVI->getAggregateOperand()) &&
               "Expected aggregate value to be loop invariant");
        addToWorklistIfAllowed(EVI);
        continue;
      }

      // If there's no pointer operand, there's nothing to do.
      auto *Ptr = getLoadStorePointerOperand(&I);
      if (!Ptr)
        continue;

      if (isUniformMemOpUse(&I))
        addToWorklistIfAllowed(&I);

      if (isUniformDecision(&I, VF)) {
        assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
        HasUniformUse.insert(Ptr);
      }
    }

  // Add to the worklist any operands which have *only* uniform (e.g. lane 0
  // demanding) users.  Since loops are assumed to be in LCSSA form, this
  // disallows uses outside the loop as well.
  for (auto *V : HasUniformUse) {
    if (isOutOfScope(V))
      continue;
    auto *I = cast<Instruction>(V);
    auto UsersAreMemAccesses =
      llvm::all_of(I->users(), [&](User *U) -> bool {
        return isVectorizedMemAccessUse(cast<Instruction>(U), V);
      });
    if (UsersAreMemAccesses)
      addToWorklistIfAllowed(I);
  }

  // Expand Worklist in topological order: whenever a new instruction
  // is added , its users should be already inside Worklist.  It ensures
  // a uniform instruction will only be used by uniform instructions.
  unsigned idx = 0;
  while (idx != Worklist.size()) {
    Instruction *I = Worklist[idx++];

    for (auto *OV : I->operand_values()) {
      // isOutOfScope operands cannot be uniform instructions.
      if (isOutOfScope(OV))
        continue;
      // First order recurrence Phi's should typically be considered
      // non-uniform.
      auto *OP = dyn_cast<PHINode>(OV);
      if (OP && Legal->isFixedOrderRecurrence(OP))
        continue;
      // If all the users of the operand are uniform, then add the
      // operand into the uniform worklist.
      auto *OI = cast<Instruction>(OV);
      if (llvm::all_of(OI->users(), [&](User *U) -> bool {
            auto *J = cast<Instruction>(U);
            return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
          }))
        addToWorklistIfAllowed(OI);
    }
  }

  // For an instruction to be added into Worklist above, all its users inside
  // the loop should also be in Worklist. However, this condition cannot be
  // true for phi nodes that form a cyclic dependence. We must process phi
  // nodes separately. An induction variable will remain uniform if all users
  // of the induction variable and induction variable update remain uniform.
  // The code below handles both pointer and non-pointer induction variables.
  for (const auto &Induction : Legal->getInductionVars()) {
    auto *Ind = Induction.first;
    auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));

    // Determine if all users of the induction variable are uniform after
    // vectorization.
    auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
      auto *I = cast<Instruction>(U);
      return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
             isVectorizedMemAccessUse(I, Ind);
    });
    if (!UniformInd)
      continue;

    // Determine if all users of the induction variable update instruction are
    // uniform after vectorization.
    auto UniformIndUpdate =
        llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
          auto *I = cast<Instruction>(U);
          return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
                 isVectorizedMemAccessUse(I, IndUpdate);
        });
    if (!UniformIndUpdate)
      continue;

    // The induction variable and its update instruction will remain uniform.
    addToWorklistIfAllowed(Ind);
    addToWorklistIfAllowed(IndUpdate);
  }

  Uniforms[VF].insert(Worklist.begin(), Worklist.end());
}

bool LoopVectorizationCostModel::runtimeChecksRequired() {
  LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");

  if (Legal->getRuntimePointerChecking()->Need) {
    reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
        "runtime pointer checks needed. Enable vectorization of this "
        "loop with '#pragma clang loop vectorize(enable)' when "
        "compiling with -Os/-Oz",
        "CantVersionLoopWithOptForSize", ORE, TheLoop);
    return true;
  }

  if (!PSE.getPredicate().isAlwaysTrue()) {
    reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
        "runtime SCEV checks needed. Enable vectorization of this "
        "loop with '#pragma clang loop vectorize(enable)' when "
        "compiling with -Os/-Oz",
        "CantVersionLoopWithOptForSize", ORE, TheLoop);
    return true;
  }

  // FIXME: Avoid specializing for stride==1 instead of bailing out.
  if (!Legal->getLAI()->getSymbolicStrides().empty()) {
    reportVectorizationFailure("Runtime stride check for small trip count",
        "runtime stride == 1 checks needed. Enable vectorization of "
        "this loop without such check by compiling with -Os/-Oz",
        "CantVersionLoopWithOptForSize", ORE, TheLoop);
    return true;
  }

  return false;
}

ElementCount
LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
  if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
    return ElementCount::getScalable(0);

  if (Hints->isScalableVectorizationDisabled()) {
    reportVectorizationInfo("Scalable vectorization is explicitly disabled",
                            "ScalableVectorizationDisabled", ORE, TheLoop);
    return ElementCount::getScalable(0);
  }

  LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");

  auto MaxScalableVF = ElementCount::getScalable(
      std::numeric_limits<ElementCount::ScalarTy>::max());

  // Test that the loop-vectorizer can legalize all operations for this MaxVF.
  // FIXME: While for scalable vectors this is currently sufficient, this should
  // be replaced by a more detailed mechanism that filters out specific VFs,
  // instead of invalidating vectorization for a whole set of VFs based on the
  // MaxVF.

  // Disable scalable vectorization if the loop contains unsupported reductions.
  if (!canVectorizeReductions(MaxScalableVF)) {
    reportVectorizationInfo(
        "Scalable vectorization not supported for the reduction "
        "operations found in this loop.",
        "ScalableVFUnfeasible", ORE, TheLoop);
    return ElementCount::getScalable(0);
  }

  // Disable scalable vectorization if the loop contains any instructions
  // with element types not supported for scalable vectors.
  if (any_of(ElementTypesInLoop, [&](Type *Ty) {
        return !Ty->isVoidTy() &&
               !this->TTI.isElementTypeLegalForScalableVector(Ty);
      })) {
    reportVectorizationInfo("Scalable vectorization is not supported "
                            "for all element types found in this loop.",
                            "ScalableVFUnfeasible", ORE, TheLoop);
    return ElementCount::getScalable(0);
  }

  if (Legal->isSafeForAnyVectorWidth())
    return MaxScalableVF;

  // Limit MaxScalableVF by the maximum safe dependence distance.
  std::optional<unsigned> MaxVScale = TTI.getMaxVScale();
  if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
    MaxVScale =
        TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
  MaxScalableVF =
      ElementCount::getScalable(MaxVScale ? (MaxSafeElements / *MaxVScale) : 0);
  if (!MaxScalableVF)
    reportVectorizationInfo(
        "Max legal vector width too small, scalable vectorization "
        "unfeasible.",
        "ScalableVFUnfeasible", ORE, TheLoop);

  return MaxScalableVF;
}

FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
    unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
  MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
  unsigned SmallestType, WidestType;
  std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();

  // Get the maximum safe dependence distance in bits computed by LAA.
  // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
  // the memory accesses that is most restrictive (involved in the smallest
  // dependence distance).
  unsigned MaxSafeElements =
      PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);

  auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
  auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);

  LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
                    << ".\n");
  LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
                    << ".\n");

  // First analyze the UserVF, fall back if the UserVF should be ignored.
  if (UserVF) {
    auto MaxSafeUserVF =
        UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;

    if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
      // If `VF=vscale x N` is safe, then so is `VF=N`
      if (UserVF.isScalable())
        return FixedScalableVFPair(
            ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
      else
        return UserVF;
    }

    assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));

    // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
    // is better to ignore the hint and let the compiler choose a suitable VF.
    if (!UserVF.isScalable()) {
      LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
                        << " is unsafe, clamping to max safe VF="
                        << MaxSafeFixedVF << ".\n");
      ORE->emit([&]() {
        return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
                                          TheLoop->getStartLoc(),
                                          TheLoop->getHeader())
               << "User-specified vectorization factor "
               << ore::NV("UserVectorizationFactor", UserVF)
               << " is unsafe, clamping to maximum safe vectorization factor "
               << ore::NV("VectorizationFactor", MaxSafeFixedVF);
      });
      return MaxSafeFixedVF;
    }

    if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
      LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
                        << " is ignored because scalable vectors are not "
                           "available.\n");
      ORE->emit([&]() {
        return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
                                          TheLoop->getStartLoc(),
                                          TheLoop->getHeader())
               << "User-specified vectorization factor "
               << ore::NV("UserVectorizationFactor", UserVF)
               << " is ignored because the target does not support scalable "
                  "vectors. The compiler will pick a more suitable value.";
      });
    } else {
      LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
                        << " is unsafe. Ignoring scalable UserVF.\n");
      ORE->emit([&]() {
        return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
                                          TheLoop->getStartLoc(),
                                          TheLoop->getHeader())
               << "User-specified vectorization factor "
               << ore::NV("UserVectorizationFactor", UserVF)
               << " is unsafe. Ignoring the hint to let the compiler pick a "
                  "more suitable value.";
      });
    }
  }

  LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
                    << " / " << WidestType << " bits.\n");

  FixedScalableVFPair Result(ElementCount::getFixed(1),
                             ElementCount::getScalable(0));
  if (auto MaxVF =
          getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
                                  MaxSafeFixedVF, FoldTailByMasking))
    Result.FixedVF = MaxVF;

  if (auto MaxVF =
          getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
                                  MaxSafeScalableVF, FoldTailByMasking))
    if (MaxVF.isScalable()) {
      Result.ScalableVF = MaxVF;
      LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
                        << "\n");
    }

  return Result;
}

FixedScalableVFPair
LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
  if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
    // TODO: It may by useful to do since it's still likely to be dynamically
    // uniform if the target can skip.
    reportVectorizationFailure(
        "Not inserting runtime ptr check for divergent target",
        "runtime pointer checks needed. Not enabled for divergent target",
        "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
    return FixedScalableVFPair::getNone();
  }

  unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
  LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
  if (TC == 1) {
    reportVectorizationFailure("Single iteration (non) loop",
        "loop trip count is one, irrelevant for vectorization",
        "SingleIterationLoop", ORE, TheLoop);
    return FixedScalableVFPair::getNone();
  }

  switch (ScalarEpilogueStatus) {
  case CM_ScalarEpilogueAllowed:
    return computeFeasibleMaxVF(TC, UserVF, false);
  case CM_ScalarEpilogueNotAllowedUsePredicate:
    [[fallthrough]];
  case CM_ScalarEpilogueNotNeededUsePredicate:
    LLVM_DEBUG(
        dbgs() << "LV: vector predicate hint/switch found.\n"
               << "LV: Not allowing scalar epilogue, creating predicated "
               << "vector loop.\n");
    break;
  case CM_ScalarEpilogueNotAllowedLowTripLoop:
    // fallthrough as a special case of OptForSize
  case CM_ScalarEpilogueNotAllowedOptSize:
    if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
      LLVM_DEBUG(
          dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
    else
      LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
                        << "count.\n");

    // Bail if runtime checks are required, which are not good when optimising
    // for size.
    if (runtimeChecksRequired())
      return FixedScalableVFPair::getNone();

    break;
  }

  // The only loops we can vectorize without a scalar epilogue, are loops with
  // a bottom-test and a single exiting block. We'd have to handle the fact
  // that not every instruction executes on the last iteration.  This will
  // require a lane mask which varies through the vector loop body.  (TODO)
  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
    // If there was a tail-folding hint/switch, but we can't fold the tail by
    // masking, fallback to a vectorization with a scalar epilogue.
    if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
      LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
                           "scalar epilogue instead.\n");
      ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
      return computeFeasibleMaxVF(TC, UserVF, false);
    }
    return FixedScalableVFPair::getNone();
  }

  // Now try the tail folding

  // Invalidate interleave groups that require an epilogue if we can't mask
  // the interleave-group.
  if (!useMaskedInterleavedAccesses(TTI)) {
    assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
           "No decisions should have been taken at this point");
    // Note: There is no need to invalidate any cost modeling decisions here, as
    // non where taken so far.
    InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
  }

  FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
  // Avoid tail folding if the trip count is known to be a multiple of any VF
  // we chose.
  // FIXME: The condition below pessimises the case for fixed-width vectors,
  // when scalable VFs are also candidates for vectorization.
  if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
    ElementCount MaxFixedVF = MaxFactors.FixedVF;
    assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
           "MaxFixedVF must be a power of 2");
    unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
                                   : MaxFixedVF.getFixedValue();
    ScalarEvolution *SE = PSE.getSE();
    const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
    const SCEV *ExitCount = SE->getAddExpr(
        BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
    const SCEV *Rem = SE->getURemExpr(
        SE->applyLoopGuards(ExitCount, TheLoop),
        SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
    if (Rem->isZero()) {
      // Accept MaxFixedVF if we do not have a tail.
      LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
      return MaxFactors;
    }
  }

  // If we don't know the precise trip count, or if the trip count that we
  // found modulo the vectorization factor is not zero, try to fold the tail
  // by masking.
  // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
  if (Legal->prepareToFoldTailByMasking()) {
    FoldTailByMasking = true;
    return MaxFactors;
  }

  // If there was a tail-folding hint/switch, but we can't fold the tail by
  // masking, fallback to a vectorization with a scalar epilogue.
  if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
    LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
                         "scalar epilogue instead.\n");
    ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
    return MaxFactors;
  }

  if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
    LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
    return FixedScalableVFPair::getNone();
  }

  if (TC == 0) {
    reportVectorizationFailure(
        "Unable to calculate the loop count due to complex control flow",
        "unable to calculate the loop count due to complex control flow",
        "UnknownLoopCountComplexCFG", ORE, TheLoop);
    return FixedScalableVFPair::getNone();
  }

  reportVectorizationFailure(
      "Cannot optimize for size and vectorize at the same time.",
      "cannot optimize for size and vectorize at the same time. "
      "Enable vectorization of this loop with '#pragma clang loop "
      "vectorize(enable)' when compiling with -Os/-Oz",
      "NoTailLoopWithOptForSize", ORE, TheLoop);
  return FixedScalableVFPair::getNone();
}

ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
    unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
    ElementCount MaxSafeVF, bool FoldTailByMasking) {
  bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
  const TypeSize WidestRegister = TTI.getRegisterBitWidth(
      ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
                           : TargetTransformInfo::RGK_FixedWidthVector);

  // Convenience function to return the minimum of two ElementCounts.
  auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
    assert((LHS.isScalable() == RHS.isScalable()) &&
           "Scalable flags must match");
    return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
  };

  // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
  // Note that both WidestRegister and WidestType may not be a powers of 2.
  auto MaxVectorElementCount = ElementCount::get(
      PowerOf2Floor(WidestRegister.getKnownMinValue() / WidestType),
      ComputeScalableMaxVF);
  MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
  LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
                    << (MaxVectorElementCount * WidestType) << " bits.\n");

  if (!MaxVectorElementCount) {
    LLVM_DEBUG(dbgs() << "LV: The target has no "
                      << (ComputeScalableMaxVF ? "scalable" : "fixed")
                      << " vector registers.\n");
    return ElementCount::getFixed(1);
  }

  unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
  if (MaxVectorElementCount.isScalable() &&
      TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
    auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
    auto Min = Attr.getVScaleRangeMin();
    WidestRegisterMinEC *= Min;
  }
  if (ConstTripCount && ConstTripCount <= WidestRegisterMinEC &&
      (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
    // If loop trip count (TC) is known at compile time there is no point in
    // choosing VF greater than TC (as done in the loop below). Select maximum
    // power of two which doesn't exceed TC.
    // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
    // when the TC is less than or equal to the known number of lanes.
    auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
    LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
                         "exceeding the constant trip count: "
                      << ClampedConstTripCount << "\n");
    return ElementCount::getFixed(ClampedConstTripCount);
  }

  TargetTransformInfo::RegisterKind RegKind =
      ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
                           : TargetTransformInfo::RGK_FixedWidthVector;
  ElementCount MaxVF = MaxVectorElementCount;
  if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
                            TTI.shouldMaximizeVectorBandwidth(RegKind))) {
    auto MaxVectorElementCountMaxBW = ElementCount::get(
        PowerOf2Floor(WidestRegister.getKnownMinValue() / SmallestType),
        ComputeScalableMaxVF);
    MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);

    // Collect all viable vectorization factors larger than the default MaxVF
    // (i.e. MaxVectorElementCount).
    SmallVector<ElementCount, 8> VFs;
    for (ElementCount VS = MaxVectorElementCount * 2;
         ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
      VFs.push_back(VS);

    // For each VF calculate its register usage.
    auto RUs = calculateRegisterUsage(VFs);

    // Select the largest VF which doesn't require more registers than existing
    // ones.
    for (int i = RUs.size() - 1; i >= 0; --i) {
      bool Selected = true;
      for (auto &pair : RUs[i].MaxLocalUsers) {
        unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
        if (pair.second > TargetNumRegisters)
          Selected = false;
      }
      if (Selected) {
        MaxVF = VFs[i];
        break;
      }
    }
    if (ElementCount MinVF =
            TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
      if (ElementCount::isKnownLT(MaxVF, MinVF)) {
        LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
                          << ") with target's minimum: " << MinVF << '\n');
        MaxVF = MinVF;
      }
    }

    // Invalidate any widening decisions we might have made, in case the loop
    // requires prediction (decided later), but we have already made some
    // load/store widening decisions.
    invalidateCostModelingDecisions();
  }
  return MaxVF;
}

std::optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
  if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
    auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
    auto Min = Attr.getVScaleRangeMin();
    auto Max = Attr.getVScaleRangeMax();
    if (Max && Min == Max)
      return Max;
  }

  return TTI.getVScaleForTuning();
}

bool LoopVectorizationCostModel::isMoreProfitable(
    const VectorizationFactor &A, const VectorizationFactor &B) const {
  InstructionCost CostA = A.Cost;
  InstructionCost CostB = B.Cost;

  unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);

  if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
      MaxTripCount) {
    // If we are folding the tail and the trip count is a known (possibly small)
    // constant, the trip count will be rounded up to an integer number of
    // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
    // which we compare directly. When not folding the tail, the total cost will
    // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
    // approximated with the per-lane cost below instead of using the tripcount
    // as here.
    auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
    auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
    return RTCostA < RTCostB;
  }

  // Improve estimate for the vector width if it is scalable.
  unsigned EstimatedWidthA = A.Width.getKnownMinValue();
  unsigned EstimatedWidthB = B.Width.getKnownMinValue();
  if (std::optional<unsigned> VScale = getVScaleForTuning()) {
    if (A.Width.isScalable())
      EstimatedWidthA *= *VScale;
    if (B.Width.isScalable())
      EstimatedWidthB *= *VScale;
  }

  // Assume vscale may be larger than 1 (or the value being tuned for),
  // so that scalable vectorization is slightly favorable over fixed-width
  // vectorization.
  if (A.Width.isScalable() && !B.Width.isScalable())
    return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);

  // To avoid the need for FP division:
  //      (CostA / A.Width) < (CostB / B.Width)
  // <=>  (CostA * B.Width) < (CostB * A.Width)
  return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
}

VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
    const ElementCountSet &VFCandidates) {
  InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
  LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
  assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
  assert(VFCandidates.count(ElementCount::getFixed(1)) &&
         "Expected Scalar VF to be a candidate");

  const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
                                       ExpectedCost);
  VectorizationFactor ChosenFactor = ScalarCost;

  bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
  if (ForceVectorization && VFCandidates.size() > 1) {
    // Ignore scalar width, because the user explicitly wants vectorization.
    // Initialize cost to max so that VF = 2 is, at least, chosen during cost
    // evaluation.
    ChosenFactor.Cost = InstructionCost::getMax();
  }

  SmallVector<InstructionVFPair> InvalidCosts;
  for (const auto &i : VFCandidates) {
    // The cost for scalar VF=1 is already calculated, so ignore it.
    if (i.isScalar())
      continue;

    VectorizationCostTy C = expectedCost(i, &InvalidCosts);
    VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);

#ifndef NDEBUG
    unsigned AssumedMinimumVscale = 1;
    if (std::optional<unsigned> VScale = getVScaleForTuning())
      AssumedMinimumVscale = *VScale;
    unsigned Width =
        Candidate.Width.isScalable()
            ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
            : Candidate.Width.getFixedValue();
    LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
                      << " costs: " << (Candidate.Cost / Width));
    if (i.isScalable())
      LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
                        << AssumedMinimumVscale << ")");
    LLVM_DEBUG(dbgs() << ".\n");
#endif

    if (!C.second && !ForceVectorization) {
      LLVM_DEBUG(
          dbgs() << "LV: Not considering vector loop of width " << i
                 << " because it will not generate any vector instructions.\n");
      continue;
    }

    // If profitable add it to ProfitableVF list.
    if (isMoreProfitable(Candidate, ScalarCost))
      ProfitableVFs.push_back(Candidate);

    if (isMoreProfitable(Candidate, ChosenFactor))
      ChosenFactor = Candidate;
  }

  // Emit a report of VFs with invalid costs in the loop.
  if (!InvalidCosts.empty()) {
    // Group the remarks per instruction, keeping the instruction order from
    // InvalidCosts.
    std::map<Instruction *, unsigned> Numbering;
    unsigned I = 0;
    for (auto &Pair : InvalidCosts)
      if (!Numbering.count(Pair.first))
        Numbering[Pair.first] = I++;

    // Sort the list, first on instruction(number) then on VF.
    llvm::sort(InvalidCosts,
               [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
                 if (Numbering[A.first] != Numbering[B.first])
                   return Numbering[A.first] < Numbering[B.first];
                 ElementCountComparator ECC;
                 return ECC(A.second, B.second);
               });

    // For a list of ordered instruction-vf pairs:
    //   [(load, vf1), (load, vf2), (store, vf1)]
    // Group the instructions together to emit separate remarks for:
    //   load  (vf1, vf2)
    //   store (vf1)
    auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
    auto Subset = ArrayRef<InstructionVFPair>();
    do {
      if (Subset.empty())
        Subset = Tail.take_front(1);

      Instruction *I = Subset.front().first;

      // If the next instruction is different, or if there are no other pairs,
      // emit a remark for the collated subset. e.g.
      //   [(load, vf1), (load, vf2))]
      // to emit:
      //  remark: invalid costs for 'load' at VF=(vf, vf2)
      if (Subset == Tail || Tail[Subset.size()].first != I) {
        std::string OutString;
        raw_string_ostream OS(OutString);
        assert(!Subset.empty() && "Unexpected empty range");
        OS << "Instruction with invalid costs prevented vectorization at VF=(";
        for (const auto &Pair : Subset)
          OS << (Pair.second == Subset.front().second ? "" : ", ")
             << Pair.second;
        OS << "):";
        if (auto *CI = dyn_cast<CallInst>(I))
          OS << " call to " << CI->getCalledFunction()->getName();
        else
          OS << " " << I->getOpcodeName();
        OS.flush();
        reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
        Tail = Tail.drop_front(Subset.size());
        Subset = {};
      } else
        // Grow the subset by one element
        Subset = Tail.take_front(Subset.size() + 1);
    } while (!Tail.empty());
  }

  if (!EnableCondStoresVectorization && NumPredStores) {
    reportVectorizationFailure("There are conditional stores.",
        "store that is conditionally executed prevents vectorization",
        "ConditionalStore", ORE, TheLoop);
    ChosenFactor = ScalarCost;
  }

  LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
                 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()
             << "LV: Vectorization seems to be not beneficial, "
             << "but was forced by a user.\n");
  LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
  return ChosenFactor;
}

bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
    const Loop &L, ElementCount VF) const {
  // Cross iteration phis such as reductions need special handling and are
  // currently unsupported.
  if (any_of(L.getHeader()->phis(),
             [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
    return false;

  // Phis with uses outside of the loop require special handling and are
  // currently unsupported.
  for (const auto &Entry : Legal->getInductionVars()) {
    // Look for uses of the value of the induction at the last iteration.
    Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
    for (User *U : PostInc->users())
      if (!L.contains(cast<Instruction>(U)))
        return false;
    // Look for uses of penultimate value of the induction.
    for (User *U : Entry.first->users())
      if (!L.contains(cast<Instruction>(U)))
        return false;
  }

  // Epilogue vectorization code has not been auditted to ensure it handles
  // non-latch exits properly.  It may be fine, but it needs auditted and
  // tested.
  if (L.getExitingBlock() != L.getLoopLatch())
    return false;

  return true;
}

bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
    const ElementCount VF) const {
  // FIXME: We need a much better cost-model to take different parameters such
  // as register pressure, code size increase and cost of extra branches into
  // account. For now we apply a very crude heuristic and only consider loops
  // with vectorization factors larger than a certain value.

  // Allow the target to opt out entirely.
  if (!TTI.preferEpilogueVectorization())
    return false;

  // We also consider epilogue vectorization unprofitable for targets that don't
  // consider interleaving beneficial (eg. MVE).
  if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
    return false;
  // FIXME: We should consider changing the threshold for scalable
  // vectors to take VScaleForTuning into account.
  if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
    return true;
  return false;
}

VectorizationFactor
LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
    const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
  VectorizationFactor Result = VectorizationFactor::Disabled();
  if (!EnableEpilogueVectorization) {
    LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
    return Result;
  }

  if (!isScalarEpilogueAllowed()) {
    LLVM_DEBUG(
        dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
                  "allowed.\n";);
    return Result;
  }

  // Not really a cost consideration, but check for unsupported cases here to
  // simplify the logic.
  if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
    LLVM_DEBUG(
        dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
                  "not a supported candidate.\n";);
    return Result;
  }

  if (EpilogueVectorizationForceVF > 1) {
    LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
    ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
    if (LVP.hasPlanWithVF(ForcedEC))
      return {ForcedEC, 0, 0};
    else {
      LLVM_DEBUG(
          dbgs()
              << "LEV: Epilogue vectorization forced factor is not viable.\n";);
      return Result;
    }
  }

  if (TheLoop->getHeader()->getParent()->hasOptSize() ||
      TheLoop->getHeader()->getParent()->hasMinSize()) {
    LLVM_DEBUG(
        dbgs()
            << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
    return Result;
  }

  if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
    LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
                         "this loop\n");
    return Result;
  }

  // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
  // the main loop handles 8 lanes per iteration. We could still benefit from
  // vectorizing the epilogue loop with VF=4.
  ElementCount EstimatedRuntimeVF = MainLoopVF;
  if (MainLoopVF.isScalable()) {
    EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
    if (std::optional<unsigned> VScale = getVScaleForTuning())
      EstimatedRuntimeVF *= *VScale;
  }

  for (auto &NextVF : ProfitableVFs)
    if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
          ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
         ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
        (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
        LVP.hasPlanWithVF(NextVF.Width))
      Result = NextVF;

  if (Result != VectorizationFactor::Disabled())
    LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
                      << Result.Width << "\n";);
  return Result;
}

std::pair<unsigned, unsigned>
LoopVectorizationCostModel::getSmallestAndWidestTypes() {
  unsigned MinWidth = -1U;
  unsigned MaxWidth = 8;
  const DataLayout &DL = TheFunction->getParent()->getDataLayout();
  // For in-loop reductions, no element types are added to ElementTypesInLoop
  // if there are no loads/stores in the loop. In this case, check through the
  // reduction variables to determine the maximum width.
  if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
    // Reset MaxWidth so that we can find the smallest type used by recurrences
    // in the loop.
    MaxWidth = -1U;
    for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
      const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
      // When finding the min width used by the recurrence we need to account
      // for casts on the input operands of the recurrence.
      MaxWidth = std::min<unsigned>(
          MaxWidth, std::min<unsigned>(
                        RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
                        RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
    }
  } else {
    for (Type *T : ElementTypesInLoop) {
      MinWidth = std::min<unsigned>(
          MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
      MaxWidth = std::max<unsigned>(
          MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
    }
  }
  return {MinWidth, MaxWidth};
}

void LoopVectorizationCostModel::collectElementTypesForWidening() {
  ElementTypesInLoop.clear();
  // For each block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // For each instruction in the loop.
    for (Instruction &I : BB->instructionsWithoutDebug()) {
      Type *T = I.getType();

      // Skip ignored values.
      if (ValuesToIgnore.count(&I))
        continue;

      // Only examine Loads, Stores and PHINodes.
      if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
        continue;

      // Examine PHI nodes that are reduction variables. Update the type to
      // account for the recurrence type.
      if (auto *PN = dyn_cast<PHINode>(&I)) {
        if (!Legal->isReductionVariable(PN))
          continue;
        const RecurrenceDescriptor &RdxDesc =
            Legal->getReductionVars().find(PN)->second;
        if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
            TTI.preferInLoopReduction(RdxDesc.getOpcode(),
                                      RdxDesc.getRecurrenceType(),
                                      TargetTransformInfo::ReductionFlags()))
          continue;
        T = RdxDesc.getRecurrenceType();
      }

      // Examine the stored values.
      if (auto *ST = dyn_cast<StoreInst>(&I))
        T = ST->getValueOperand()->getType();

      assert(T->isSized() &&
             "Expected the load/store/recurrence type to be sized");

      ElementTypesInLoop.insert(T);
    }
  }
}

unsigned
LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
                                                  InstructionCost LoopCost) {
  // -- The interleave heuristics --
  // We interleave the loop in order to expose ILP and reduce the loop overhead.
  // There are many micro-architectural considerations that we can't predict
  // at this level. For example, frontend pressure (on decode or fetch) due to
  // code size, or the number and capabilities of the execution ports.
  //
  // We use the following heuristics to select the interleave count:
  // 1. If the code has reductions, then we interleave to break the cross
  // iteration dependency.
  // 2. If the loop is really small, then we interleave to reduce the loop
  // overhead.
  // 3. We don't interleave if we think that we will spill registers to memory
  // due to the increased register pressure.

  if (!isScalarEpilogueAllowed())
    return 1;

  // We used the distance for the interleave count.
  if (Legal->getMaxSafeDepDistBytes() != -1U)
    return 1;

  auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
  const bool HasReductions = !Legal->getReductionVars().empty();
  // Do not interleave loops with a relatively small known or estimated trip
  // count. But we will interleave when InterleaveSmallLoopScalarReduction is
  // enabled, and the code has scalar reductions(HasReductions && VF = 1),
  // because with the above conditions interleaving can expose ILP and break
  // cross iteration dependences for reductions.
  if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
      !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
    return 1;

  // If we did not calculate the cost for VF (because the user selected the VF)
  // then we calculate the cost of VF here.
  if (LoopCost == 0) {
    LoopCost = expectedCost(VF).first;
    assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");

    // Loop body is free and there is no need for interleaving.
    if (LoopCost == 0)
      return 1;
  }

  RegisterUsage R = calculateRegisterUsage({VF})[0];
  // We divide by these constants so assume that we have at least one
  // instruction that uses at least one register.
  for (auto& pair : R.MaxLocalUsers) {
    pair.second = std::max(pair.second, 1U);
  }

  // We calculate the interleave count using the following formula.
  // Subtract the number of loop invariants from the number of available
  // registers. These registers are used by all of the interleaved instances.
  // Next, divide the remaining registers by the number of registers that is
  // required by the loop, in order to estimate how many parallel instances
  // fit without causing spills. All of this is rounded down if necessary to be
  // a power of two. We want power of two interleave count to simplify any
  // addressing operations or alignment considerations.
  // We also want power of two interleave counts to ensure that the induction
  // variable of the vector loop wraps to zero, when tail is folded by masking;
  // this currently happens when OptForSize, in which case IC is set to 1 above.
  unsigned IC = UINT_MAX;

  for (auto& pair : R.MaxLocalUsers) {
    unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
    LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
                      << " registers of "
                      << TTI.getRegisterClassName(pair.first) << " register class\n");
    if (VF.isScalar()) {
      if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
        TargetNumRegisters = ForceTargetNumScalarRegs;
    } else {
      if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
        TargetNumRegisters = ForceTargetNumVectorRegs;
    }
    unsigned MaxLocalUsers = pair.second;
    unsigned LoopInvariantRegs = 0;
    if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
      LoopInvariantRegs = R.LoopInvariantRegs[pair.first];

    unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
    // Don't count the induction variable as interleaved.
    if (EnableIndVarRegisterHeur) {
      TmpIC =
          PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
                        std::max(1U, (MaxLocalUsers - 1)));
    }

    IC = std::min(IC, TmpIC);
  }

  // Clamp the interleave ranges to reasonable counts.
  unsigned MaxInterleaveCount =
      TTI.getMaxInterleaveFactor(VF.getKnownMinValue());

  // Check if the user has overridden the max.
  if (VF.isScalar()) {
    if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
      MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
  } else {
    if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
      MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
  }

  // If trip count is known or estimated compile time constant, limit the
  // interleave count to be less than the trip count divided by VF, provided it
  // is at least 1.
  //
  // For scalable vectors we can't know if interleaving is beneficial. It may
  // not be beneficial for small loops if none of the lanes in the second vector
  // iterations is enabled. However, for larger loops, there is likely to be a
  // similar benefit as for fixed-width vectors. For now, we choose to leave
  // the InterleaveCount as if vscale is '1', although if some information about
  // the vector is known (e.g. min vector size), we can make a better decision.
  if (BestKnownTC) {
    MaxInterleaveCount =
        std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
    // Make sure MaxInterleaveCount is greater than 0.
    MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
  }

  assert(MaxInterleaveCount > 0 &&
         "Maximum interleave count must be greater than 0");

  // Clamp the calculated IC to be between the 1 and the max interleave count
  // that the target and trip count allows.
  if (IC > MaxInterleaveCount)
    IC = MaxInterleaveCount;
  else
    // Make sure IC is greater than 0.
    IC = std::max(1u, IC);

  assert(IC > 0 && "Interleave count must be greater than 0.");

  // Interleave if we vectorized this loop and there is a reduction that could
  // benefit from interleaving.
  if (VF.isVector() && HasReductions) {
    LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
    return IC;
  }

  // For any scalar loop that either requires runtime checks or predication we
  // are better off leaving this to the unroller. Note that if we've already
  // vectorized the loop we will have done the runtime check and so interleaving
  // won't require further checks.
  bool ScalarInterleavingRequiresPredication =
      (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
         return Legal->blockNeedsPredication(BB);
       }));
  bool ScalarInterleavingRequiresRuntimePointerCheck =
      (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);

  // We want to interleave small loops in order to reduce the loop overhead and
  // potentially expose ILP opportunities.
  LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
                    << "LV: IC is " << IC << '\n'
                    << "LV: VF is " << VF << '\n');
  const bool AggressivelyInterleaveReductions =
      TTI.enableAggressiveInterleaving(HasReductions);
  if (!ScalarInterleavingRequiresRuntimePointerCheck &&
      !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
    // We assume that the cost overhead is 1 and we use the cost model
    // to estimate the cost of the loop and interleave until the cost of the
    // loop overhead is about 5% of the cost of the loop.
    unsigned SmallIC = std::min(
        IC, (unsigned)PowerOf2Floor(SmallLoopCost / *LoopCost.getValue()));

    // Interleave until store/load ports (estimated by max interleave count) are
    // saturated.
    unsigned NumStores = Legal->getNumStores();
    unsigned NumLoads = Legal->getNumLoads();
    unsigned StoresIC = IC / (NumStores ? NumStores : 1);
    unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);

    // There is little point in interleaving for reductions containing selects
    // and compares when VF=1 since it may just create more overhead than it's
    // worth for loops with small trip counts. This is because we still have to
    // do the final reduction after the loop.
    bool HasSelectCmpReductions =
        HasReductions &&
        any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
          const RecurrenceDescriptor &RdxDesc = Reduction.second;
          return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
              RdxDesc.getRecurrenceKind());
        });
    if (HasSelectCmpReductions) {
      LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
      return 1;
    }

    // If we have a scalar reduction (vector reductions are already dealt with
    // by this point), we can increase the critical path length if the loop
    // we're interleaving is inside another loop. For tree-wise reductions
    // set the limit to 2, and for ordered reductions it's best to disable
    // interleaving entirely.
    if (HasReductions && TheLoop->getLoopDepth() > 1) {
      bool HasOrderedReductions =
          any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
            const RecurrenceDescriptor &RdxDesc = Reduction.second;
            return RdxDesc.isOrdered();
          });
      if (HasOrderedReductions) {
        LLVM_DEBUG(
            dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
        return 1;
      }

      unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
      SmallIC = std::min(SmallIC, F);
      StoresIC = std::min(StoresIC, F);
      LoadsIC = std::min(LoadsIC, F);
    }

    if (EnableLoadStoreRuntimeInterleave &&
        std::max(StoresIC, LoadsIC) > SmallIC) {
      LLVM_DEBUG(
          dbgs() << "LV: Interleaving to saturate store or load ports.\n");
      return std::max(StoresIC, LoadsIC);
    }

    // If there are scalar reductions and TTI has enabled aggressive
    // interleaving for reductions, we will interleave to expose ILP.
    if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
        AggressivelyInterleaveReductions) {
      LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
      // Interleave no less than SmallIC but not as aggressive as the normal IC
      // to satisfy the rare situation when resources are too limited.
      return std::max(IC / 2, SmallIC);
    } else {
      LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
      return SmallIC;
    }
  }

  // Interleave if this is a large loop (small loops are already dealt with by
  // this point) that could benefit from interleaving.
  if (AggressivelyInterleaveReductions) {
    LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
    return IC;
  }

  LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
  return 1;
}

SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
  // This function calculates the register usage by measuring the highest number
  // of values that are alive at a single location. Obviously, this is a very
  // rough estimation. We scan the loop in a topological order in order and
  // assign a number to each instruction. We use RPO to ensure that defs are
  // met before their users. We assume that each instruction that has in-loop
  // users starts an interval. We record every time that an in-loop value is
  // used, so we have a list of the first and last occurrences of each
  // instruction. Next, we transpose this data structure into a multi map that
  // holds the list of intervals that *end* at a specific location. This multi
  // map allows us to perform a linear search. We scan the instructions linearly
  // and record each time that a new interval starts, by placing it in a set.
  // If we find this value in the multi-map then we remove it from the set.
  // The max register usage is the maximum size of the set.
  // We also search for instructions that are defined outside the loop, but are
  // used inside the loop. We need this number separately from the max-interval
  // usage number because when we unroll, loop-invariant values do not take
  // more register.
  LoopBlocksDFS DFS(TheLoop);
  DFS.perform(LI);

  RegisterUsage RU;

  // Each 'key' in the map opens a new interval. The values
  // of the map are the index of the 'last seen' usage of the
  // instruction that is the key.
  using IntervalMap = DenseMap<Instruction *, unsigned>;

  // Maps instruction to its index.
  SmallVector<Instruction *, 64> IdxToInstr;
  // Marks the end of each interval.
  IntervalMap EndPoint;
  // Saves the list of instruction indices that are used in the loop.
  SmallPtrSet<Instruction *, 8> Ends;
  // Saves the list of values that are used in the loop but are defined outside
  // the loop (not including non-instruction values such as arguments and
  // constants).
  SmallPtrSet<Instruction *, 8> LoopInvariants;

  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
    for (Instruction &I : BB->instructionsWithoutDebug()) {
      IdxToInstr.push_back(&I);

      // Save the end location of each USE.
      for (Value *U : I.operands()) {
        auto *Instr = dyn_cast<Instruction>(U);

        // Ignore non-instruction values such as arguments, constants, etc.
        // FIXME: Might need some motivation why these values are ignored. If
        // for example an argument is used inside the loop it will increase the
        // register pressure (so shouldn't we add it to LoopInvariants).
        if (!Instr)
          continue;

        // If this instruction is outside the loop then record it and continue.
        if (!TheLoop->contains(Instr)) {
          LoopInvariants.insert(Instr);
          continue;
        }

        // Overwrite previous end points.
        EndPoint[Instr] = IdxToInstr.size();
        Ends.insert(Instr);
      }
    }
  }

  // Saves the list of intervals that end with the index in 'key'.
  using InstrList = SmallVector<Instruction *, 2>;
  DenseMap<unsigned, InstrList> TransposeEnds;

  // Transpose the EndPoints to a list of values that end at each index.
  for (auto &Interval : EndPoint)
    TransposeEnds[Interval.second].push_back(Interval.first);

  SmallPtrSet<Instruction *, 8> OpenIntervals;
  SmallVector<RegisterUsage, 8> RUs(VFs.size());
  SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());

  LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");

  const auto &TTICapture = TTI;
  auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
    if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
      return 0;
    return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
  };

  for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
    Instruction *I = IdxToInstr[i];

    // Remove all of the instructions that end at this location.
    InstrList &List = TransposeEnds[i];
    for (Instruction *ToRemove : List)
      OpenIntervals.erase(ToRemove);

    // Ignore instructions that are never used within the loop.
    if (!Ends.count(I))
      continue;

    // Skip ignored values.
    if (ValuesToIgnore.count(I))
      continue;

    // For each VF find the maximum usage of registers.
    for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
      // Count the number of registers used, per register class, given all open
      // intervals.
      // Note that elements in this SmallMapVector will be default constructed
      // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
      // there is no previous entry for ClassID.
      SmallMapVector<unsigned, unsigned, 4> RegUsage;

      if (VFs[j].isScalar()) {
        for (auto *Inst : OpenIntervals) {
          unsigned ClassID =
              TTI.getRegisterClassForType(false, Inst->getType());
          // FIXME: The target might use more than one register for the type
          // even in the scalar case.
          RegUsage[ClassID] += 1;
        }
      } else {
        collectUniformsAndScalars(VFs[j]);
        for (auto *Inst : OpenIntervals) {
          // Skip ignored values for VF > 1.
          if (VecValuesToIgnore.count(Inst))
            continue;
          if (isScalarAfterVectorization(Inst, VFs[j])) {
            unsigned ClassID =
                TTI.getRegisterClassForType(false, Inst->getType());
            // FIXME: The target might use more than one register for the type
            // even in the scalar case.
            RegUsage[ClassID] += 1;
          } else {
            unsigned ClassID =
                TTI.getRegisterClassForType(true, Inst->getType());
            RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
          }
        }
      }

      for (auto& pair : RegUsage) {
        auto &Entry = MaxUsages[j][pair.first];
        Entry = std::max(Entry, pair.second);
      }
    }

    LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
                      << OpenIntervals.size() << '\n');

    // Add the current instruction to the list of open intervals.
    OpenIntervals.insert(I);
  }

  for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
    // Note that elements in this SmallMapVector will be default constructed
    // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
    // there is no previous entry for ClassID.
    SmallMapVector<unsigned, unsigned, 4> Invariant;

    for (auto *Inst : LoopInvariants) {
      // FIXME: The target might use more than one register for the type
      // even in the scalar case.
      bool IsScalar = all_of(Inst->users(), [&](User *U) {
        auto *I = cast<Instruction>(U);
        return TheLoop != LI->getLoopFor(I->getParent()) ||
               isScalarAfterVectorization(I, VFs[i]);
      });

      ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[i];
      unsigned ClassID =
          TTI.getRegisterClassForType(VF.isVector(), Inst->getType());
      Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
    }

    LLVM_DEBUG({
      dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
      dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
             << " item\n";
      for (const auto &pair : MaxUsages[i]) {
        dbgs() << "LV(REG): RegisterClass: "
               << TTI.getRegisterClassName(pair.first) << ", " << pair.second
               << " registers\n";
      }
      dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
             << " item\n";
      for (const auto &pair : Invariant) {
        dbgs() << "LV(REG): RegisterClass: "
               << TTI.getRegisterClassName(pair.first) << ", " << pair.second
               << " registers\n";
      }
    });

    RU.LoopInvariantRegs = Invariant;
    RU.MaxLocalUsers = MaxUsages[i];
    RUs[i] = RU;
  }

  return RUs;
}

bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
                                                           ElementCount VF) {
  // TODO: Cost model for emulated masked load/store is completely
  // broken. This hack guides the cost model to use an artificially
  // high enough value to practically disable vectorization with such
  // operations, except where previously deployed legality hack allowed
  // using very low cost values. This is to avoid regressions coming simply
  // from moving "masked load/store" check from legality to cost model.
  // Masked Load/Gather emulation was previously never allowed.
  // Limited number of Masked Store/Scatter emulation was allowed.
  assert((isPredicatedInst(I)) &&
         "Expecting a scalar emulated instruction");
  return isa<LoadInst>(I) ||
         (isa<StoreInst>(I) &&
          NumPredStores > NumberOfStoresToPredicate);
}

void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
  // If we aren't vectorizing the loop, or if we've already collected the
  // instructions to scalarize, there's nothing to do. Collection may already
  // have occurred if we have a user-selected VF and are now computing the
  // expected cost for interleaving.
  if (VF.isScalar() || VF.isZero() ||
      InstsToScalarize.find(VF) != InstsToScalarize.end())
    return;

  // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
  // not profitable to scalarize any instructions, the presence of VF in the
  // map will indicate that we've analyzed it already.
  ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];

  PredicatedBBsAfterVectorization[VF].clear();

  // Find all the instructions that are scalar with predication in the loop and
  // determine if it would be better to not if-convert the blocks they are in.
  // If so, we also record the instructions to scalarize.
  for (BasicBlock *BB : TheLoop->blocks()) {
    if (!blockNeedsPredicationForAnyReason(BB))
      continue;
    for (Instruction &I : *BB)
      if (isScalarWithPredication(&I, VF)) {
        ScalarCostsTy ScalarCosts;
        // Do not apply discount if scalable, because that would lead to
        // invalid scalarization costs.
        // Do not apply discount logic if hacked cost is needed
        // for emulated masked memrefs.
        if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
            computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
          ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
        // Remember that BB will remain after vectorization.
        PredicatedBBsAfterVectorization[VF].insert(BB);
      }
  }
}

InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
    Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
  assert(!isUniformAfterVectorization(PredInst, VF) &&
         "Instruction marked uniform-after-vectorization will be predicated");

  // Initialize the discount to zero, meaning that the scalar version and the
  // vector version cost the same.
  InstructionCost Discount = 0;

  // Holds instructions to analyze. The instructions we visit are mapped in
  // ScalarCosts. Those instructions are the ones that would be scalarized if
  // we find that the scalar version costs less.
  SmallVector<Instruction *, 8> Worklist;

  // Returns true if the given instruction can be scalarized.
  auto canBeScalarized = [&](Instruction *I) -> bool {
    // We only attempt to scalarize instructions forming a single-use chain
    // from the original predicated block that would otherwise be vectorized.
    // Although not strictly necessary, we give up on instructions we know will
    // already be scalar to avoid traversing chains that are unlikely to be
    // beneficial.
    if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
        isScalarAfterVectorization(I, VF))
      return false;

    // If the instruction is scalar with predication, it will be analyzed
    // separately. We ignore it within the context of PredInst.
    if (isScalarWithPredication(I, VF))
      return false;

    // If any of the instruction's operands are uniform after vectorization,
    // the instruction cannot be scalarized. This prevents, for example, a
    // masked load from being scalarized.
    //
    // We assume we will only emit a value for lane zero of an instruction
    // marked uniform after vectorization, rather than VF identical values.
    // Thus, if we scalarize an instruction that uses a uniform, we would
    // create uses of values corresponding to the lanes we aren't emitting code
    // for. This behavior can be changed by allowing getScalarValue to clone
    // the lane zero values for uniforms rather than asserting.
    for (Use &U : I->operands())
      if (auto *J = dyn_cast<Instruction>(U.get()))
        if (isUniformAfterVectorization(J, VF))
          return false;

    // Otherwise, we can scalarize the instruction.
    return true;
  };

  // Compute the expected cost discount from scalarizing the entire expression
  // feeding the predicated instruction. We currently only consider expressions
  // that are single-use instruction chains.
  Worklist.push_back(PredInst);
  while (!Worklist.empty()) {
    Instruction *I = Worklist.pop_back_val();

    // If we've already analyzed the instruction, there's nothing to do.
    if (ScalarCosts.find(I) != ScalarCosts.end())
      continue;

    // Compute the cost of the vector instruction. Note that this cost already
    // includes the scalarization overhead of the predicated instruction.
    InstructionCost VectorCost = getInstructionCost(I, VF).first;

    // Compute the cost of the scalarized instruction. This cost is the cost of
    // the instruction as if it wasn't if-converted and instead remained in the
    // predicated block. We will scale this cost by block probability after
    // computing the scalarization overhead.
    InstructionCost ScalarCost =
        VF.getFixedValue() *
        getInstructionCost(I, ElementCount::getFixed(1)).first;

    // Compute the scalarization overhead of needed insertelement instructions
    // and phi nodes.
    TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
    if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
      ScalarCost += TTI.getScalarizationOverhead(
          cast<VectorType>(ToVectorTy(I->getType(), VF)),
          APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true,
          /*Extract*/ false, CostKind);
      ScalarCost +=
          VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
    }

    // Compute the scalarization overhead of needed extractelement
    // instructions. For each of the instruction's operands, if the operand can
    // be scalarized, add it to the worklist; otherwise, account for the
    // overhead.
    for (Use &U : I->operands())
      if (auto *J = dyn_cast<Instruction>(U.get())) {
        assert(VectorType::isValidElementType(J->getType()) &&
               "Instruction has non-scalar type");
        if (canBeScalarized(J))
          Worklist.push_back(J);
        else if (needsExtract(J, VF)) {
          ScalarCost += TTI.getScalarizationOverhead(
              cast<VectorType>(ToVectorTy(J->getType(), VF)),
              APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
              /*Extract*/ true, CostKind);
        }
      }

    // Scale the total scalar cost by block probability.
    ScalarCost /= getReciprocalPredBlockProb();

    // Compute the discount. A non-negative discount means the vector version
    // of the instruction costs more, and scalarizing would be beneficial.
    Discount += VectorCost - ScalarCost;
    ScalarCosts[I] = ScalarCost;
  }

  return Discount;
}

LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::expectedCost(
    ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
  VectorizationCostTy Cost;

  // For each block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    VectorizationCostTy BlockCost;

    // For each instruction in the old loop.
    for (Instruction &I : BB->instructionsWithoutDebug()) {
      // Skip ignored values.
      if (ValuesToIgnore.count(&I) ||
          (VF.isVector() && VecValuesToIgnore.count(&I)))
        continue;

      VectorizationCostTy C = getInstructionCost(&I, VF);

      // Check if we should override the cost.
      if (C.first.isValid() &&
          ForceTargetInstructionCost.getNumOccurrences() > 0)
        C.first = InstructionCost(ForceTargetInstructionCost);

      // Keep a list of instructions with invalid costs.
      if (Invalid && !C.first.isValid())
        Invalid->emplace_back(&I, VF);

      BlockCost.first += C.first;
      BlockCost.second |= C.second;
      LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
                        << " for VF " << VF << " For instruction: " << I
                        << '\n');
    }

    // If we are vectorizing a predicated block, it will have been
    // if-converted. This means that the block's instructions (aside from
    // stores and instructions that may divide by zero) will now be
    // unconditionally executed. For the scalar case, we may not always execute
    // the predicated block, if it is an if-else block. Thus, scale the block's
    // cost by the probability of executing it. blockNeedsPredication from
    // Legal is used so as to not include all blocks in tail folded loops.
    if (VF.isScalar() && Legal->blockNeedsPredication(BB))
      BlockCost.first /= getReciprocalPredBlockProb();

    Cost.first += BlockCost.first;
    Cost.second |= BlockCost.second;
  }

  return Cost;
}

/// Gets Address Access SCEV after verifying that the access pattern
/// is loop invariant except the induction variable dependence.
///
/// This SCEV can be sent to the Target in order to estimate the address
/// calculation cost.
static const SCEV *getAddressAccessSCEV(
              Value *Ptr,
              LoopVectorizationLegality *Legal,
              PredicatedScalarEvolution &PSE,
              const Loop *TheLoop) {

  auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
  if (!Gep)
    return nullptr;

  // We are looking for a gep with all loop invariant indices except for one
  // which should be an induction variable.
  auto SE = PSE.getSE();
  unsigned NumOperands = Gep->getNumOperands();
  for (unsigned i = 1; i < NumOperands; ++i) {
    Value *Opd = Gep->getOperand(i);
    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
        !Legal->isInductionVariable(Opd))
      return nullptr;
  }

  // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
  return PSE.getSCEV(Ptr);
}

static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
  return Legal->hasStride(I->getOperand(0)) ||
         Legal->hasStride(I->getOperand(1));
}

InstructionCost
LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
                                                        ElementCount VF) {
  assert(VF.isVector() &&
         "Scalarization cost of instruction implies vectorization.");
  if (VF.isScalable())
    return InstructionCost::getInvalid();

  Type *ValTy = getLoadStoreType(I);
  auto SE = PSE.getSE();

  unsigned AS = getLoadStoreAddressSpace(I);
  Value *Ptr = getLoadStorePointerOperand(I);
  Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
  // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
  //       that it is being called from this specific place.

  // Figure out whether the access is strided and get the stride value
  // if it's known in compile time
  const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);

  // Get the cost of the scalar memory instruction and address computation.
  InstructionCost Cost =
      VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);

  // Don't pass *I here, since it is scalar but will actually be part of a
  // vectorized loop where the user of it is a vectorized instruction.
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  const Align Alignment = getLoadStoreAlignment(I);
  Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(),
                                                      ValTy->getScalarType(),
                                                      Alignment, AS, CostKind);

  // Get the overhead of the extractelement and insertelement instructions
  // we might create due to scalarization.
  Cost += getScalarizationOverhead(I, VF, CostKind);

  // If we have a predicated load/store, it will need extra i1 extracts and
  // conditional branches, but may not be executed for each vector lane. Scale
  // the cost by the probability of executing the predicated block.
  if (isPredicatedInst(I)) {
    Cost /= getReciprocalPredBlockProb();

    // Add the cost of an i1 extract and a branch
    auto *Vec_i1Ty =
        VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
    Cost += TTI.getScalarizationOverhead(
        Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
        /*Insert=*/false, /*Extract=*/true, CostKind);
    Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);

    if (useEmulatedMaskMemRefHack(I, VF))
      // Artificially setting to a high enough value to practically disable
      // vectorization with such operations.
      Cost = 3000000;
  }

  return Cost;
}

InstructionCost
LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
                                                    ElementCount VF) {
  Type *ValTy = getLoadStoreType(I);
  auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
  Value *Ptr = getLoadStorePointerOperand(I);
  unsigned AS = getLoadStoreAddressSpace(I);
  int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
  enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
         "Stride should be 1 or -1 for consecutive memory access");
  const Align Alignment = getLoadStoreAlignment(I);
  InstructionCost Cost = 0;
  if (Legal->isMaskRequired(I)) {
    Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
                                      CostKind);
  } else {
    TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
                                CostKind, OpInfo, I);
  }

  bool Reverse = ConsecutiveStride < 0;
  if (Reverse)
    Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
                               std::nullopt, CostKind, 0);
  return Cost;
}

InstructionCost
LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
                                                ElementCount VF) {
  assert(Legal->isUniformMemOp(*I));

  Type *ValTy = getLoadStoreType(I);
  auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
  const Align Alignment = getLoadStoreAlignment(I);
  unsigned AS = getLoadStoreAddressSpace(I);
  enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  if (isa<LoadInst>(I)) {
    return TTI.getAddressComputationCost(ValTy) +
           TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
                               CostKind) +
           TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
  }
  StoreInst *SI = cast<StoreInst>(I);

  bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
  return TTI.getAddressComputationCost(ValTy) +
         TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
                             CostKind) +
         (isLoopInvariantStoreValue
              ? 0
              : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
                                       CostKind, VF.getKnownMinValue() - 1));
}

InstructionCost
LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
                                                 ElementCount VF) {
  Type *ValTy = getLoadStoreType(I);
  auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
  const Align Alignment = getLoadStoreAlignment(I);
  const Value *Ptr = getLoadStorePointerOperand(I);

  return TTI.getAddressComputationCost(VectorTy) +
         TTI.getGatherScatterOpCost(
             I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
             TargetTransformInfo::TCK_RecipThroughput, I);
}

InstructionCost
LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
                                                   ElementCount VF) {
  // TODO: Once we have support for interleaving with scalable vectors
  // we can calculate the cost properly here.
  if (VF.isScalable())
    return InstructionCost::getInvalid();

  Type *ValTy = getLoadStoreType(I);
  auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
  unsigned AS = getLoadStoreAddressSpace(I);
  enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  auto Group = getInterleavedAccessGroup(I);
  assert(Group && "Fail to get an interleaved access group.");

  unsigned InterleaveFactor = Group->getFactor();
  auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);

  // Holds the indices of existing members in the interleaved group.
  SmallVector<unsigned, 4> Indices;
  for (unsigned IF = 0; IF < InterleaveFactor; IF++)
    if (Group->getMember(IF))
      Indices.push_back(IF);

  // Calculate the cost of the whole interleaved group.
  bool UseMaskForGaps =
      (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
      (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
  InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
      I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
      AS, CostKind, Legal->isMaskRequired(I), UseMaskForGaps);

  if (Group->isReverse()) {
    // TODO: Add support for reversed masked interleaved access.
    assert(!Legal->isMaskRequired(I) &&
           "Reverse masked interleaved access not supported.");
    Cost += Group->getNumMembers() *
            TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
                               std::nullopt, CostKind, 0);
  }
  return Cost;
}

std::optional<InstructionCost>
LoopVectorizationCostModel::getReductionPatternCost(
    Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
  using namespace llvm::PatternMatch;
  // Early exit for no inloop reductions
  if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
    return std::nullopt;
  auto *VectorTy = cast<VectorType>(Ty);

  // We are looking for a pattern of, and finding the minimal acceptable cost:
  //  reduce(mul(ext(A), ext(B))) or
  //  reduce(mul(A, B)) or
  //  reduce(ext(A)) or
  //  reduce(A).
  // The basic idea is that we walk down the tree to do that, finding the root
  // reduction instruction in InLoopReductionImmediateChains. From there we find
  // the pattern of mul/ext and test the cost of the entire pattern vs the cost
  // of the components. If the reduction cost is lower then we return it for the
  // reduction instruction and 0 for the other instructions in the pattern. If
  // it is not we return an invalid cost specifying the orignal cost method
  // should be used.
  Instruction *RetI = I;
  if (match(RetI, m_ZExtOrSExt(m_Value()))) {
    if (!RetI->hasOneUser())
      return std::nullopt;
    RetI = RetI->user_back();
  }

  if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
      RetI->user_back()->getOpcode() == Instruction::Add) {
    RetI = RetI->user_back();
  }

  // Test if the found instruction is a reduction, and if not return an invalid
  // cost specifying the parent to use the original cost modelling.
  if (!InLoopReductionImmediateChains.count(RetI))
    return std::nullopt;

  // Find the reduction this chain is a part of and calculate the basic cost of
  // the reduction on its own.
  Instruction *LastChain = InLoopReductionImmediateChains[RetI];
  Instruction *ReductionPhi = LastChain;
  while (!isa<PHINode>(ReductionPhi))
    ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];

  const RecurrenceDescriptor &RdxDesc =
      Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;

  InstructionCost BaseCost = TTI.getArithmeticReductionCost(
      RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);

  // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
  // normal fmul instruction to the cost of the fadd reduction.
  if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
    BaseCost +=
        TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);

  // If we're using ordered reductions then we can just return the base cost
  // here, since getArithmeticReductionCost calculates the full ordered
  // reduction cost when FP reassociation is not allowed.
  if (useOrderedReductions(RdxDesc))
    return BaseCost;

  // Get the operand that was not the reduction chain and match it to one of the
  // patterns, returning the better cost if it is found.
  Instruction *RedOp = RetI->getOperand(1) == LastChain
                           ? dyn_cast<Instruction>(RetI->getOperand(0))
                           : dyn_cast<Instruction>(RetI->getOperand(1));

  VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);

  Instruction *Op0, *Op1;
  if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
      match(RedOp,
            m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
      match(Op0, m_ZExtOrSExt(m_Value())) &&
      Op0->getOpcode() == Op1->getOpcode() &&
      Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
      !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
      (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {

    // Matched reduce.add(ext(mul(ext(A), ext(B)))
    // Note that the extend opcodes need to all match, or if A==B they will have
    // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
    // which is equally fine.
    bool IsUnsigned = isa<ZExtInst>(Op0);
    auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
    auto *MulType = VectorType::get(Op0->getType(), VectorTy);

    InstructionCost ExtCost =
        TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
                             TTI::CastContextHint::None, CostKind, Op0);
    InstructionCost MulCost =
        TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
    InstructionCost Ext2Cost =
        TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
                             TTI::CastContextHint::None, CostKind, RedOp);

    InstructionCost RedCost = TTI.getMulAccReductionCost(
        IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);

    if (RedCost.isValid() &&
        RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
      return I == RetI ? RedCost : 0;
  } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
             !TheLoop->isLoopInvariant(RedOp)) {
    // Matched reduce(ext(A))
    bool IsUnsigned = isa<ZExtInst>(RedOp);
    auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
    InstructionCost RedCost = TTI.getExtendedReductionCost(
        RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
        RdxDesc.getFastMathFlags(), CostKind);

    InstructionCost ExtCost =
        TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
                             TTI::CastContextHint::None, CostKind, RedOp);
    if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
      return I == RetI ? RedCost : 0;
  } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
             match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
    if (match(Op0, m_ZExtOrSExt(m_Value())) &&
        Op0->getOpcode() == Op1->getOpcode() &&
        !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
      bool IsUnsigned = isa<ZExtInst>(Op0);
      Type *Op0Ty = Op0->getOperand(0)->getType();
      Type *Op1Ty = Op1->getOperand(0)->getType();
      Type *LargestOpTy =
          Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
                                                                    : Op0Ty;
      auto *ExtType = VectorType::get(LargestOpTy, VectorTy);

      // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
      // different sizes. We take the largest type as the ext to reduce, and add
      // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
      InstructionCost ExtCost0 = TTI.getCastInstrCost(
          Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
          TTI::CastContextHint::None, CostKind, Op0);
      InstructionCost ExtCost1 = TTI.getCastInstrCost(
          Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
          TTI::CastContextHint::None, CostKind, Op1);
      InstructionCost MulCost =
          TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);

      InstructionCost RedCost = TTI.getMulAccReductionCost(
          IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
      InstructionCost ExtraExtCost = 0;
      if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
        Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
        ExtraExtCost = TTI.getCastInstrCost(
            ExtraExtOp->getOpcode(), ExtType,
            VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
            TTI::CastContextHint::None, CostKind, ExtraExtOp);
      }

      if (RedCost.isValid() &&
          (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
        return I == RetI ? RedCost : 0;
    } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
      // Matched reduce.add(mul())
      InstructionCost MulCost =
          TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);

      InstructionCost RedCost = TTI.getMulAccReductionCost(
          true, RdxDesc.getRecurrenceType(), VectorTy, CostKind);

      if (RedCost.isValid() && RedCost < MulCost + BaseCost)
        return I == RetI ? RedCost : 0;
    }
  }

  return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
}

InstructionCost
LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
                                                     ElementCount VF) {
  // Calculate scalar cost only. Vectorization cost should be ready at this
  // moment.
  if (VF.isScalar()) {
    Type *ValTy = getLoadStoreType(I);
    const Align Alignment = getLoadStoreAlignment(I);
    unsigned AS = getLoadStoreAddressSpace(I);

    TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
    return TTI.getAddressComputationCost(ValTy) +
           TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
                               TTI::TCK_RecipThroughput, OpInfo, I);
  }
  return getWideningCost(I, VF);
}

LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::getInstructionCost(Instruction *I,
                                               ElementCount VF) {
  // If we know that this instruction will remain uniform, check the cost of
  // the scalar version.
  if (isUniformAfterVectorization(I, VF))
    VF = ElementCount::getFixed(1);

  if (VF.isVector() && isProfitableToScalarize(I, VF))
    return VectorizationCostTy(InstsToScalarize[VF][I], false);

  // Forced scalars do not have any scalarization overhead.
  auto ForcedScalar = ForcedScalars.find(VF);
  if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
    auto InstSet = ForcedScalar->second;
    if (InstSet.count(I))
      return VectorizationCostTy(
          (getInstructionCost(I, ElementCount::getFixed(1)).first *
           VF.getKnownMinValue()),
          false);
  }

  Type *VectorTy;
  InstructionCost C = getInstructionCost(I, VF, VectorTy);

  bool TypeNotScalarized = false;
  if (VF.isVector() && VectorTy->isVectorTy()) {
    if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) {
      if (VF.isScalable())
        // <vscale x 1 x iN> is assumed to be profitable over iN because
        // scalable registers are a distinct register class from scalar ones.
        // If we ever find a target which wants to lower scalable vectors
        // back to scalars, we'll need to update this code to explicitly
        // ask TTI about the register class uses for each part.
        TypeNotScalarized = NumParts <= VF.getKnownMinValue();
      else
        TypeNotScalarized = NumParts < VF.getKnownMinValue();
    } else
      C = InstructionCost::getInvalid();
  }
  return VectorizationCostTy(C, TypeNotScalarized);
}

InstructionCost LoopVectorizationCostModel::getScalarizationOverhead(
    Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const {

  // There is no mechanism yet to create a scalable scalarization loop,
  // so this is currently Invalid.
  if (VF.isScalable())
    return InstructionCost::getInvalid();

  if (VF.isScalar())
    return 0;

  InstructionCost Cost = 0;
  Type *RetTy = ToVectorTy(I->getType(), VF);
  if (!RetTy->isVoidTy() &&
      (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
    Cost += TTI.getScalarizationOverhead(
        cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()),
        /*Insert*/ true,
        /*Extract*/ false, CostKind);

  // Some targets keep addresses scalar.
  if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
    return Cost;

  // Some targets support efficient element stores.
  if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
    return Cost;

  // Collect operands to consider.
  CallInst *CI = dyn_cast<CallInst>(I);
  Instruction::op_range Ops = CI ? CI->args() : I->operands();

  // Skip operands that do not require extraction/scalarization and do not incur
  // any overhead.
  SmallVector<Type *> Tys;
  for (auto *V : filterExtractingOperands(Ops, VF))
    Tys.push_back(MaybeVectorizeType(V->getType(), VF));
  return Cost + TTI.getOperandsScalarizationOverhead(
                    filterExtractingOperands(Ops, VF), Tys, CostKind);
}

void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
  if (VF.isScalar())
    return;
  NumPredStores = 0;
  for (BasicBlock *BB : TheLoop->blocks()) {
    // For each instruction in the old loop.
    for (Instruction &I : *BB) {
      Value *Ptr =  getLoadStorePointerOperand(&I);
      if (!Ptr)
        continue;

      // TODO: We should generate better code and update the cost model for
      // predicated uniform stores. Today they are treated as any other
      // predicated store (see added test cases in
      // invariant-store-vectorization.ll).
      if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
        NumPredStores++;

      if (Legal->isUniformMemOp(I)) {
        auto isLegalToScalarize = [&]() {
          if (!VF.isScalable())
            // Scalarization of fixed length vectors "just works".
            return true;

          // We have dedicated lowering for unpredicated uniform loads and
          // stores.  Note that even with tail folding we know that at least
          // one lane is active (i.e. generalized predication is not possible
          // here), and the logic below depends on this fact.
          if (!foldTailByMasking())
            return true;

          // For scalable vectors, a uniform memop load is always
          // uniform-by-parts  and we know how to scalarize that.
          if (isa<LoadInst>(I))
            return true;

          // A uniform store isn't neccessarily uniform-by-part
          // and we can't assume scalarization.
          auto &SI = cast<StoreInst>(I);
          return TheLoop->isLoopInvariant(SI.getValueOperand());
        };

        const InstructionCost GatherScatterCost =
          isLegalGatherOrScatter(&I, VF) ?
          getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();

        // Load: Scalar load + broadcast
        // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
        // FIXME: This cost is a significant under-estimate for tail folded
        // memory ops.
        const InstructionCost ScalarizationCost = isLegalToScalarize() ?
          getUniformMemOpCost(&I, VF) : InstructionCost::getInvalid();

        // Choose better solution for the current VF,  Note that Invalid
        // costs compare as maximumal large.  If both are invalid, we get
        // scalable invalid which signals a failure and a vectorization abort.
        if (GatherScatterCost < ScalarizationCost)
          setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
        else
          setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
        continue;
      }

      // We assume that widening is the best solution when possible.
      if (memoryInstructionCanBeWidened(&I, VF)) {
        InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
        int ConsecutiveStride = Legal->isConsecutivePtr(
            getLoadStoreType(&I), getLoadStorePointerOperand(&I));
        assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
               "Expected consecutive stride.");
        InstWidening Decision =
            ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
        setWideningDecision(&I, VF, Decision, Cost);
        continue;
      }

      // Choose between Interleaving, Gather/Scatter or Scalarization.
      InstructionCost InterleaveCost = InstructionCost::getInvalid();
      unsigned NumAccesses = 1;
      if (isAccessInterleaved(&I)) {
        auto Group = getInterleavedAccessGroup(&I);
        assert(Group && "Fail to get an interleaved access group.");

        // Make one decision for the whole group.
        if (getWideningDecision(&I, VF) != CM_Unknown)
          continue;

        NumAccesses = Group->getNumMembers();
        if (interleavedAccessCanBeWidened(&I, VF))
          InterleaveCost = getInterleaveGroupCost(&I, VF);
      }

      InstructionCost GatherScatterCost =
          isLegalGatherOrScatter(&I, VF)
              ? getGatherScatterCost(&I, VF) * NumAccesses
              : InstructionCost::getInvalid();

      InstructionCost ScalarizationCost =
          getMemInstScalarizationCost(&I, VF) * NumAccesses;

      // Choose better solution for the current VF,
      // write down this decision and use it during vectorization.
      InstructionCost Cost;
      InstWidening Decision;
      if (InterleaveCost <= GatherScatterCost &&
          InterleaveCost < ScalarizationCost) {
        Decision = CM_Interleave;
        Cost = InterleaveCost;
      } else if (GatherScatterCost < ScalarizationCost) {
        Decision = CM_GatherScatter;
        Cost = GatherScatterCost;
      } else {
        Decision = CM_Scalarize;
        Cost = ScalarizationCost;
      }
      // If the instructions belongs to an interleave group, the whole group
      // receives the same decision. The whole group receives the cost, but
      // the cost will actually be assigned to one instruction.
      if (auto Group = getInterleavedAccessGroup(&I))
        setWideningDecision(Group, VF, Decision, Cost);
      else
        setWideningDecision(&I, VF, Decision, Cost);
    }
  }

  // Make sure that any load of address and any other address computation
  // remains scalar unless there is gather/scatter support. This avoids
  // inevitable extracts into address registers, and also has the benefit of
  // activating LSR more, since that pass can't optimize vectorized
  // addresses.
  if (TTI.prefersVectorizedAddressing())
    return;

  // Start with all scalar pointer uses.
  SmallPtrSet<Instruction *, 8> AddrDefs;
  for (BasicBlock *BB : TheLoop->blocks())
    for (Instruction &I : *BB) {
      Instruction *PtrDef =
        dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
      if (PtrDef && TheLoop->contains(PtrDef) &&
          getWideningDecision(&I, VF) != CM_GatherScatter)
        AddrDefs.insert(PtrDef);
    }

  // Add all instructions used to generate the addresses.
  SmallVector<Instruction *, 4> Worklist;
  append_range(Worklist, AddrDefs);
  while (!Worklist.empty()) {
    Instruction *I = Worklist.pop_back_val();
    for (auto &Op : I->operands())
      if (auto *InstOp = dyn_cast<Instruction>(Op))
        if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
            AddrDefs.insert(InstOp).second)
          Worklist.push_back(InstOp);
  }

  for (auto *I : AddrDefs) {
    if (isa<LoadInst>(I)) {
      // Setting the desired widening decision should ideally be handled in
      // by cost functions, but since this involves the task of finding out
      // if the loaded register is involved in an address computation, it is
      // instead changed here when we know this is the case.
      InstWidening Decision = getWideningDecision(I, VF);
      if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
        // Scalarize a widened load of address.
        setWideningDecision(
            I, VF, CM_Scalarize,
            (VF.getKnownMinValue() *
             getMemoryInstructionCost(I, ElementCount::getFixed(1))));
      else if (auto Group = getInterleavedAccessGroup(I)) {
        // Scalarize an interleave group of address loads.
        for (unsigned I = 0; I < Group->getFactor(); ++I) {
          if (Instruction *Member = Group->getMember(I))
            setWideningDecision(
                Member, VF, CM_Scalarize,
                (VF.getKnownMinValue() *
                 getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
        }
      }
    } else
      // Make sure I gets scalarized and a cost estimate without
      // scalarization overhead.
      ForcedScalars[VF].insert(I);
  }
}

InstructionCost
LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
                                               Type *&VectorTy) {
  Type *RetTy = I->getType();
  if (canTruncateToMinimalBitwidth(I, VF))
    RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
  auto SE = PSE.getSE();
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  auto hasSingleCopyAfterVectorization = [this](Instruction *I,
                                                ElementCount VF) -> bool {
    if (VF.isScalar())
      return true;

    auto Scalarized = InstsToScalarize.find(VF);
    assert(Scalarized != InstsToScalarize.end() &&
           "VF not yet analyzed for scalarization profitability");
    return !Scalarized->second.count(I) &&
           llvm::all_of(I->users(), [&](User *U) {
             auto *UI = cast<Instruction>(U);
             return !Scalarized->second.count(UI);
           });
  };
  (void) hasSingleCopyAfterVectorization;

  if (isScalarAfterVectorization(I, VF)) {
    // With the exception of GEPs and PHIs, after scalarization there should
    // only be one copy of the instruction generated in the loop. This is
    // because the VF is either 1, or any instructions that need scalarizing
    // have already been dealt with by the the time we get here. As a result,
    // it means we don't have to multiply the instruction cost by VF.
    assert(I->getOpcode() == Instruction::GetElementPtr ||
           I->getOpcode() == Instruction::PHI ||
           (I->getOpcode() == Instruction::BitCast &&
            I->getType()->isPointerTy()) ||
           hasSingleCopyAfterVectorization(I, VF));
    VectorTy = RetTy;
  } else
    VectorTy = ToVectorTy(RetTy, VF);

  // TODO: We need to estimate the cost of intrinsic calls.
  switch (I->getOpcode()) {
  case Instruction::GetElementPtr:
    // We mark this instruction as zero-cost because the cost of GEPs in
    // vectorized code depends on whether the corresponding memory instruction
    // is scalarized or not. Therefore, we handle GEPs with the memory
    // instruction cost.
    return 0;
  case Instruction::Br: {
    // In cases of scalarized and predicated instructions, there will be VF
    // predicated blocks in the vectorized loop. Each branch around these
    // blocks requires also an extract of its vector compare i1 element.
    bool ScalarPredicatedBB = false;
    BranchInst *BI = cast<BranchInst>(I);
    if (VF.isVector() && BI->isConditional() &&
        (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
         PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))))
      ScalarPredicatedBB = true;

    if (ScalarPredicatedBB) {
      // Not possible to scalarize scalable vector with predicated instructions.
      if (VF.isScalable())
        return InstructionCost::getInvalid();
      // Return cost for branches around scalarized and predicated blocks.
      auto *Vec_i1Ty =
          VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
      return (
          TTI.getScalarizationOverhead(
              Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()),
              /*Insert*/ false, /*Extract*/ true, CostKind) +
          (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
    } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
      // The back-edge branch will remain, as will all scalar branches.
      return TTI.getCFInstrCost(Instruction::Br, CostKind);
    else
      // This branch will be eliminated by if-conversion.
      return 0;
    // Note: We currently assume zero cost for an unconditional branch inside
    // a predicated block since it will become a fall-through, although we
    // may decide in the future to call TTI for all branches.
  }
  case Instruction::PHI: {
    auto *Phi = cast<PHINode>(I);

    // First-order recurrences are replaced by vector shuffles inside the loop.
    if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
      SmallVector<int> Mask(VF.getKnownMinValue());
      std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
      return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
                                cast<VectorType>(VectorTy), Mask, CostKind,
                                VF.getKnownMinValue() - 1);
    }

    // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
    // converted into select instructions. We require N - 1 selects per phi
    // node, where N is the number of incoming values.
    if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
      return (Phi->getNumIncomingValues() - 1) *
             TTI.getCmpSelInstrCost(
                 Instruction::Select, ToVectorTy(Phi->getType(), VF),
                 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
                 CmpInst::BAD_ICMP_PREDICATE, CostKind);

    return TTI.getCFInstrCost(Instruction::PHI, CostKind);
  }
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
    if (VF.isVector() && isPredicatedInst(I)) {
      const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
      return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
        ScalarCost : SafeDivisorCost;
    }
    // We've proven all lanes safe to speculate, fall through.
    [[fallthrough]];
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    // Since we will replace the stride by 1 the multiplication should go away.
    if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
      return 0;

    // Detect reduction patterns
    if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
      return *RedCost;

    // Certain instructions can be cheaper to vectorize if they have a constant
    // second vector operand. One example of this are shifts on x86.
    Value *Op2 = I->getOperand(1);
    auto Op2Info = TTI.getOperandInfo(Op2);
    if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
      Op2Info.Kind = TargetTransformInfo::OK_UniformValue;

    SmallVector<const Value *, 4> Operands(I->operand_values());
    return TTI.getArithmeticInstrCost(
        I->getOpcode(), VectorTy, CostKind,
        {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
        Op2Info, Operands, I);
  }
  case Instruction::FNeg: {
    return TTI.getArithmeticInstrCost(
        I->getOpcode(), VectorTy, CostKind,
        {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
        {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
        I->getOperand(0), I);
  }
  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));

    const Value *Op0, *Op1;
    using namespace llvm::PatternMatch;
    if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
                        match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
      // select x, y, false --> x & y
      // select x, true, y --> x | y
      const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
      const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
      assert(Op0->getType()->getScalarSizeInBits() == 1 &&
              Op1->getType()->getScalarSizeInBits() == 1);

      SmallVector<const Value *, 2> Operands{Op0, Op1};
      return TTI.getArithmeticInstrCost(
          match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
          CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I);
    }

    Type *CondTy = SI->getCondition()->getType();
    if (!ScalarCond)
      CondTy = VectorType::get(CondTy, VF);

    CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
    if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
      Pred = Cmp->getPredicate();
    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
                                  CostKind, I);
  }
  case Instruction::ICmp:
  case Instruction::FCmp: {
    Type *ValTy = I->getOperand(0)->getType();
    Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
    if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
      ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
    VectorTy = ToVectorTy(ValTy, VF);
    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
                                  cast<CmpInst>(I)->getPredicate(), CostKind,
                                  I);
  }
  case Instruction::Store:
  case Instruction::Load: {
    ElementCount Width = VF;
    if (Width.isVector()) {
      InstWidening Decision = getWideningDecision(I, Width);
      assert(Decision != CM_Unknown &&
             "CM decision should be taken at this point");
      if (getWideningCost(I, VF) == InstructionCost::getInvalid())
        return InstructionCost::getInvalid();
      if (Decision == CM_Scalarize)
        Width = ElementCount::getFixed(1);
    }
    VectorTy = ToVectorTy(getLoadStoreType(I), Width);
    return getMemoryInstructionCost(I, VF);
  }
  case Instruction::BitCast:
    if (I->getType()->isPointerTy())
      return 0;
    [[fallthrough]];
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc: {
    // Computes the CastContextHint from a Load/Store instruction.
    auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
      assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
             "Expected a load or a store!");

      if (VF.isScalar() || !TheLoop->contains(I))
        return TTI::CastContextHint::Normal;

      switch (getWideningDecision(I, VF)) {
      case LoopVectorizationCostModel::CM_GatherScatter:
        return TTI::CastContextHint::GatherScatter;
      case LoopVectorizationCostModel::CM_Interleave:
        return TTI::CastContextHint::Interleave;
      case LoopVectorizationCostModel::CM_Scalarize:
      case LoopVectorizationCostModel::CM_Widen:
        return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
                                        : TTI::CastContextHint::Normal;
      case LoopVectorizationCostModel::CM_Widen_Reverse:
        return TTI::CastContextHint::Reversed;
      case LoopVectorizationCostModel::CM_Unknown:
        llvm_unreachable("Instr did not go through cost modelling?");
      }

      llvm_unreachable("Unhandled case!");
    };

    unsigned Opcode = I->getOpcode();
    TTI::CastContextHint CCH = TTI::CastContextHint::None;
    // For Trunc, the context is the only user, which must be a StoreInst.
    if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
      if (I->hasOneUse())
        if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
          CCH = ComputeCCH(Store);
    }
    // For Z/Sext, the context is the operand, which must be a LoadInst.
    else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
             Opcode == Instruction::FPExt) {
      if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
        CCH = ComputeCCH(Load);
    }

    // We optimize the truncation of induction variables having constant
    // integer steps. The cost of these truncations is the same as the scalar
    // operation.
    if (isOptimizableIVTruncate(I, VF)) {
      auto *Trunc = cast<TruncInst>(I);
      return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
                                  Trunc->getSrcTy(), CCH, CostKind, Trunc);
    }

    // Detect reduction patterns
    if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
      return *RedCost;

    Type *SrcScalarTy = I->getOperand(0)->getType();
    Type *SrcVecTy =
        VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
    if (canTruncateToMinimalBitwidth(I, VF)) {
      // This cast is going to be shrunk. This may remove the cast or it might
      // turn it into slightly different cast. For example, if MinBW == 16,
      // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
      //
      // Calculate the modified src and dest types.
      Type *MinVecTy = VectorTy;
      if (Opcode == Instruction::Trunc) {
        SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
        VectorTy =
            largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
      } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
        SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
        VectorTy =
            smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
      }
    }

    return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
  }
  case Instruction::Call: {
    if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
      if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
        return *RedCost;
    bool NeedToScalarize;
    CallInst *CI = cast<CallInst>(I);
    InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
    if (getVectorIntrinsicIDForCall(CI, TLI)) {
      InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
      return std::min(CallCost, IntrinsicCost);
    }
    return CallCost;
  }
  case Instruction::ExtractValue:
    return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
  case Instruction::Alloca:
    // We cannot easily widen alloca to a scalable alloca, as
    // the result would need to be a vector of pointers.
    if (VF.isScalable())
      return InstructionCost::getInvalid();
    [[fallthrough]];
  default:
    // This opcode is unknown. Assume that it is the same as 'mul'.
    return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
  } // end of switch.
}

char LoopVectorize::ID = 0;

static const char lv_name[] = "Loop Vectorization";

INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)

namespace llvm {

Pass *createLoopVectorizePass() { return new LoopVectorize(); }

Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
                              bool VectorizeOnlyWhenForced) {
  return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
}

} // end namespace llvm

void LoopVectorizationCostModel::collectValuesToIgnore() {
  // Ignore ephemeral values.
  CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);

  // Find all stores to invariant variables. Since they are going to sink
  // outside the loop we do not need calculate cost for them.
  for (BasicBlock *BB : TheLoop->blocks())
    for (Instruction &I : *BB) {
      StoreInst *SI;
      if ((SI = dyn_cast<StoreInst>(&I)) &&
          Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
        ValuesToIgnore.insert(&I);
    }

  // Ignore type-promoting instructions we identified during reduction
  // detection.
  for (const auto &Reduction : Legal->getReductionVars()) {
    const RecurrenceDescriptor &RedDes = Reduction.second;
    const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
    VecValuesToIgnore.insert(Casts.begin(), Casts.end());
  }
  // Ignore type-casting instructions we identified during induction
  // detection.
  for (const auto &Induction : Legal->getInductionVars()) {
    const InductionDescriptor &IndDes = Induction.second;
    const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
    VecValuesToIgnore.insert(Casts.begin(), Casts.end());
  }
}

void LoopVectorizationCostModel::collectInLoopReductions() {
  for (const auto &Reduction : Legal->getReductionVars()) {
    PHINode *Phi = Reduction.first;
    const RecurrenceDescriptor &RdxDesc = Reduction.second;

    // We don't collect reductions that are type promoted (yet).
    if (RdxDesc.getRecurrenceType() != Phi->getType())
      continue;

    // If the target would prefer this reduction to happen "in-loop", then we
    // want to record it as such.
    unsigned Opcode = RdxDesc.getOpcode();
    if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
        !TTI.preferInLoopReduction(Opcode, Phi->getType(),
                                   TargetTransformInfo::ReductionFlags()))
      continue;

    // Check that we can correctly put the reductions into the loop, by
    // finding the chain of operations that leads from the phi to the loop
    // exit value.
    SmallVector<Instruction *, 4> ReductionOperations =
        RdxDesc.getReductionOpChain(Phi, TheLoop);
    bool InLoop = !ReductionOperations.empty();
    if (InLoop) {
      InLoopReductionChains[Phi] = ReductionOperations;
      // Add the elements to InLoopReductionImmediateChains for cost modelling.
      Instruction *LastChain = Phi;
      for (auto *I : ReductionOperations) {
        InLoopReductionImmediateChains[I] = LastChain;
        LastChain = I;
      }
    }
    LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
                      << " reduction for phi: " << *Phi << "\n");
  }
}

// TODO: we could return a pair of values that specify the max VF and
// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
// doesn't have a cost model that can choose which plan to execute if
// more than one is generated.
static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
                                 LoopVectorizationCostModel &CM) {
  unsigned WidestType;
  std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
  return WidestVectorRegBits / WidestType;
}

VectorizationFactor
LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
  assert(!UserVF.isScalable() && "scalable vectors not yet supported");
  ElementCount VF = UserVF;
  // Outer loop handling: They may require CFG and instruction level
  // transformations before even evaluating whether vectorization is profitable.
  // Since we cannot modify the incoming IR, we need to build VPlan upfront in
  // the vectorization pipeline.
  if (!OrigLoop->isInnermost()) {
    // If the user doesn't provide a vectorization factor, determine a
    // reasonable one.
    if (UserVF.isZero()) {
      VF = ElementCount::getFixed(determineVPlanVF(
          TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
              .getFixedValue(),
          CM));
      LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");

      // Make sure we have a VF > 1 for stress testing.
      if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
        LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
                          << "overriding computed VF.\n");
        VF = ElementCount::getFixed(4);
      }
    }
    assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
    assert(isPowerOf2_32(VF.getKnownMinValue()) &&
           "VF needs to be a power of two");
    LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
                      << "VF " << VF << " to build VPlans.\n");
    buildVPlans(VF, VF);

    // For VPlan build stress testing, we bail out after VPlan construction.
    if (VPlanBuildStressTest)
      return VectorizationFactor::Disabled();

    return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
  }

  LLVM_DEBUG(
      dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
                "VPlan-native path.\n");
  return VectorizationFactor::Disabled();
}

std::optional<VectorizationFactor>
LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
  assert(OrigLoop->isInnermost() && "Inner loop expected.");
  FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
  if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
    return std::nullopt;

  // Invalidate interleave groups if all blocks of loop will be predicated.
  if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
      !useMaskedInterleavedAccesses(*TTI)) {
    LLVM_DEBUG(
        dbgs()
        << "LV: Invalidate all interleaved groups due to fold-tail by masking "
           "which requires masked-interleaved support.\n");
    if (CM.InterleaveInfo.invalidateGroups())
      // Invalidating interleave groups also requires invalidating all decisions
      // based on them, which includes widening decisions and uniform and scalar
      // values.
      CM.invalidateCostModelingDecisions();
  }

  ElementCount MaxUserVF =
      UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
  bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
  if (!UserVF.isZero() && UserVFIsLegal) {
    assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
           "VF needs to be a power of two");
    // Collect the instructions (and their associated costs) that will be more
    // profitable to scalarize.
    if (CM.selectUserVectorizationFactor(UserVF)) {
      LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
      CM.collectInLoopReductions();
      buildVPlansWithVPRecipes(UserVF, UserVF);
      LLVM_DEBUG(printPlans(dbgs()));
      return {{UserVF, 0, 0}};
    } else
      reportVectorizationInfo("UserVF ignored because of invalid costs.",
                              "InvalidCost", ORE, OrigLoop);
  }

  // Populate the set of Vectorization Factor Candidates.
  ElementCountSet VFCandidates;
  for (auto VF = ElementCount::getFixed(1);
       ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
    VFCandidates.insert(VF);
  for (auto VF = ElementCount::getScalable(1);
       ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
    VFCandidates.insert(VF);

  for (const auto &VF : VFCandidates) {
    // Collect Uniform and Scalar instructions after vectorization with VF.
    CM.collectUniformsAndScalars(VF);

    // Collect the instructions (and their associated costs) that will be more
    // profitable to scalarize.
    if (VF.isVector())
      CM.collectInstsToScalarize(VF);
  }

  CM.collectInLoopReductions();
  buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
  buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);

  LLVM_DEBUG(printPlans(dbgs()));
  if (!MaxFactors.hasVector())
    return VectorizationFactor::Disabled();

  // Select the optimal vectorization factor.
  VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates);
  assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.");
  return VF;
}

VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
  assert(count_if(VPlans,
                  [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
             1 &&
         "Best VF has not a single VPlan.");

  for (const VPlanPtr &Plan : VPlans) {
    if (Plan->hasVF(VF))
      return *Plan.get();
  }
  llvm_unreachable("No plan found!");
}

static void AddRuntimeUnrollDisableMetaData(Loop *L) {
  SmallVector<Metadata *, 4> MDs;
  // Reserve first location for self reference to the LoopID metadata node.
  MDs.push_back(nullptr);
  bool IsUnrollMetadata = false;
  MDNode *LoopID = L->getLoopID();
  if (LoopID) {
    // First find existing loop unrolling disable metadata.
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
      if (MD) {
        const auto *S = dyn_cast<MDString>(MD->getOperand(0));
        IsUnrollMetadata =
            S && S->getString().startswith("llvm.loop.unroll.disable");
      }
      MDs.push_back(LoopID->getOperand(i));
    }
  }

  if (!IsUnrollMetadata) {
    // Add runtime unroll disable metadata.
    LLVMContext &Context = L->getHeader()->getContext();
    SmallVector<Metadata *, 1> DisableOperands;
    DisableOperands.push_back(
        MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
    MDNode *DisableNode = MDNode::get(Context, DisableOperands);
    MDs.push_back(DisableNode);
    MDNode *NewLoopID = MDNode::get(Context, MDs);
    // Set operand 0 to refer to the loop id itself.
    NewLoopID->replaceOperandWith(0, NewLoopID);
    L->setLoopID(NewLoopID);
  }
}

void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
                                           VPlan &BestVPlan,
                                           InnerLoopVectorizer &ILV,
                                           DominatorTree *DT,
                                           bool IsEpilogueVectorization) {
  assert(BestVPlan.hasVF(BestVF) &&
         "Trying to execute plan with unsupported VF");
  assert(BestVPlan.hasUF(BestUF) &&
         "Trying to execute plan with unsupported UF");

  LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
                    << '\n');

  // Workaround!  Compute the trip count of the original loop and cache it
  // before we start modifying the CFG.  This code has a systemic problem
  // wherein it tries to run analysis over partially constructed IR; this is
  // wrong, and not simply for SCEV.  The trip count of the original loop
  // simply happens to be prone to hitting this in practice.  In theory, we
  // can hit the same issue for any SCEV, or ValueTracking query done during
  // mutation.  See PR49900.
  ILV.getOrCreateTripCount(OrigLoop->getLoopPreheader());

  if (!IsEpilogueVectorization)
    VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);

  // Perform the actual loop transformation.

  // 1. Set up the skeleton for vectorization, including vector pre-header and
  // middle block. The vector loop is created during VPlan execution.
  VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
  Value *CanonicalIVStartValue;
  std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
      ILV.createVectorizedLoopSkeleton();

  // Only use noalias metadata when using memory checks guaranteeing no overlap
  // across all iterations.
  const LoopAccessInfo *LAI = ILV.Legal->getLAI();
  if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() &&
      !LAI->getRuntimePointerChecking()->getDiffChecks()) {

    //  We currently don't use LoopVersioning for the actual loop cloning but we
    //  still use it to add the noalias metadata.
    //  TODO: Find a better way to re-use LoopVersioning functionality to add
    //        metadata.
    State.LVer = std::make_unique<LoopVersioning>(
        *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT,
        PSE.getSE());
    State.LVer->prepareNoAliasMetadata();
  }

  ILV.collectPoisonGeneratingRecipes(State);

  ILV.printDebugTracesAtStart();

  //===------------------------------------------------===//
  //
  // Notice: any optimization or new instruction that go
  // into the code below should also be implemented in
  // the cost-model.
  //
  //===------------------------------------------------===//

  // 2. Copy and widen instructions from the old loop into the new loop.
  BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
                             ILV.getOrCreateVectorTripCount(nullptr),
                             CanonicalIVStartValue, State,
                             IsEpilogueVectorization);

  BestVPlan.execute(&State);

  // Keep all loop hints from the original loop on the vector loop (we'll
  // replace the vectorizer-specific hints below).
  MDNode *OrigLoopID = OrigLoop->getLoopID();

  std::optional<MDNode *> VectorizedLoopID =
      makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
                                      LLVMLoopVectorizeFollowupVectorized});

  VPBasicBlock *HeaderVPBB =
      BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
  Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
  if (VectorizedLoopID)
    L->setLoopID(*VectorizedLoopID);
  else {
    // Keep all loop hints from the original loop on the vector loop (we'll
    // replace the vectorizer-specific hints below).
    if (MDNode *LID = OrigLoop->getLoopID())
      L->setLoopID(LID);

    LoopVectorizeHints Hints(L, true, *ORE);
    Hints.setAlreadyVectorized();
  }
  AddRuntimeUnrollDisableMetaData(L);

  // 3. Fix the vectorized code: take care of header phi's, live-outs,
  //    predication, updating analyses.
  ILV.fixVectorizedLoop(State, BestVPlan);

  ILV.printDebugTracesAtEnd();
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
  for (const auto &Plan : VPlans)
    if (PrintVPlansInDotFormat)
      Plan->printDOT(O);
    else
      Plan->print(O);
}
#endif

Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }

//===--------------------------------------------------------------------===//
// EpilogueVectorizerMainLoop
//===--------------------------------------------------------------------===//

/// This function is partially responsible for generating the control flow
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
std::pair<BasicBlock *, Value *>
EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
  createVectorLoopSkeleton("");

  // Generate the code to check the minimum iteration count of the vector
  // epilogue (see below).
  EPI.EpilogueIterationCountCheck =
      emitIterationCountCheck(LoopScalarPreHeader, true);
  EPI.EpilogueIterationCountCheck->setName("iter.check");

  // Generate the code to check any assumptions that we've made for SCEV
  // expressions.
  EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);

  // Generate the code that checks at runtime if arrays overlap. We put the
  // checks into a separate block to make the more common case of few elements
  // faster.
  EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);

  // Generate the iteration count check for the main loop, *after* the check
  // for the epilogue loop, so that the path-length is shorter for the case
  // that goes directly through the vector epilogue. The longer-path length for
  // the main loop is compensated for, by the gain from vectorizing the larger
  // trip count. Note: the branch will get updated later on when we vectorize
  // the epilogue.
  EPI.MainLoopIterationCountCheck =
      emitIterationCountCheck(LoopScalarPreHeader, false);

  // Generate the induction variable.
  EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);

  // Skip induction resume value creation here because they will be created in
  // the second pass for the scalar loop. The induction resume values for the
  // inductions in the epilogue loop are created before executing the plan for
  // the epilogue loop.

  return {completeLoopSkeleton(), nullptr};
}

void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
  LLVM_DEBUG({
    dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
           << "Main Loop VF:" << EPI.MainLoopVF
           << ", Main Loop UF:" << EPI.MainLoopUF
           << ", Epilogue Loop VF:" << EPI.EpilogueVF
           << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
  });
}

void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
  DEBUG_WITH_TYPE(VerboseDebug, {
    dbgs() << "intermediate fn:\n"
           << *OrigLoop->getHeader()->getParent() << "\n";
  });
}

BasicBlock *
EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
                                                    bool ForEpilogue) {
  assert(Bypass && "Expected valid bypass basic block.");
  ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
  unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
  Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
  // Reuse existing vector loop preheader for TC checks.
  // Note that new preheader block is generated for vector loop.
  BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
  IRBuilder<> Builder(TCCheckBlock->getTerminator());

  // Generate code to check if the loop's trip count is less than VF * UF of the
  // main vector loop.
  auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
      ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;

  Value *CheckMinIters = Builder.CreateICmp(
      P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
      "min.iters.check");

  if (!ForEpilogue)
    TCCheckBlock->setName("vector.main.loop.iter.check");

  // Create new preheader for vector loop.
  LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
                                   DT, LI, nullptr, "vector.ph");

  if (ForEpilogue) {
    assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
                                 DT->getNode(Bypass)->getIDom()) &&
           "TC check is expected to dominate Bypass");

    // Update dominator for Bypass & LoopExit.
    DT->changeImmediateDominator(Bypass, TCCheckBlock);
    if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
      // For loops with multiple exits, there's no edge from the middle block
      // to exit blocks (as the epilogue must run) and thus no need to update
      // the immediate dominator of the exit blocks.
      DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);

    LoopBypassBlocks.push_back(TCCheckBlock);

    // Save the trip count so we don't have to regenerate it in the
    // vec.epilog.iter.check. This is safe to do because the trip count
    // generated here dominates the vector epilog iter check.
    EPI.TripCount = Count;
  }

  ReplaceInstWithInst(
      TCCheckBlock->getTerminator(),
      BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));

  return TCCheckBlock;
}

//===--------------------------------------------------------------------===//
// EpilogueVectorizerEpilogueLoop
//===--------------------------------------------------------------------===//

/// This function is partially responsible for generating the control flow
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
std::pair<BasicBlock *, Value *>
EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
  createVectorLoopSkeleton("vec.epilog.");

  // Now, compare the remaining count and if there aren't enough iterations to
  // execute the vectorized epilogue skip to the scalar part.
  BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
  VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
  LoopVectorPreHeader =
      SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
                 LI, nullptr, "vec.epilog.ph");
  emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
                                          VecEpilogueIterationCountCheck);

  // Adjust the control flow taking the state info from the main loop
  // vectorization into account.
  assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
         "expected this to be saved from the previous pass.");
  EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
      VecEpilogueIterationCountCheck, LoopVectorPreHeader);

  DT->changeImmediateDominator(LoopVectorPreHeader,
                               EPI.MainLoopIterationCountCheck);

  EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
      VecEpilogueIterationCountCheck, LoopScalarPreHeader);

  if (EPI.SCEVSafetyCheck)
    EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
        VecEpilogueIterationCountCheck, LoopScalarPreHeader);
  if (EPI.MemSafetyCheck)
    EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
        VecEpilogueIterationCountCheck, LoopScalarPreHeader);

  DT->changeImmediateDominator(
      VecEpilogueIterationCountCheck,
      VecEpilogueIterationCountCheck->getSinglePredecessor());

  DT->changeImmediateDominator(LoopScalarPreHeader,
                               EPI.EpilogueIterationCountCheck);
  if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
    // If there is an epilogue which must run, there's no edge from the
    // middle block to exit blocks  and thus no need to update the immediate
    // dominator of the exit blocks.
    DT->changeImmediateDominator(LoopExitBlock,
                                 EPI.EpilogueIterationCountCheck);

  // Keep track of bypass blocks, as they feed start values to the induction and
  // reduction phis in the scalar loop preheader.
  if (EPI.SCEVSafetyCheck)
    LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
  if (EPI.MemSafetyCheck)
    LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
  LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);

  // The vec.epilog.iter.check block may contain Phi nodes from inductions or
  // reductions which merge control-flow from the latch block and the middle
  // block. Update the incoming values here and move the Phi into the preheader.
  SmallVector<PHINode *, 4> PhisInBlock;
  for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
    PhisInBlock.push_back(&Phi);

  for (PHINode *Phi : PhisInBlock) {
    Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
    Phi->replaceIncomingBlockWith(
        VecEpilogueIterationCountCheck->getSinglePredecessor(),
        VecEpilogueIterationCountCheck);

    // If the phi doesn't have an incoming value from the
    // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming
    // value and also those from other check blocks. This is needed for
    // reduction phis only.
    if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
          return EPI.EpilogueIterationCountCheck == IncB;
        }))
      continue;
    Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
    if (EPI.SCEVSafetyCheck)
      Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
    if (EPI.MemSafetyCheck)
      Phi->removeIncomingValue(EPI.MemSafetyCheck);
  }

  // Generate a resume induction for the vector epilogue and put it in the
  // vector epilogue preheader
  Type *IdxTy = Legal->getWidestInductionType();
  PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
                                         LoopVectorPreHeader->getFirstNonPHI());
  EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
  EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
                           EPI.MainLoopIterationCountCheck);

  // Generate induction resume values. These variables save the new starting
  // indexes for the scalar loop. They are used to test if there are any tail
  // iterations left once the vector loop has completed.
  // Note that when the vectorized epilogue is skipped due to iteration count
  // check, then the resume value for the induction variable comes from
  // the trip count of the main vector loop, hence passing the AdditionalBypass
  // argument.
  createInductionResumeValues({VecEpilogueIterationCountCheck,
                               EPI.VectorTripCount} /* AdditionalBypass */);

  return {completeLoopSkeleton(), EPResumeVal};
}

BasicBlock *
EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
    BasicBlock *Bypass, BasicBlock *Insert) {

  assert(EPI.TripCount &&
         "Expected trip count to have been safed in the first pass.");
  assert(
      (!isa<Instruction>(EPI.TripCount) ||
       DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
      "saved trip count does not dominate insertion point.");
  Value *TC = EPI.TripCount;
  IRBuilder<> Builder(Insert->getTerminator());
  Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");

  // Generate code to check if the loop's trip count is less than VF * UF of the
  // vector epilogue loop.
  auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
      ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;

  Value *CheckMinIters =
      Builder.CreateICmp(P, Count,
                         createStepForVF(Builder, Count->getType(),
                                         EPI.EpilogueVF, EPI.EpilogueUF),
                         "min.epilog.iters.check");

  ReplaceInstWithInst(
      Insert->getTerminator(),
      BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));

  LoopBypassBlocks.push_back(Insert);
  return Insert;
}

void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
  LLVM_DEBUG({
    dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
           << "Epilogue Loop VF:" << EPI.EpilogueVF
           << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
  });
}

void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
  DEBUG_WITH_TYPE(VerboseDebug, {
    dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
  });
}

bool LoopVectorizationPlanner::getDecisionAndClampRange(
    const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
  assert(!Range.isEmpty() && "Trying to test an empty VF range.");
  bool PredicateAtRangeStart = Predicate(Range.Start);

  for (ElementCount TmpVF = Range.Start * 2;
       ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
    if (Predicate(TmpVF) != PredicateAtRangeStart) {
      Range.End = TmpVF;
      break;
    }

  return PredicateAtRangeStart;
}

/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
/// of VF's starting at a given VF and extending it as much as possible. Each
/// vectorization decision can potentially shorten this sub-range during
/// buildVPlan().
void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
                                           ElementCount MaxVF) {
  auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
  for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
    VFRange SubRange = {VF, MaxVFPlusOne};
    VPlans.push_back(buildVPlan(SubRange));
    VF = SubRange.End;
  }
}

VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
                                         VPlanPtr &Plan) {
  assert(is_contained(predecessors(Dst), Src) && "Invalid edge");

  // Look for cached value.
  std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
  EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
  if (ECEntryIt != EdgeMaskCache.end())
    return ECEntryIt->second;

  VPValue *SrcMask = createBlockInMask(Src, Plan);

  // The terminator has to be a branch inst!
  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
  assert(BI && "Unexpected terminator found");

  if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
    return EdgeMaskCache[Edge] = SrcMask;

  // If source is an exiting block, we know the exit edge is dynamically dead
  // in the vector loop, and thus we don't need to restrict the mask.  Avoid
  // adding uses of an otherwise potentially dead instruction.
  if (OrigLoop->isLoopExiting(Src))
    return EdgeMaskCache[Edge] = SrcMask;

  VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
  assert(EdgeMask && "No Edge Mask found for condition");

  if (BI->getSuccessor(0) != Dst)
    EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());

  if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
    // The condition is 'SrcMask && EdgeMask', which is equivalent to
    // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
    // The select version does not introduce new UB if SrcMask is false and
    // EdgeMask is poison. Using 'and' here introduces undefined behavior.
    VPValue *False = Plan->getOrAddVPValue(
        ConstantInt::getFalse(BI->getCondition()->getType()));
    EdgeMask =
        Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
  }

  return EdgeMaskCache[Edge] = EdgeMask;
}

VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");

  // Look for cached value.
  BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
  if (BCEntryIt != BlockMaskCache.end())
    return BCEntryIt->second;

  // All-one mask is modelled as no-mask following the convention for masked
  // load/store/gather/scatter. Initialize BlockMask to no-mask.
  VPValue *BlockMask = nullptr;

  if (OrigLoop->getHeader() == BB) {
    if (!CM.blockNeedsPredicationForAnyReason(BB))
      return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.

    assert(CM.foldTailByMasking() && "must fold the tail");

    // If we're using the active lane mask for control flow, then we get the
    // mask from the active lane mask PHI that is cached in the VPlan.
    PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask();
    if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow)
      return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi();

    // Introduce the early-exit compare IV <= BTC to form header block mask.
    // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
    // constructing the desired canonical IV in the header block as its first
    // non-phi instructions.

    VPBasicBlock *HeaderVPBB =
        Plan->getVectorLoopRegion()->getEntryBasicBlock();
    auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
    auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
    HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());

    VPBuilder::InsertPointGuard Guard(Builder);
    Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
    if (EmitGetActiveLaneMask != PredicationStyle::None) {
      VPValue *TC = Plan->getOrCreateTripCount();
      BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC},
                                       nullptr, "active.lane.mask");
    } else {
      VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
      BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
    }
    return BlockMaskCache[BB] = BlockMask;
  }

  // This is the block mask. We OR all incoming edges.
  for (auto *Predecessor : predecessors(BB)) {
    VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
    if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
      return BlockMaskCache[BB] = EdgeMask;

    if (!BlockMask) { // BlockMask has its initialized nullptr value.
      BlockMask = EdgeMask;
      continue;
    }

    BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
  }

  return BlockMaskCache[BB] = BlockMask;
}

VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
                                                ArrayRef<VPValue *> Operands,
                                                VFRange &Range,
                                                VPlanPtr &Plan) {
  assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
         "Must be called with either a load or store");

  auto willWiden = [&](ElementCount VF) -> bool {
    LoopVectorizationCostModel::InstWidening Decision =
        CM.getWideningDecision(I, VF);
    assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
           "CM decision should be taken at this point.");
    if (Decision == LoopVectorizationCostModel::CM_Interleave)
      return true;
    if (CM.isScalarAfterVectorization(I, VF) ||
        CM.isProfitableToScalarize(I, VF))
      return false;
    return Decision != LoopVectorizationCostModel::CM_Scalarize;
  };

  if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
    return nullptr;

  VPValue *Mask = nullptr;
  if (Legal->isMaskRequired(I))
    Mask = createBlockInMask(I->getParent(), Plan);

  // Determine if the pointer operand of the access is either consecutive or
  // reverse consecutive.
  LoopVectorizationCostModel::InstWidening Decision =
      CM.getWideningDecision(I, Range.Start);
  bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
  bool Consecutive =
      Reverse || Decision == LoopVectorizationCostModel::CM_Widen;

  if (LoadInst *Load = dyn_cast<LoadInst>(I))
    return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
                                              Consecutive, Reverse);

  StoreInst *Store = cast<StoreInst>(I);
  return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
                                            Mask, Consecutive, Reverse);
}

/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
/// insert a recipe to expand the step for the induction recipe.
static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
    PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
    const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
    VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
  // Returns true if an instruction \p I should be scalarized instead of
  // vectorized for the chosen vectorization factor.
  auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
    return CM.isScalarAfterVectorization(I, VF) ||
           CM.isProfitableToScalarize(I, VF);
  };

  bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
      [&](ElementCount VF) {
        return ShouldScalarizeInstruction(PhiOrTrunc, VF);
      },
      Range);
  assert(IndDesc.getStartValue() ==
         Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
  assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
         "step must be loop invariant");

  VPValue *Step =
      vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
  if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
    return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
                                             !NeedsScalarIVOnly);
  }
  assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
  return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
                                           !NeedsScalarIVOnly);
}

VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
    PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {

  // Check if this is an integer or fp induction. If so, build the recipe that
  // produces its scalar and vector values.
  if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
    return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
                                       *PSE.getSE(), *OrigLoop, Range);

  // Check if this is pointer induction. If so, build the recipe for it.
  if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
    VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(),
                                                           *PSE.getSE());
    assert(isa<SCEVConstant>(II->getStep()));
    return new VPWidenPointerInductionRecipe(
        Phi, Operands[0], Step, *II,
        LoopVectorizationPlanner::getDecisionAndClampRange(
            [&](ElementCount VF) {
              return CM.isScalarAfterVectorization(Phi, VF);
            },
            Range));
  }
  return nullptr;
}

VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
    TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
  // Optimize the special case where the source is a constant integer
  // induction variable. Notice that we can only optimize the 'trunc' case
  // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
  // (c) other casts depend on pointer size.

  // Determine whether \p K is a truncation based on an induction variable that
  // can be optimized.
  auto isOptimizableIVTruncate =
      [&](Instruction *K) -> std::function<bool(ElementCount)> {
    return [=](ElementCount VF) -> bool {
      return CM.isOptimizableIVTruncate(K, VF);
    };
  };

  if (LoopVectorizationPlanner::getDecisionAndClampRange(
          isOptimizableIVTruncate(I), Range)) {

    auto *Phi = cast<PHINode>(I->getOperand(0));
    const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
    VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
    return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
                                       *PSE.getSE(), *OrigLoop, Range);
  }
  return nullptr;
}

VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
                                                ArrayRef<VPValue *> Operands,
                                                VPlanPtr &Plan) {
  // If all incoming values are equal, the incoming VPValue can be used directly
  // instead of creating a new VPBlendRecipe.
  if (llvm::all_equal(Operands))
    return Operands[0];

  unsigned NumIncoming = Phi->getNumIncomingValues();
  // For in-loop reductions, we do not need to create an additional select.
  VPValue *InLoopVal = nullptr;
  for (unsigned In = 0; In < NumIncoming; In++) {
    PHINode *PhiOp =
        dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
    if (PhiOp && CM.isInLoopReduction(PhiOp)) {
      assert(!InLoopVal && "Found more than one in-loop reduction!");
      InLoopVal = Operands[In];
    }
  }

  assert((!InLoopVal || NumIncoming == 2) &&
         "Found an in-loop reduction for PHI with unexpected number of "
         "incoming values");
  if (InLoopVal)
    return Operands[Operands[0] == InLoopVal ? 1 : 0];

  // We know that all PHIs in non-header blocks are converted into selects, so
  // we don't have to worry about the insertion order and we can just use the
  // builder. At this point we generate the predication tree. There may be
  // duplications since this is a simple recursive scan, but future
  // optimizations will clean it up.
  SmallVector<VPValue *, 2> OperandsWithMask;

  for (unsigned In = 0; In < NumIncoming; In++) {
    VPValue *EdgeMask =
      createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
    assert((EdgeMask || NumIncoming == 1) &&
           "Multiple predecessors with one having a full mask");
    OperandsWithMask.push_back(Operands[In]);
    if (EdgeMask)
      OperandsWithMask.push_back(EdgeMask);
  }
  return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
}

VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
                                                   ArrayRef<VPValue *> Operands,
                                                   VFRange &Range) const {

  bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
      [this, CI](ElementCount VF) {
        return CM.isScalarWithPredication(CI, VF);
      },
      Range);

  if (IsPredicated)
    return nullptr;

  Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
  if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
             ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
             ID == Intrinsic::pseudoprobe ||
             ID == Intrinsic::experimental_noalias_scope_decl))
    return nullptr;

  ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());

  // Is it beneficial to perform intrinsic call compared to lib call?
  bool ShouldUseVectorIntrinsic =
      ID && LoopVectorizationPlanner::getDecisionAndClampRange(
                [&](ElementCount VF) -> bool {
                  bool NeedToScalarize = false;
                  // Is it beneficial to perform intrinsic call compared to lib
                  // call?
                  InstructionCost CallCost =
                      CM.getVectorCallCost(CI, VF, NeedToScalarize);
                  InstructionCost IntrinsicCost =
                      CM.getVectorIntrinsicCost(CI, VF);
                  return IntrinsicCost <= CallCost;
                },
                Range);
  if (ShouldUseVectorIntrinsic)
    return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), ID);

  // Is better to call a vectorized version of the function than to to scalarize
  // the call?
  auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
      [&](ElementCount VF) -> bool {
        // The following case may be scalarized depending on the VF.
        // The flag shows whether we can use a usual Call for vectorized
        // version of the instruction.
        bool NeedToScalarize = false;
        CM.getVectorCallCost(CI, VF, NeedToScalarize);
        return !NeedToScalarize;
      },
      Range);
  if (ShouldUseVectorCall)
    return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()),
                                 Intrinsic::not_intrinsic);

  return nullptr;
}

bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
  assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
         !isa<StoreInst>(I) && "Instruction should have been handled earlier");
  // Instruction should be widened, unless it is scalar after vectorization,
  // scalarization is profitable or it is predicated.
  auto WillScalarize = [this, I](ElementCount VF) -> bool {
    return CM.isScalarAfterVectorization(I, VF) ||
           CM.isProfitableToScalarize(I, VF) ||
           CM.isScalarWithPredication(I, VF);
  };
  return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
                                                             Range);
}

VPRecipeBase *VPRecipeBuilder::tryToWiden(Instruction *I,
                                          ArrayRef<VPValue *> Operands,
                                          VPBasicBlock *VPBB, VPlanPtr &Plan) {
  switch (I->getOpcode()) {
  default:
    return nullptr;
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem: {
    // If not provably safe, use a select to form a safe divisor before widening the
    // div/rem operation itself.  Otherwise fall through to general handling below.
    if (CM.isPredicatedInst(I)) {
      SmallVector<VPValue *> Ops(Operands.begin(), Operands.end());
      VPValue *Mask = createBlockInMask(I->getParent(), Plan);
      VPValue *One =
        Plan->getOrAddExternalDef(ConstantInt::get(I->getType(), 1u, false));
      auto *SafeRHS =
         new VPInstruction(Instruction::Select, {Mask, Ops[1], One},
                           I->getDebugLoc());
      VPBB->appendRecipe(SafeRHS);
      Ops[1] = SafeRHS;
      return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end()));
    }
    LLVM_FALLTHROUGH;
  }
  case Instruction::Add:
  case Instruction::And:
  case Instruction::AShr:
  case Instruction::BitCast:
  case Instruction::FAdd:
  case Instruction::FCmp:
  case Instruction::FDiv:
  case Instruction::FMul:
  case Instruction::FNeg:
  case Instruction::FPExt:
  case Instruction::FPToSI:
  case Instruction::FPToUI:
  case Instruction::FPTrunc:
  case Instruction::FRem:
  case Instruction::FSub:
  case Instruction::ICmp:
  case Instruction::IntToPtr:
  case Instruction::LShr:
  case Instruction::Mul:
  case Instruction::Or:
  case Instruction::PtrToInt:
  case Instruction::Select:
  case Instruction::SExt:
  case Instruction::Shl:
  case Instruction::SIToFP:
  case Instruction::Sub:
  case Instruction::Trunc:
  case Instruction::UIToFP:
  case Instruction::Xor:
  case Instruction::ZExt:
  case Instruction::Freeze:
    return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
  };
}

void VPRecipeBuilder::fixHeaderPhis() {
  BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
  for (VPHeaderPHIRecipe *R : PhisToFix) {
    auto *PN = cast<PHINode>(R->getUnderlyingValue());
    VPRecipeBase *IncR =
        getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
    R->addOperand(IncR->getVPSingleValue());
  }
}

VPBasicBlock *VPRecipeBuilder::handleReplication(
    Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
    VPlanPtr &Plan) {
  bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
      [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
      Range);

  bool IsPredicated = CM.isPredicatedInst(I);

  // Even if the instruction is not marked as uniform, there are certain
  // intrinsic calls that can be effectively treated as such, so we check for
  // them here. Conservatively, we only do this for scalable vectors, since
  // for fixed-width VFs we can always fall back on full scalarization.
  if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
    switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
    case Intrinsic::assume:
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
      // For scalable vectors if one of the operands is variant then we still
      // want to mark as uniform, which will generate one instruction for just
      // the first lane of the vector. We can't scalarize the call in the same
      // way as for fixed-width vectors because we don't know how many lanes
      // there are.
      //
      // The reasons for doing it this way for scalable vectors are:
      //   1. For the assume intrinsic generating the instruction for the first
      //      lane is still be better than not generating any at all. For
      //      example, the input may be a splat across all lanes.
      //   2. For the lifetime start/end intrinsics the pointer operand only
      //      does anything useful when the input comes from a stack object,
      //      which suggests it should always be uniform. For non-stack objects
      //      the effect is to poison the object, which still allows us to
      //      remove the call.
      IsUniform = true;
      break;
    default:
      break;
    }
  }

  auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
                                       IsUniform, IsPredicated);

  // Find if I uses a predicated instruction. If so, it will use its scalar
  // value. Avoid hoisting the insert-element which packs the scalar value into
  // a vector value, as that happens iff all users use the vector value.
  for (VPValue *Op : Recipe->operands()) {
    auto *PredR =
        dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDefiningRecipe());
    if (!PredR)
      continue;
    auto *RepR = cast<VPReplicateRecipe>(
        PredR->getOperand(0)->getDefiningRecipe());
    assert(RepR->isPredicated() &&
           "expected Replicate recipe to be predicated");
    RepR->setAlsoPack(false);
  }

  // Finalize the recipe for Instr, first if it is not predicated.
  if (!IsPredicated) {
    LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
    setRecipe(I, Recipe);
    Plan->addVPValue(I, Recipe);
    VPBB->appendRecipe(Recipe);
    return VPBB;
  }
  LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");

  VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
  assert(SingleSucc && "VPBB must have a single successor when handling "
                       "predicated replication.");
  VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
  // Record predicated instructions for above packing optimizations.
  VPBlockBase *Region = createReplicateRegion(Recipe, Plan);
  VPBlockUtils::insertBlockAfter(Region, VPBB);
  auto *RegSucc = new VPBasicBlock();
  VPBlockUtils::insertBlockAfter(RegSucc, Region);
  VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
  return RegSucc;
}

VPRegionBlock *
VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe,
                                       VPlanPtr &Plan) {
  Instruction *Instr = PredRecipe->getUnderlyingInstr();
  // Instructions marked for predication are replicated and placed under an
  // if-then construct to prevent side-effects.
  // Generate recipes to compute the block mask for this region.
  VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);

  // Build the triangular if-then region.
  std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
  assert(Instr->getParent() && "Predicated instruction not in any basic block");
  auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
  auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
  auto *PHIRecipe = Instr->getType()->isVoidTy()
                        ? nullptr
                        : new VPPredInstPHIRecipe(PredRecipe);
  if (PHIRecipe) {
    setRecipe(Instr, PHIRecipe);
    Plan->addVPValue(Instr, PHIRecipe);
  } else {
    setRecipe(Instr, PredRecipe);
    Plan->addVPValue(Instr, PredRecipe);
  }

  auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
  auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
  VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);

  // Note: first set Entry as region entry and then connect successors starting
  // from it in order, to propagate the "parent" of each VPBasicBlock.
  VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
  VPBlockUtils::connectBlocks(Pred, Exiting);

  return Region;
}

VPRecipeOrVPValueTy
VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
                                        ArrayRef<VPValue *> Operands,
                                        VFRange &Range, VPBasicBlock *VPBB,
                                        VPlanPtr &Plan) {
  // First, check for specific widening recipes that deal with inductions, Phi
  // nodes, calls and memory operations.
  VPRecipeBase *Recipe;
  if (auto Phi = dyn_cast<PHINode>(Instr)) {
    if (Phi->getParent() != OrigLoop->getHeader())
      return tryToBlend(Phi, Operands, Plan);

    // Always record recipes for header phis. Later first-order recurrence phis
    // can have earlier phis as incoming values.
    recordRecipeOf(Phi);

    if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
      return toVPRecipeResult(Recipe);

    VPHeaderPHIRecipe *PhiRecipe = nullptr;
    assert((Legal->isReductionVariable(Phi) ||
            Legal->isFixedOrderRecurrence(Phi)) &&
           "can only widen reductions and fixed-order recurrences here");
    VPValue *StartV = Operands[0];
    if (Legal->isReductionVariable(Phi)) {
      const RecurrenceDescriptor &RdxDesc =
          Legal->getReductionVars().find(Phi)->second;
      assert(RdxDesc.getRecurrenceStartValue() ==
             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
      PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
                                           CM.isInLoopReduction(Phi),
                                           CM.useOrderedReductions(RdxDesc));
    } else {
      // TODO: Currently fixed-order recurrences are modeled as chains of
      // first-order recurrences. If there are no users of the intermediate
      // recurrences in the chain, the fixed order recurrence should be modeled
      // directly, enabling more efficient codegen.
      PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
    }

    // Record the incoming value from the backedge, so we can add the incoming
    // value from the backedge after all recipes have been created.
    auto *Inc = cast<Instruction>(
        Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
    auto RecipeIter = Ingredient2Recipe.find(Inc);
    if (RecipeIter == Ingredient2Recipe.end())
      recordRecipeOf(Inc);

    PhisToFix.push_back(PhiRecipe);
    return toVPRecipeResult(PhiRecipe);
  }

  if (isa<TruncInst>(Instr) &&
      (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
                                               Range, *Plan)))
    return toVPRecipeResult(Recipe);

  // All widen recipes below deal only with VF > 1.
  if (LoopVectorizationPlanner::getDecisionAndClampRange(
          [&](ElementCount VF) { return VF.isScalar(); }, Range))
    return nullptr;

  if (auto *CI = dyn_cast<CallInst>(Instr))
    return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));

  if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
    return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));

  if (!shouldWiden(Instr, Range))
    return nullptr;

  if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
    return toVPRecipeResult(new VPWidenGEPRecipe(
        GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));

  if (auto *SI = dyn_cast<SelectInst>(Instr)) {
    bool InvariantCond =
        PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
    return toVPRecipeResult(new VPWidenSelectRecipe(
        *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
  }

  return toVPRecipeResult(tryToWiden(Instr, Operands, VPBB, Plan));
}

void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
                                                        ElementCount MaxVF) {
  assert(OrigLoop->isInnermost() && "Inner loop expected.");

  // Add assume instructions we need to drop to DeadInstructions, to prevent
  // them from being added to the VPlan.
  // TODO: We only need to drop assumes in blocks that get flattend. If the
  // control flow is preserved, we should keep them.
  SmallPtrSet<Instruction *, 4> DeadInstructions;
  auto &ConditionalAssumes = Legal->getConditionalAssumes();
  DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());

  MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
  // Dead instructions do not need sinking. Remove them from SinkAfter.
  for (Instruction *I : DeadInstructions)
    SinkAfter.erase(I);

  // Cannot sink instructions after dead instructions (there won't be any
  // recipes for them). Instead, find the first non-dead previous instruction.
  for (auto &P : Legal->getSinkAfter()) {
    Instruction *SinkTarget = P.second;
    Instruction *FirstInst = &*SinkTarget->getParent()->begin();
    (void)FirstInst;
    while (DeadInstructions.contains(SinkTarget)) {
      assert(
          SinkTarget != FirstInst &&
          "Must find a live instruction (at least the one feeding the "
          "fixed-order recurrence PHI) before reaching beginning of the block");
      SinkTarget = SinkTarget->getPrevNode();
      assert(SinkTarget != P.first &&
             "sink source equals target, no sinking required");
    }
    P.second = SinkTarget;
  }

  auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
  for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
    VFRange SubRange = {VF, MaxVFPlusOne};
    VPlans.push_back(
        buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
    VF = SubRange.End;
  }
}

// Add the necessary canonical IV and branch recipes required to control the
// loop.
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
                                  bool HasNUW,
                                  bool UseLaneMaskForLoopControlFlow) {
  Value *StartIdx = ConstantInt::get(IdxTy, 0);
  auto *StartV = Plan.getOrAddVPValue(StartIdx);

  // Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
  auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
  VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
  VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
  Header->insert(CanonicalIVPHI, Header->begin());

  // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar
  // IV by VF * UF.
  auto *CanonicalIVIncrement =
      new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
                               : VPInstruction::CanonicalIVIncrement,
                        {CanonicalIVPHI}, DL, "index.next");
  CanonicalIVPHI->addOperand(CanonicalIVIncrement);

  VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
  EB->appendRecipe(CanonicalIVIncrement);

  if (UseLaneMaskForLoopControlFlow) {
    // Create the active lane mask instruction in the vplan preheader.
    VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();

    // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
    // we have to take unrolling into account. Each part needs to start at
    //   Part * VF
    auto *CanonicalIVIncrementParts =
        new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
                                 : VPInstruction::CanonicalIVIncrementForPart,
                          {StartV}, DL, "index.part.next");
    Preheader->appendRecipe(CanonicalIVIncrementParts);

    // Create the ActiveLaneMask instruction using the correct start values.
    VPValue *TC = Plan.getOrCreateTripCount();
    auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask,
                                       {CanonicalIVIncrementParts, TC}, DL,
                                       "active.lane.mask.entry");
    Preheader->appendRecipe(EntryALM);

    // Now create the ActiveLaneMaskPhi recipe in the main loop using the
    // preheader ActiveLaneMask instruction.
    auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
    Header->insert(LaneMaskPhi, Header->getFirstNonPhi());

    // Create the active lane mask for the next iteration of the loop.
    CanonicalIVIncrementParts =
        new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
                                 : VPInstruction::CanonicalIVIncrementForPart,
                          {CanonicalIVIncrement}, DL);
    EB->appendRecipe(CanonicalIVIncrementParts);

    auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask,
                                  {CanonicalIVIncrementParts, TC}, DL,
                                  "active.lane.mask.next");
    EB->appendRecipe(ALM);
    LaneMaskPhi->addOperand(ALM);

    // We have to invert the mask here because a true condition means jumping
    // to the exit block.
    auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL);
    EB->appendRecipe(NotMask);

    VPInstruction *BranchBack =
        new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL);
    EB->appendRecipe(BranchBack);
  } else {
    // Add the BranchOnCount VPInstruction to the latch.
    VPInstruction *BranchBack = new VPInstruction(
        VPInstruction::BranchOnCount,
        {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
    EB->appendRecipe(BranchBack);
  }
}

// Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
// original exit block.
static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
                                VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
                                VPlan &Plan) {
  BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
  BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
  // Only handle single-exit loops with unique exit blocks for now.
  if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
    return;

  // Introduce VPUsers modeling the exit values.
  for (PHINode &ExitPhi : ExitBB->phis()) {
    Value *IncomingValue =
        ExitPhi.getIncomingValueForBlock(ExitingBB);
    VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
    Plan.addLiveOut(&ExitPhi, V);
  }
}

VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
    VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
    const MapVector<Instruction *, Instruction *> &SinkAfter) {

  SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;

  VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);

  // ---------------------------------------------------------------------------
  // Pre-construction: record ingredients whose recipes we'll need to further
  // process after constructing the initial VPlan.
  // ---------------------------------------------------------------------------

  // Mark instructions we'll need to sink later and their targets as
  // ingredients whose recipe we'll need to record.
  for (const auto &Entry : SinkAfter) {
    RecipeBuilder.recordRecipeOf(Entry.first);
    RecipeBuilder.recordRecipeOf(Entry.second);
  }
  for (const auto &Reduction : CM.getInLoopReductionChains()) {
    PHINode *Phi = Reduction.first;
    RecurKind Kind =
        Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
    const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;

    RecipeBuilder.recordRecipeOf(Phi);
    for (const auto &R : ReductionOperations) {
      RecipeBuilder.recordRecipeOf(R);
      // For min/max reductions, where we have a pair of icmp/select, we also
      // need to record the ICmp recipe, so it can be removed later.
      assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
             "Only min/max recurrences allowed for inloop reductions");
      if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
        RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
    }
  }

  // For each interleave group which is relevant for this (possibly trimmed)
  // Range, add it to the set of groups to be later applied to the VPlan and add
  // placeholders for its members' Recipes which we'll be replacing with a
  // single VPInterleaveRecipe.
  for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
    auto applyIG = [IG, this](ElementCount VF) -> bool {
      return (VF.isVector() && // Query is illegal for VF == 1
              CM.getWideningDecision(IG->getInsertPos(), VF) ==
                  LoopVectorizationCostModel::CM_Interleave);
    };
    if (!getDecisionAndClampRange(applyIG, Range))
      continue;
    InterleaveGroups.insert(IG);
    for (unsigned i = 0; i < IG->getFactor(); i++)
      if (Instruction *Member = IG->getMember(i))
        RecipeBuilder.recordRecipeOf(Member);
  };

  // ---------------------------------------------------------------------------
  // Build initial VPlan: Scan the body of the loop in a topological order to
  // visit each basic block after having visited its predecessor basic blocks.
  // ---------------------------------------------------------------------------

  // Create initial VPlan skeleton, starting with a block for the pre-header,
  // followed by a region for the vector loop, followed by the middle block. The
  // skeleton vector loop region contains a header and latch block.
  VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
  auto Plan = std::make_unique<VPlan>(Preheader);

  VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
  VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
  VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
  auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
  VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
  VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
  VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);

  Instruction *DLInst =
      getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
  addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
                        DLInst ? DLInst->getDebugLoc() : DebugLoc(),
                        !CM.foldTailByMasking(),
                        CM.useActiveLaneMaskForControlFlow());

  // Scan the body of the loop in a topological order to visit each basic block
  // after having visited its predecessor basic blocks.
  LoopBlocksDFS DFS(OrigLoop);
  DFS.perform(LI);

  VPBasicBlock *VPBB = HeaderVPBB;
  SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
    // Relevant instructions from basic block BB will be grouped into VPRecipe
    // ingredients and fill a new VPBasicBlock.
    unsigned VPBBsForBB = 0;
    if (VPBB != HeaderVPBB)
      VPBB->setName(BB->getName());
    Builder.setInsertPoint(VPBB);

    // Introduce each ingredient into VPlan.
    // TODO: Model and preserve debug intrinsics in VPlan.
    for (Instruction &I : BB->instructionsWithoutDebug()) {
      Instruction *Instr = &I;

      // First filter out irrelevant instructions, to ensure no recipes are
      // built for them.
      if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
        continue;

      SmallVector<VPValue *, 4> Operands;
      auto *Phi = dyn_cast<PHINode>(Instr);
      if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
        Operands.push_back(Plan->getOrAddVPValue(
            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
      } else {
        auto OpRange = Plan->mapToVPValues(Instr->operands());
        Operands = {OpRange.begin(), OpRange.end()};
      }

      // Invariant stores inside loop will be deleted and a single store
      // with the final reduction value will be added to the exit block
      StoreInst *SI;
      if ((SI = dyn_cast<StoreInst>(&I)) &&
          Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
        continue;

      if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
              Instr, Operands, Range, VPBB, Plan)) {
        // If Instr can be simplified to an existing VPValue, use it.
        if (RecipeOrValue.is<VPValue *>()) {
          auto *VPV = RecipeOrValue.get<VPValue *>();
          Plan->addVPValue(Instr, VPV);
          // If the re-used value is a recipe, register the recipe for the
          // instruction, in case the recipe for Instr needs to be recorded.
          if (VPRecipeBase *R = VPV->getDefiningRecipe())
            RecipeBuilder.setRecipe(Instr, R);
          continue;
        }
        // Otherwise, add the new recipe.
        VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
        for (auto *Def : Recipe->definedValues()) {
          auto *UV = Def->getUnderlyingValue();
          Plan->addVPValue(UV, Def);
        }

        if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
            HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
          // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
          // of the header block. That can happen for truncates of induction
          // variables. Those recipes are moved to the phi section of the header
          // block after applying SinkAfter, which relies on the original
          // position of the trunc.
          assert(isa<TruncInst>(Instr));
          InductionsToMove.push_back(
              cast<VPWidenIntOrFpInductionRecipe>(Recipe));
        }
        RecipeBuilder.setRecipe(Instr, Recipe);
        VPBB->appendRecipe(Recipe);
        continue;
      }

      // Otherwise, if all widening options failed, Instruction is to be
      // replicated. This may create a successor for VPBB.
      VPBasicBlock *NextVPBB =
          RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
      if (NextVPBB != VPBB) {
        VPBB = NextVPBB;
        VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
                                    : "");
      }
    }

    VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
    VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
  }

  // After here, VPBB should not be used.
  VPBB = nullptr;

  addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);

  assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
         !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
         "entry block must be set to a VPRegionBlock having a non-empty entry "
         "VPBasicBlock");
  RecipeBuilder.fixHeaderPhis();

  // ---------------------------------------------------------------------------
  // Transform initial VPlan: Apply previously taken decisions, in order, to
  // bring the VPlan to its final state.
  // ---------------------------------------------------------------------------

  // Apply Sink-After legal constraints.
  auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
    auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
    if (Region && Region->isReplicator()) {
      assert(Region->getNumSuccessors() == 1 &&
             Region->getNumPredecessors() == 1 && "Expected SESE region!");
      assert(R->getParent()->size() == 1 &&
             "A recipe in an original replicator region must be the only "
             "recipe in its block");
      return Region;
    }
    return nullptr;
  };
  for (const auto &Entry : SinkAfter) {
    VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
    VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);

    auto *TargetRegion = GetReplicateRegion(Target);
    auto *SinkRegion = GetReplicateRegion(Sink);
    if (!SinkRegion) {
      // If the sink source is not a replicate region, sink the recipe directly.
      if (TargetRegion) {
        // The target is in a replication region, make sure to move Sink to
        // the block after it, not into the replication region itself.
        VPBasicBlock *NextBlock =
            cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
        Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
      } else
        Sink->moveAfter(Target);
      continue;
    }

    // The sink source is in a replicate region. Unhook the region from the CFG.
    auto *SinkPred = SinkRegion->getSinglePredecessor();
    auto *SinkSucc = SinkRegion->getSingleSuccessor();
    VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
    VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
    VPBlockUtils::connectBlocks(SinkPred, SinkSucc);

    if (TargetRegion) {
      // The target recipe is also in a replicate region, move the sink region
      // after the target region.
      auto *TargetSucc = TargetRegion->getSingleSuccessor();
      VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
      VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
      VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
    } else {
      // The sink source is in a replicate region, we need to move the whole
      // replicate region, which should only contain a single recipe in the
      // main block.
      auto *SplitBlock =
          Target->getParent()->splitAt(std::next(Target->getIterator()));

      auto *SplitPred = SplitBlock->getSinglePredecessor();

      VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
      VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
      VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
    }
  }

  VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
  VPlanTransforms::removeRedundantInductionCasts(*Plan);

  // Now that sink-after is done, move induction recipes for optimized truncates
  // to the phi section of the header block.
  for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
    Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());

  // Adjust the recipes for any inloop reductions.
  adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
                             RecipeBuilder, Range.Start);

  // Introduce a recipe to combine the incoming and previous values of a
  // fixed-order recurrence.
  for (VPRecipeBase &R :
       Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
    auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
    if (!RecurPhi)
      continue;

    VPRecipeBase *PrevRecipe = &RecurPhi->getBackedgeRecipe();
    // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
    // to terminate.
    while (auto *PrevPhi =
               dyn_cast<VPFirstOrderRecurrencePHIRecipe>(PrevRecipe))
      PrevRecipe = &PrevPhi->getBackedgeRecipe();
    VPBasicBlock *InsertBlock = PrevRecipe->getParent();
    auto *Region = GetReplicateRegion(PrevRecipe);
    if (Region)
      InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
    if (!InsertBlock) {
      InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
      VPBlockUtils::insertBlockAfter(InsertBlock, Region);
    }
    if (Region || PrevRecipe->isPhi())
      Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
    else
      Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));

    auto *RecurSplice = cast<VPInstruction>(
        Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
                             {RecurPhi, RecurPhi->getBackedgeValue()}));

    RecurPhi->replaceAllUsesWith(RecurSplice);
    // Set the first operand of RecurSplice to RecurPhi again, after replacing
    // all users.
    RecurSplice->setOperand(0, RecurPhi);
  }

  // Interleave memory: for each Interleave Group we marked earlier as relevant
  // for this VPlan, replace the Recipes widening its memory instructions with a
  // single VPInterleaveRecipe at its insertion point.
  for (const auto *IG : InterleaveGroups) {
    auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
        RecipeBuilder.getRecipe(IG->getInsertPos()));
    SmallVector<VPValue *, 4> StoredValues;
    for (unsigned i = 0; i < IG->getFactor(); ++i)
      if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
        auto *StoreR =
            cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
        StoredValues.push_back(StoreR->getStoredValue());
      }

    auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
                                        Recipe->getMask());
    VPIG->insertBefore(Recipe);
    unsigned J = 0;
    for (unsigned i = 0; i < IG->getFactor(); ++i)
      if (Instruction *Member = IG->getMember(i)) {
        if (!Member->getType()->isVoidTy()) {
          VPValue *OriginalV = Plan->getVPValue(Member);
          Plan->removeVPValueFor(Member);
          Plan->addVPValue(Member, VPIG->getVPValue(J));
          OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
          J++;
        }
        RecipeBuilder.getRecipe(Member)->eraseFromParent();
      }
  }

  for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
       VF *= 2)
    Plan->addVF(VF);
  Plan->setName("Initial VPlan");

  // From this point onwards, VPlan-to-VPlan transformations may change the plan
  // in ways that accessing values using original IR values is incorrect.
  Plan->disableValue2VPValue();

  VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
  VPlanTransforms::removeDeadRecipes(*Plan);

  bool ShouldSimplify = true;
  while (ShouldSimplify) {
    ShouldSimplify = VPlanTransforms::sinkScalarOperands(*Plan);
    ShouldSimplify |=
        VPlanTransforms::mergeReplicateRegionsIntoSuccessors(*Plan);
    ShouldSimplify |= VPlanTransforms::mergeBlocksIntoPredecessors(*Plan);
  }

  VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
  VPlanTransforms::mergeBlocksIntoPredecessors(*Plan);

  assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
  return Plan;
}

VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
  // Outer loop handling: They may require CFG and instruction level
  // transformations before even evaluating whether vectorization is profitable.
  // Since we cannot modify the incoming IR, we need to build VPlan upfront in
  // the vectorization pipeline.
  assert(!OrigLoop->isInnermost());
  assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");

  // Create new empty VPlan
  auto Plan = std::make_unique<VPlan>();

  // Build hierarchical CFG
  VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
  HCFGBuilder.buildHierarchicalCFG();

  for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
       VF *= 2)
    Plan->addVF(VF);

  SmallPtrSet<Instruction *, 1> DeadInstructions;
  VPlanTransforms::VPInstructionsToVPRecipes(
      OrigLoop, Plan,
      [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
      DeadInstructions, *PSE.getSE(), *TLI);

  // Remove the existing terminator of the exiting block of the top-most region.
  // A BranchOnCount will be added instead when adding the canonical IV recipes.
  auto *Term =
      Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
  Term->eraseFromParent();

  addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
                        true, CM.useActiveLaneMaskForControlFlow());
  return Plan;
}

// Adjust the recipes for reductions. For in-loop reductions the chain of
// instructions leading from the loop exit instr to the phi need to be converted
// to reductions, with one operand being vector and the other being the scalar
// reduction chain. For other reductions, a select is introduced between the phi
// and live-out recipes when folding the tail.
void LoopVectorizationPlanner::adjustRecipesForReductions(
    VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
    ElementCount MinVF) {
  for (const auto &Reduction : CM.getInLoopReductionChains()) {
    PHINode *Phi = Reduction.first;
    const RecurrenceDescriptor &RdxDesc =
        Legal->getReductionVars().find(Phi)->second;
    const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;

    if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
      continue;

    // ReductionOperations are orders top-down from the phi's use to the
    // LoopExitValue. We keep a track of the previous item (the Chain) to tell
    // which of the two operands will remain scalar and which will be reduced.
    // For minmax the chain will be the select instructions.
    Instruction *Chain = Phi;
    for (Instruction *R : ReductionOperations) {
      VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
      RecurKind Kind = RdxDesc.getRecurrenceKind();

      VPValue *ChainOp = Plan->getVPValue(Chain);
      unsigned FirstOpId;
      assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
             "Only min/max recurrences allowed for inloop reductions");
      // Recognize a call to the llvm.fmuladd intrinsic.
      bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
      assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
             "Expected instruction to be a call to the llvm.fmuladd intrinsic");
      if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
        assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
               "Expected to replace a VPWidenSelectSC");
        FirstOpId = 1;
      } else {
        assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
                (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
               "Expected to replace a VPWidenSC");
        FirstOpId = 0;
      }
      unsigned VecOpId =
          R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
      VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));

      VPValue *CondOp = nullptr;
      if (CM.blockNeedsPredicationForAnyReason(R->getParent())) {
        VPBuilder::InsertPointGuard Guard(Builder);
        Builder.setInsertPoint(WidenRecipe->getParent(),
                               WidenRecipe->getIterator());
        CondOp = RecipeBuilder.createBlockInMask(R->getParent(), Plan);
      }

      if (IsFMulAdd) {
        // If the instruction is a call to the llvm.fmuladd intrinsic then we
        // need to create an fmul recipe to use as the vector operand for the
        // fadd reduction.
        VPInstruction *FMulRecipe = new VPInstruction(
            Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
        FMulRecipe->setFastMathFlags(R->getFastMathFlags());
        WidenRecipe->getParent()->insert(FMulRecipe,
                                         WidenRecipe->getIterator());
        VecOp = FMulRecipe;
      }
      VPReductionRecipe *RedRecipe =
          new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
      WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
      Plan->removeVPValueFor(R);
      Plan->addVPValue(R, RedRecipe);
      // Append the recipe to the end of the VPBasicBlock because we need to
      // ensure that it comes after all of it's inputs, including CondOp.
      WidenRecipe->getParent()->appendRecipe(RedRecipe);
      WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
      WidenRecipe->eraseFromParent();

      if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
        VPRecipeBase *CompareRecipe =
            RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
        assert(isa<VPWidenRecipe>(CompareRecipe) &&
               "Expected to replace a VPWidenSC");
        assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
               "Expected no remaining users");
        CompareRecipe->eraseFromParent();
      }
      Chain = R;
    }
  }

  // If tail is folded by masking, introduce selects between the phi
  // and the live-out instruction of each reduction, at the beginning of the
  // dedicated latch block.
  if (CM.foldTailByMasking()) {
    Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
    for (VPRecipeBase &R :
         Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
      VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
      if (!PhiR || PhiR->isInLoop())
        continue;
      VPValue *Cond =
          RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
      VPValue *Red = PhiR->getBackedgeValue();
      assert(Red->getDefiningRecipe()->getParent() != LatchVPBB &&
             "reduction recipe must be defined before latch");
      Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
    }
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
                               VPSlotTracker &SlotTracker) const {
  O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
  IG->getInsertPos()->printAsOperand(O, false);
  O << ", ";
  getAddr()->printAsOperand(O, SlotTracker);
  VPValue *Mask = getMask();
  if (Mask) {
    O << ", ";
    Mask->printAsOperand(O, SlotTracker);
  }

  unsigned OpIdx = 0;
  for (unsigned i = 0; i < IG->getFactor(); ++i) {
    if (!IG->getMember(i))
      continue;
    if (getNumStoreOperands() > 0) {
      O << "\n" << Indent << "  store ";
      getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
      O << " to index " << i;
    } else {
      O << "\n" << Indent << "  ";
      getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
      O << " = load from index " << i;
    }
    ++OpIdx;
  }
}
#endif

void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
  assert(!State.Instance && "Int or FP induction being replicated.");

  Value *Start = getStartValue()->getLiveInIRValue();
  const InductionDescriptor &ID = getInductionDescriptor();
  TruncInst *Trunc = getTruncInst();
  IRBuilderBase &Builder = State.Builder;
  assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
  assert(State.VF.isVector() && "must have vector VF");

  // The value from the original loop to which we are mapping the new induction
  // variable.
  Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;

  // Fast-math-flags propagate from the original induction instruction.
  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
  if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
    Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());

  // Now do the actual transformations, and start with fetching the step value.
  Value *Step = State.get(getStepValue(), VPIteration(0, 0));

  assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
         "Expected either an induction phi-node or a truncate of it!");

  // Construct the initial value of the vector IV in the vector loop preheader
  auto CurrIP = Builder.saveIP();
  BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
  Builder.SetInsertPoint(VectorPH->getTerminator());
  if (isa<TruncInst>(EntryVal)) {
    assert(Start->getType()->isIntegerTy() &&
           "Truncation requires an integer type");
    auto *TruncType = cast<IntegerType>(EntryVal->getType());
    Step = Builder.CreateTrunc(Step, TruncType);
    Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
  }

  Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
  Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
  Value *SteppedStart = getStepVector(
      SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);

  // We create vector phi nodes for both integer and floating-point induction
  // variables. Here, we determine the kind of arithmetic we will perform.
  Instruction::BinaryOps AddOp;
  Instruction::BinaryOps MulOp;
  if (Step->getType()->isIntegerTy()) {
    AddOp = Instruction::Add;
    MulOp = Instruction::Mul;
  } else {
    AddOp = ID.getInductionOpcode();
    MulOp = Instruction::FMul;
  }

  // Multiply the vectorization factor by the step using integer or
  // floating-point arithmetic as appropriate.
  Type *StepType = Step->getType();
  Value *RuntimeVF;
  if (Step->getType()->isFloatingPointTy())
    RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
  else
    RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
  Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);

  // Create a vector splat to use in the induction update.
  //
  // FIXME: If the step is non-constant, we create the vector splat with
  //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
  //        handle a constant vector splat.
  Value *SplatVF = isa<Constant>(Mul)
                       ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
                       : Builder.CreateVectorSplat(State.VF, Mul);
  Builder.restoreIP(CurrIP);

  // We may need to add the step a number of times, depending on the unroll
  // factor. The last of those goes into the PHI.
  PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
                                    &*State.CFG.PrevBB->getFirstInsertionPt());
  VecInd->setDebugLoc(EntryVal->getDebugLoc());
  Instruction *LastInduction = VecInd;
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    State.set(this, LastInduction, Part);

    if (isa<TruncInst>(EntryVal))
      State.addMetadata(LastInduction, EntryVal);

    LastInduction = cast<Instruction>(
        Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
    LastInduction->setDebugLoc(EntryVal->getDebugLoc());
  }

  LastInduction->setName("vec.ind.next");
  VecInd->addIncoming(SteppedStart, VectorPH);
  // Add induction update using an incorrect block temporarily. The phi node
  // will be fixed after VPlan execution. Note that at this point the latch
  // block cannot be used, as it does not exist yet.
  // TODO: Model increment value in VPlan, by turning the recipe into a
  // multi-def and a subclass of VPHeaderPHIRecipe.
  VecInd->addIncoming(LastInduction, VectorPH);
}

void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
  assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
         "Not a pointer induction according to InductionDescriptor!");
  assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
         "Unexpected type.");

  auto *IVR = getParent()->getPlan()->getCanonicalIV();
  PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));

  if (onlyScalarsGenerated(State.VF)) {
    // This is the normalized GEP that starts counting at zero.
    Value *PtrInd = State.Builder.CreateSExtOrTrunc(
        CanonicalIV, IndDesc.getStep()->getType());
    // Determine the number of scalars we need to generate for each unroll
    // iteration. If the instruction is uniform, we only need to generate the
    // first lane. Otherwise, we generate all VF values.
    bool IsUniform = vputils::onlyFirstLaneUsed(this);
    assert((IsUniform || !State.VF.isScalable()) &&
           "Cannot scalarize a scalable VF");
    unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();

    for (unsigned Part = 0; Part < State.UF; ++Part) {
      Value *PartStart =
          createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);

      for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
        Value *Idx = State.Builder.CreateAdd(
            PartStart, ConstantInt::get(PtrInd->getType(), Lane));
        Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);

        Value *Step = State.get(getOperand(1), VPIteration(0, Part));
        Value *SclrGep = emitTransformedIndex(
            State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
        SclrGep->setName("next.gep");
        State.set(this, SclrGep, VPIteration(Part, Lane));
      }
    }
    return;
  }

  assert(isa<SCEVConstant>(IndDesc.getStep()) &&
         "Induction step not a SCEV constant!");
  Type *PhiType = IndDesc.getStep()->getType();

  // Build a pointer phi
  Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
  Type *ScStValueType = ScalarStartValue->getType();
  PHINode *NewPointerPhi =
      PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);

  BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
  NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);

  // A pointer induction, performed by using a gep
  Instruction *InductionLoc = &*State.Builder.GetInsertPoint();

  Value *ScalarStepValue = State.get(getOperand(1), VPIteration(0, 0));
  Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
  Value *NumUnrolledElems =
      State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
  Value *InductionGEP = GetElementPtrInst::Create(
      IndDesc.getElementType(), NewPointerPhi,
      State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
      InductionLoc);
  // Add induction update using an incorrect block temporarily. The phi node
  // will be fixed after VPlan execution. Note that at this point the latch
  // block cannot be used, as it does not exist yet.
  // TODO: Model increment value in VPlan, by turning the recipe into a
  // multi-def and a subclass of VPHeaderPHIRecipe.
  NewPointerPhi->addIncoming(InductionGEP, VectorPH);

  // Create UF many actual address geps that use the pointer
  // phi as base and a vectorized version of the step value
  // (<step*0, ..., step*N>) as offset.
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    Type *VecPhiType = VectorType::get(PhiType, State.VF);
    Value *StartOffsetScalar =
        State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
    Value *StartOffset =
        State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
    // Create a vector of consecutive numbers from zero to VF.
    StartOffset = State.Builder.CreateAdd(
        StartOffset, State.Builder.CreateStepVector(VecPhiType));

    assert(ScalarStepValue == State.get(getOperand(1), VPIteration(0, Part)) &&
           "scalar step must be the same across all parts");
    Value *GEP = State.Builder.CreateGEP(
        IndDesc.getElementType(), NewPointerPhi,
        State.Builder.CreateMul(
            StartOffset,
            State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
            "vector.gep"));
    State.set(this, GEP, Part);
  }
}

void VPDerivedIVRecipe::execute(VPTransformState &State) {
  assert(!State.Instance && "VPDerivedIVRecipe being replicated.");

  // Fast-math-flags propagate from the original induction instruction.
  IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
  if (IndDesc.getInductionBinOp() &&
      isa<FPMathOperator>(IndDesc.getInductionBinOp()))
    State.Builder.setFastMathFlags(
        IndDesc.getInductionBinOp()->getFastMathFlags());

  Value *Step = State.get(getStepValue(), VPIteration(0, 0));
  Value *CanonicalIV = State.get(getCanonicalIV(), VPIteration(0, 0));
  Value *DerivedIV =
      emitTransformedIndex(State.Builder, CanonicalIV,
                           getStartValue()->getLiveInIRValue(), Step, IndDesc);
  DerivedIV->setName("offset.idx");
  if (ResultTy != DerivedIV->getType()) {
    assert(Step->getType()->isIntegerTy() &&
           "Truncation requires an integer step");
    DerivedIV = State.Builder.CreateTrunc(DerivedIV, ResultTy);
  }
  assert(DerivedIV != CanonicalIV && "IV didn't need transforming?");

  State.set(this, DerivedIV, VPIteration(0, 0));
}

void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
  // Fast-math-flags propagate from the original induction instruction.
  IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
  if (IndDesc.getInductionBinOp() &&
      isa<FPMathOperator>(IndDesc.getInductionBinOp()))
    State.Builder.setFastMathFlags(
        IndDesc.getInductionBinOp()->getFastMathFlags());

  Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0));
  Value *Step = State.get(getStepValue(), VPIteration(0, 0));

  buildScalarSteps(BaseIV, Step, IndDesc, this, State);
}

void VPInterleaveRecipe::execute(VPTransformState &State) {
  assert(!State.Instance && "Interleave group being replicated.");
  State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
                                      getStoredValues(), getMask());
}

void VPReductionRecipe::execute(VPTransformState &State) {
  assert(!State.Instance && "Reduction being replicated.");
  Value *PrevInChain = State.get(getChainOp(), 0);
  RecurKind Kind = RdxDesc->getRecurrenceKind();
  bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
  // Propagate the fast-math flags carried by the underlying instruction.
  IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
  State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    Value *NewVecOp = State.get(getVecOp(), Part);
    if (VPValue *Cond = getCondOp()) {
      Value *NewCond = State.get(Cond, Part);
      VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
      Value *Iden = RdxDesc->getRecurrenceIdentity(
          Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
      Value *IdenVec =
          State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
      Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
      NewVecOp = Select;
    }
    Value *NewRed;
    Value *NextInChain;
    if (IsOrdered) {
      if (State.VF.isVector())
        NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
                                        PrevInChain);
      else
        NewRed = State.Builder.CreateBinOp(
            (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
            NewVecOp);
      PrevInChain = NewRed;
    } else {
      PrevInChain = State.get(getChainOp(), Part);
      NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
    }
    if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
      NextInChain =
          createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
                         NewRed, PrevInChain);
    } else if (IsOrdered)
      NextInChain = NewRed;
    else
      NextInChain = State.Builder.CreateBinOp(
          (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
          PrevInChain);
    State.set(this, NextInChain, Part);
  }
}

void VPReplicateRecipe::execute(VPTransformState &State) {
  Instruction *UI = getUnderlyingInstr();
  if (State.Instance) { // Generate a single instance.
    assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
    State.ILV->scalarizeInstruction(UI, this, *State.Instance,
                                    IsPredicated, State);
    // Insert scalar instance packing it into a vector.
    if (AlsoPack && State.VF.isVector()) {
      // If we're constructing lane 0, initialize to start from poison.
      if (State.Instance->Lane.isFirstLane()) {
        assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
        Value *Poison = PoisonValue::get(
            VectorType::get(UI->getType(), State.VF));
        State.set(this, Poison, State.Instance->Part);
      }
      State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
    }
    return;
  }

  if (IsUniform) {
    // If the recipe is uniform across all parts (instead of just per VF), only
    // generate a single instance.
    if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) &&
        all_of(operands(), [](VPValue *Op) {
          return Op->isDefinedOutsideVectorRegions();
        })) {
      State.ILV->scalarizeInstruction(UI, this, VPIteration(0, 0), IsPredicated,
                                      State);
      if (user_begin() != user_end()) {
        for (unsigned Part = 1; Part < State.UF; ++Part)
          State.set(this, State.get(this, VPIteration(0, 0)),
                    VPIteration(Part, 0));
      }
      return;
    }

    // Uniform within VL means we need to generate lane 0 only for each
    // unrolled copy.
    for (unsigned Part = 0; Part < State.UF; ++Part)
      State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, 0),
                                      IsPredicated, State);
    return;
  }

  // A store of a loop varying value to a loop invariant address only
  // needs only the last copy of the store.
  if (isa<StoreInst>(UI) && !getOperand(1)->hasDefiningRecipe()) {
    auto Lane = VPLane::getLastLaneForVF(State.VF);
    State.ILV->scalarizeInstruction(UI, this, VPIteration(State.UF - 1, Lane), IsPredicated,
                                    State);
    return;
  }

  // Generate scalar instances for all VF lanes of all UF parts.
  assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
  const unsigned EndLane = State.VF.getKnownMinValue();
  for (unsigned Part = 0; Part < State.UF; ++Part)
    for (unsigned Lane = 0; Lane < EndLane; ++Lane)
      State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, Lane),
                                      IsPredicated, State);
}

void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
  VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;

  // Attempt to issue a wide load.
  LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
  StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);

  assert((LI || SI) && "Invalid Load/Store instruction");
  assert((!SI || StoredValue) && "No stored value provided for widened store");
  assert((!LI || !StoredValue) && "Stored value provided for widened load");

  Type *ScalarDataTy = getLoadStoreType(&Ingredient);

  auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
  const Align Alignment = getLoadStoreAlignment(&Ingredient);
  bool CreateGatherScatter = !Consecutive;

  auto &Builder = State.Builder;
  InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
  bool isMaskRequired = getMask();
  if (isMaskRequired)
    for (unsigned Part = 0; Part < State.UF; ++Part)
      BlockInMaskParts[Part] = State.get(getMask(), Part);

  const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
    // Calculate the pointer for the specific unroll-part.
    GetElementPtrInst *PartPtr = nullptr;

    bool InBounds = false;
    if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
      InBounds = gep->isInBounds();
    if (Reverse) {
      // If the address is consecutive but reversed, then the
      // wide store needs to start at the last vector element.
      // RunTimeVF =  VScale * VF.getKnownMinValue()
      // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
      Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
      // NumElt = -Part * RunTimeVF
      Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
      // LastLane = 1 - RunTimeVF
      Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
      PartPtr =
          cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
      PartPtr->setIsInBounds(InBounds);
      PartPtr = cast<GetElementPtrInst>(
          Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
      PartPtr->setIsInBounds(InBounds);
      if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
        BlockInMaskParts[Part] =
            Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
    } else {
      Value *Increment =
          createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
      PartPtr = cast<GetElementPtrInst>(
          Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
      PartPtr->setIsInBounds(InBounds);
    }

    unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
    return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
  };

  // Handle Stores:
  if (SI) {
    State.setDebugLocFromInst(SI);

    for (unsigned Part = 0; Part < State.UF; ++Part) {
      Instruction *NewSI = nullptr;
      Value *StoredVal = State.get(StoredValue, Part);
      if (CreateGatherScatter) {
        Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
        Value *VectorGep = State.get(getAddr(), Part);
        NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
                                            MaskPart);
      } else {
        if (Reverse) {
          // If we store to reverse consecutive memory locations, then we need
          // to reverse the order of elements in the stored value.
          StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
          // We don't want to update the value in the map as it might be used in
          // another expression. So don't call resetVectorValue(StoredVal).
        }
        auto *VecPtr =
            CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
        if (isMaskRequired)
          NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
                                            BlockInMaskParts[Part]);
        else
          NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
      }
      State.addMetadata(NewSI, SI);
    }
    return;
  }

  // Handle loads.
  assert(LI && "Must have a load instruction");
  State.setDebugLocFromInst(LI);
  for (unsigned Part = 0; Part < State.UF; ++Part) {
    Value *NewLI;
    if (CreateGatherScatter) {
      Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
      Value *VectorGep = State.get(getAddr(), Part);
      NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
                                         nullptr, "wide.masked.gather");
      State.addMetadata(NewLI, LI);
    } else {
      auto *VecPtr =
          CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
      if (isMaskRequired)
        NewLI = Builder.CreateMaskedLoad(
            DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
            PoisonValue::get(DataTy), "wide.masked.load");
      else
        NewLI =
            Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");

      // Add metadata to the load, but setVectorValue to the reverse shuffle.
      State.addMetadata(NewLI, LI);
      if (Reverse)
        NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
    }

    State.set(getVPSingleValue(), NewLI, Part);
  }
}

// Determine how to lower the scalar epilogue, which depends on 1) optimising
// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
// predication, and 4) a TTI hook that analyses whether the loop is suitable
// for predication.
static ScalarEpilogueLowering getScalarEpilogueLowering(
    Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
    BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
    AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
    LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) {
  // 1) OptSize takes precedence over all other options, i.e. if this is set,
  // don't look at hints or options, and don't request a scalar epilogue.
  // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
  // LoopAccessInfo (due to code dependency and not being able to reliably get
  // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
  // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
  // versioning when the vectorization is forced, unlike hasOptSize. So revert
  // back to the old way and vectorize with versioning when forced. See D81345.)
  if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
                                                      PGSOQueryType::IRPass) &&
                          Hints.getForce() != LoopVectorizeHints::FK_Enabled))
    return CM_ScalarEpilogueNotAllowedOptSize;

  // 2) If set, obey the directives
  if (PreferPredicateOverEpilogue.getNumOccurrences()) {
    switch (PreferPredicateOverEpilogue) {
    case PreferPredicateTy::ScalarEpilogue:
      return CM_ScalarEpilogueAllowed;
    case PreferPredicateTy::PredicateElseScalarEpilogue:
      return CM_ScalarEpilogueNotNeededUsePredicate;
    case PreferPredicateTy::PredicateOrDontVectorize:
      return CM_ScalarEpilogueNotAllowedUsePredicate;
    };
  }

  // 3) If set, obey the hints
  switch (Hints.getPredicate()) {
  case LoopVectorizeHints::FK_Enabled:
    return CM_ScalarEpilogueNotNeededUsePredicate;
  case LoopVectorizeHints::FK_Disabled:
    return CM_ScalarEpilogueAllowed;
  };

  // 4) if the TTI hook indicates this is profitable, request predication.
  if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, &LVL, IAI))
    return CM_ScalarEpilogueNotNeededUsePredicate;

  return CM_ScalarEpilogueAllowed;
}

Value *VPTransformState::get(VPValue *Def, unsigned Part) {
  // If Values have been set for this Def return the one relevant for \p Part.
  if (hasVectorValue(Def, Part))
    return Data.PerPartOutput[Def][Part];

  if (!hasScalarValue(Def, {Part, 0})) {
    Value *IRV = Def->getLiveInIRValue();
    Value *B = ILV->getBroadcastInstrs(IRV);
    set(Def, B, Part);
    return B;
  }

  Value *ScalarValue = get(Def, {Part, 0});
  // If we aren't vectorizing, we can just copy the scalar map values over
  // to the vector map.
  if (VF.isScalar()) {
    set(Def, ScalarValue, Part);
    return ScalarValue;
  }

  bool IsUniform = vputils::isUniformAfterVectorization(Def);

  unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
  // Check if there is a scalar value for the selected lane.
  if (!hasScalarValue(Def, {Part, LastLane})) {
    // At the moment, VPWidenIntOrFpInductionRecipes and VPScalarIVStepsRecipes can also be uniform.
    assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
            isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe())) &&
           "unexpected recipe found to be invariant");
    IsUniform = true;
    LastLane = 0;
  }

  auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
  // Set the insert point after the last scalarized instruction or after the
  // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
  // will directly follow the scalar definitions.
  auto OldIP = Builder.saveIP();
  auto NewIP =
      isa<PHINode>(LastInst)
          ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
          : std::next(BasicBlock::iterator(LastInst));
  Builder.SetInsertPoint(&*NewIP);

  // However, if we are vectorizing, we need to construct the vector values.
  // If the value is known to be uniform after vectorization, we can just
  // broadcast the scalar value corresponding to lane zero for each unroll
  // iteration. Otherwise, we construct the vector values using
  // insertelement instructions. Since the resulting vectors are stored in
  // State, we will only generate the insertelements once.
  Value *VectorValue = nullptr;
  if (IsUniform) {
    VectorValue = ILV->getBroadcastInstrs(ScalarValue);
    set(Def, VectorValue, Part);
  } else {
    // Initialize packing with insertelements to start from undef.
    assert(!VF.isScalable() && "VF is assumed to be non scalable.");
    Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
    set(Def, Undef, Part);
    for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
      ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
    VectorValue = get(Def, Part);
  }
  Builder.restoreIP(OldIP);
  return VectorValue;
}

// Process the loop in the VPlan-native vectorization path. This path builds
// VPlan upfront in the vectorization pipeline, which allows to apply
// VPlan-to-VPlan transformations from the very beginning without modifying the
// input LLVM IR.
static bool processLoopInVPlanNativePath(
    Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
    LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
    TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
    OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
    ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
    LoopVectorizationRequirements &Requirements) {

  if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
    LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
    return false;
  }
  assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
  Function *F = L->getHeader()->getParent();
  InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());

  ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
      F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL, &IAI);

  LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
                                &Hints, IAI);
  // Use the planner for outer loop vectorization.
  // TODO: CM is not used at this point inside the planner. Turn CM into an
  // optional argument if we don't need it in the future.
  LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE);

  // Get user vectorization factor.
  ElementCount UserVF = Hints.getWidth();

  CM.collectElementTypesForWidening();

  // Plan how to best vectorize, return the best VF and its cost.
  const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);

  // If we are stress testing VPlan builds, do not attempt to generate vector
  // code. Masked vector code generation support will follow soon.
  // Also, do not attempt to vectorize if no vector code will be produced.
  if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
    return false;

  VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);

  {
    GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
                             F->getParent()->getDataLayout());
    InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
                           VF.Width, 1, LVL, &CM, BFI, PSI, Checks);
    LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
                      << L->getHeader()->getParent()->getName() << "\"\n");
    LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false);
  }

  // Mark the loop as already vectorized to avoid vectorizing again.
  Hints.setAlreadyVectorized();
  assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
  return true;
}

// Emit a remark if there are stores to floats that required a floating point
// extension. If the vectorized loop was generated with floating point there
// will be a performance penalty from the conversion overhead and the change in
// the vector width.
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
  SmallVector<Instruction *, 4> Worklist;
  for (BasicBlock *BB : L->getBlocks()) {
    for (Instruction &Inst : *BB) {
      if (auto *S = dyn_cast<StoreInst>(&Inst)) {
        if (S->getValueOperand()->getType()->isFloatTy())
          Worklist.push_back(S);
      }
    }
  }

  // Traverse the floating point stores upwards searching, for floating point
  // conversions.
  SmallPtrSet<const Instruction *, 4> Visited;
  SmallPtrSet<const Instruction *, 4> EmittedRemark;
  while (!Worklist.empty()) {
    auto *I = Worklist.pop_back_val();
    if (!L->contains(I))
      continue;
    if (!Visited.insert(I).second)
      continue;

    // Emit a remark if the floating point store required a floating
    // point conversion.
    // TODO: More work could be done to identify the root cause such as a
    // constant or a function return type and point the user to it.
    if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
      ORE->emit([&]() {
        return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
                                          I->getDebugLoc(), L->getHeader())
               << "floating point conversion changes vector width. "
               << "Mixed floating point precision requires an up/down "
               << "cast that will negatively impact performance.";
      });

    for (Use &Op : I->operands())
      if (auto *OpI = dyn_cast<Instruction>(Op))
        Worklist.push_back(OpI);
  }
}

static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks,
                                       VectorizationFactor &VF,
                                       std::optional<unsigned> VScale, Loop *L,
                                       ScalarEvolution &SE) {
  InstructionCost CheckCost = Checks.getCost();
  if (!CheckCost.isValid())
    return false;

  // When interleaving only scalar and vector cost will be equal, which in turn
  // would lead to a divide by 0. Fall back to hard threshold.
  if (VF.Width.isScalar()) {
    if (CheckCost > VectorizeMemoryCheckThreshold) {
      LLVM_DEBUG(
          dbgs()
          << "LV: Interleaving only is not profitable due to runtime checks\n");
      return false;
    }
    return true;
  }

  // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated.
  double ScalarC = *VF.ScalarCost.getValue();
  if (ScalarC == 0)
    return true;

  // First, compute the minimum iteration count required so that the vector
  // loop outperforms the scalar loop.
  //  The total cost of the scalar loop is
  //   ScalarC * TC
  //  where
  //  * TC is the actual trip count of the loop.
  //  * ScalarC is the cost of a single scalar iteration.
  //
  //  The total cost of the vector loop is
  //    RtC + VecC * (TC / VF) + EpiC
  //  where
  //  * RtC is the cost of the generated runtime checks
  //  * VecC is the cost of a single vector iteration.
  //  * TC is the actual trip count of the loop
  //  * VF is the vectorization factor
  //  * EpiCost is the cost of the generated epilogue, including the cost
  //    of the remaining scalar operations.
  //
  // Vectorization is profitable once the total vector cost is less than the
  // total scalar cost:
  //   RtC + VecC * (TC / VF) + EpiC <  ScalarC * TC
  //
  // Now we can compute the minimum required trip count TC as
  //   (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC
  //
  // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
  // the computations are performed on doubles, not integers and the result
  // is rounded up, hence we get an upper estimate of the TC.
  unsigned IntVF = VF.Width.getKnownMinValue();
  if (VF.Width.isScalable()) {
    unsigned AssumedMinimumVscale = 1;
    if (VScale)
      AssumedMinimumVscale = *VScale;
    IntVF *= AssumedMinimumVscale;
  }
  double VecCOverVF = double(*VF.Cost.getValue()) / IntVF;
  double RtC = *CheckCost.getValue();
  double MinTC1 = RtC / (ScalarC - VecCOverVF);

  // Second, compute a minimum iteration count so that the cost of the
  // runtime checks is only a fraction of the total scalar loop cost. This
  // adds a loop-dependent bound on the overhead incurred if the runtime
  // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
  // * TC. To bound the runtime check to be a fraction 1/X of the scalar
  // cost, compute
  //   RtC < ScalarC * TC * (1 / X)  ==>  RtC * X / ScalarC < TC
  double MinTC2 = RtC * 10 / ScalarC;

  // Now pick the larger minimum. If it is not a multiple of VF, choose the
  // next closest multiple of VF. This should partly compensate for ignoring
  // the epilogue cost.
  uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2));
  VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF));

  LLVM_DEBUG(
      dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
             << VF.MinProfitableTripCount << "\n");

  // Skip vectorization if the expected trip count is less than the minimum
  // required trip count.
  if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) {
    if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC),
                                VF.MinProfitableTripCount)) {
      LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
                           "trip count < minimum profitable VF ("
                        << *ExpectedTC << " < " << VF.MinProfitableTripCount
                        << ")\n");

      return false;
    }
  }
  return true;
}

LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
    : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
                               !EnableLoopInterleaving),
      VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
                              !EnableLoopVectorization) {}

bool LoopVectorizePass::processLoop(Loop *L) {
  assert((EnableVPlanNativePath || L->isInnermost()) &&
         "VPlan-native path is not enabled. Only process inner loops.");

#ifndef NDEBUG
  const std::string DebugLocStr = getDebugLocString(L);
#endif /* NDEBUG */

  LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
                    << L->getHeader()->getParent()->getName() << "' from "
                    << DebugLocStr << "\n");

  LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);

  LLVM_DEBUG(
      dbgs() << "LV: Loop hints:"
             << " force="
             << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
                     ? "disabled"
                     : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
                            ? "enabled"
                            : "?"))
             << " width=" << Hints.getWidth()
             << " interleave=" << Hints.getInterleave() << "\n");

  // Function containing loop
  Function *F = L->getHeader()->getParent();

  // Looking at the diagnostic output is the only way to determine if a loop
  // was vectorized (other than looking at the IR or machine code), so it
  // is important to generate an optimization remark for each loop. Most of
  // these messages are generated as OptimizationRemarkAnalysis. Remarks
  // generated as OptimizationRemark and OptimizationRemarkMissed are
  // less verbose reporting vectorized loops and unvectorized loops that may
  // benefit from vectorization, respectively.

  if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
    LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
    return false;
  }

  PredicatedScalarEvolution PSE(*SE, *L);

  // Check if it is legal to vectorize the loop.
  LoopVectorizationRequirements Requirements;
  LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
                                &Requirements, &Hints, DB, AC, BFI, PSI);
  if (!LVL.canVectorize(EnableVPlanNativePath)) {
    LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
    Hints.emitRemarkWithHints();
    return false;
  }

  // Entrance to the VPlan-native vectorization path. Outer loops are processed
  // here. They may require CFG and instruction level transformations before
  // even evaluating whether vectorization is profitable. Since we cannot modify
  // the incoming IR, we need to build VPlan upfront in the vectorization
  // pipeline.
  if (!L->isInnermost())
    return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
                                        ORE, BFI, PSI, Hints, Requirements);

  assert(L->isInnermost() && "Inner loop expected.");

  InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
  bool UseInterleaved = TTI->enableInterleavedAccessVectorization();

  // If an override option has been passed in for interleaved accesses, use it.
  if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
    UseInterleaved = EnableInterleavedMemAccesses;

  // Analyze interleaved memory accesses.
  if (UseInterleaved)
    IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));

  // Check the function attributes and profiles to find out if this function
  // should be optimized for size.
  ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
      F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL, &IAI);

  // Check the loop for a trip count threshold: vectorize loops with a tiny trip
  // count by optimizing for size, to minimize overheads.
  auto ExpectedTC = getSmallBestKnownTC(*SE, L);
  if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
    LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
                      << "This loop is worth vectorizing only if no scalar "
                      << "iteration overheads are incurred.");
    if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
      LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
    else {
      if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) {
        LLVM_DEBUG(dbgs() << "\n");
        SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
      } else {
        LLVM_DEBUG(dbgs() << " But the target considers the trip count too "
                             "small to consider vectorizing.\n");
        reportVectorizationFailure(
            "The trip count is below the minial threshold value.",
            "loop trip count is too low, avoiding vectorization",
            "LowTripCount", ORE, L);
        Hints.emitRemarkWithHints();
        return false;
      }
    }
  }

  // Check the function attributes to see if implicit floats or vectors are
  // allowed.
  if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
    reportVectorizationFailure(
        "Can't vectorize when the NoImplicitFloat attribute is used",
        "loop not vectorized due to NoImplicitFloat attribute",
        "NoImplicitFloat", ORE, L);
    Hints.emitRemarkWithHints();
    return false;
  }

  // Check if the target supports potentially unsafe FP vectorization.
  // FIXME: Add a check for the type of safety issue (denormal, signaling)
  // for the target we're vectorizing for, to make sure none of the
  // additional fp-math flags can help.
  if (Hints.isPotentiallyUnsafe() &&
      TTI->isFPVectorizationPotentiallyUnsafe()) {
    reportVectorizationFailure(
        "Potentially unsafe FP op prevents vectorization",
        "loop not vectorized due to unsafe FP support.",
        "UnsafeFP", ORE, L);
    Hints.emitRemarkWithHints();
    return false;
  }

  bool AllowOrderedReductions;
  // If the flag is set, use that instead and override the TTI behaviour.
  if (ForceOrderedReductions.getNumOccurrences() > 0)
    AllowOrderedReductions = ForceOrderedReductions;
  else
    AllowOrderedReductions = TTI->enableOrderedReductions();
  if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
    ORE->emit([&]() {
      auto *ExactFPMathInst = Requirements.getExactFPInst();
      return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
                                                 ExactFPMathInst->getDebugLoc(),
                                                 ExactFPMathInst->getParent())
             << "loop not vectorized: cannot prove it is safe to reorder "
                "floating-point operations";
    });
    LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
                         "reorder floating-point operations\n");
    Hints.emitRemarkWithHints();
    return false;
  }

  // Use the cost model.
  LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
                                F, &Hints, IAI);
  CM.collectValuesToIgnore();
  CM.collectElementTypesForWidening();

  // Use the planner for vectorization.
  LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE);

  // Get user vectorization factor and interleave count.
  ElementCount UserVF = Hints.getWidth();
  unsigned UserIC = Hints.getInterleave();

  // Plan how to best vectorize, return the best VF and its cost.
  std::optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);

  VectorizationFactor VF = VectorizationFactor::Disabled();
  unsigned IC = 1;

  GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
                           F->getParent()->getDataLayout());
  if (MaybeVF) {
    VF = *MaybeVF;
    // Select the interleave count.
    IC = CM.selectInterleaveCount(VF.Width, VF.Cost);

    unsigned SelectedIC = std::max(IC, UserIC);
    //  Optimistically generate runtime checks if they are needed. Drop them if
    //  they turn out to not be profitable.
    if (VF.Width.isVector() || SelectedIC > 1)
      Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);

    // Check if it is profitable to vectorize with runtime checks.
    bool ForceVectorization =
        Hints.getForce() == LoopVectorizeHints::FK_Enabled;
    if (!ForceVectorization &&
        !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L,
                                    *PSE.getSE())) {
      ORE->emit([&]() {
        return OptimizationRemarkAnalysisAliasing(
                   DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
                   L->getHeader())
               << "loop not vectorized: cannot prove it is safe to reorder "
                  "memory operations";
      });
      LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
      Hints.emitRemarkWithHints();
      return false;
    }
  }

  // Identify the diagnostic messages that should be produced.
  std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
  bool VectorizeLoop = true, InterleaveLoop = true;
  if (VF.Width.isScalar()) {
    LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
    VecDiagMsg = std::make_pair(
        "VectorizationNotBeneficial",
        "the cost-model indicates that vectorization is not beneficial");
    VectorizeLoop = false;
  }

  if (!MaybeVF && UserIC > 1) {
    // Tell the user interleaving was avoided up-front, despite being explicitly
    // requested.
    LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
                         "interleaving should be avoided up front\n");
    IntDiagMsg = std::make_pair(
        "InterleavingAvoided",
        "Ignoring UserIC, because interleaving was avoided up front");
    InterleaveLoop = false;
  } else if (IC == 1 && UserIC <= 1) {
    // Tell the user interleaving is not beneficial.
    LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
    IntDiagMsg = std::make_pair(
        "InterleavingNotBeneficial",
        "the cost-model indicates that interleaving is not beneficial");
    InterleaveLoop = false;
    if (UserIC == 1) {
      IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
      IntDiagMsg.second +=
          " and is explicitly disabled or interleave count is set to 1";
    }
  } else if (IC > 1 && UserIC == 1) {
    // Tell the user interleaving is beneficial, but it explicitly disabled.
    LLVM_DEBUG(
        dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
    IntDiagMsg = std::make_pair(
        "InterleavingBeneficialButDisabled",
        "the cost-model indicates that interleaving is beneficial "
        "but is explicitly disabled or interleave count is set to 1");
    InterleaveLoop = false;
  }

  // Override IC if user provided an interleave count.
  IC = UserIC > 0 ? UserIC : IC;

  // Emit diagnostic messages, if any.
  const char *VAPassName = Hints.vectorizeAnalysisPassName();
  if (!VectorizeLoop && !InterleaveLoop) {
    // Do not vectorize or interleaving the loop.
    ORE->emit([&]() {
      return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
                                      L->getStartLoc(), L->getHeader())
             << VecDiagMsg.second;
    });
    ORE->emit([&]() {
      return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
                                      L->getStartLoc(), L->getHeader())
             << IntDiagMsg.second;
    });
    return false;
  } else if (!VectorizeLoop && InterleaveLoop) {
    LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
                                        L->getStartLoc(), L->getHeader())
             << VecDiagMsg.second;
    });
  } else if (VectorizeLoop && !InterleaveLoop) {
    LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
                      << ") in " << DebugLocStr << '\n');
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
                                        L->getStartLoc(), L->getHeader())
             << IntDiagMsg.second;
    });
  } else if (VectorizeLoop && InterleaveLoop) {
    LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
                      << ") in " << DebugLocStr << '\n');
    LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
  }

  bool DisableRuntimeUnroll = false;
  MDNode *OrigLoopID = L->getLoopID();
  {
    using namespace ore;
    if (!VectorizeLoop) {
      assert(IC > 1 && "interleave count should not be 1 or 0");
      // If we decided that it is not legal to vectorize the loop, then
      // interleave it.
      InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
                                 &CM, BFI, PSI, Checks);

      VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
      LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false);

      ORE->emit([&]() {
        return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
                                  L->getHeader())
               << "interleaved loop (interleaved count: "
               << NV("InterleaveCount", IC) << ")";
      });
    } else {
      // If we decided that it is *legal* to vectorize the loop, then do it.

      // Consider vectorizing the epilogue too if it's profitable.
      VectorizationFactor EpilogueVF =
          CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
      if (EpilogueVF.Width.isVector()) {

        // The first pass vectorizes the main loop and creates a scalar epilogue
        // to be vectorized by executing the plan (potentially with a different
        // factor) again shortly afterwards.
        EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
        EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
                                           EPI, &LVL, &CM, BFI, PSI, Checks);

        VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
        LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
                        DT, true);
        ++LoopsVectorized;

        // Second pass vectorizes the epilogue and adjusts the control flow
        // edges from the first pass.
        EPI.MainLoopVF = EPI.EpilogueVF;
        EPI.MainLoopUF = EPI.EpilogueUF;
        EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
                                                 ORE, EPI, &LVL, &CM, BFI, PSI,
                                                 Checks);

        VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
        VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
        VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
        Header->setName("vec.epilog.vector.body");

        // Ensure that the start values for any VPWidenIntOrFpInductionRecipe,
        // VPWidenPointerInductionRecipe and VPReductionPHIRecipes are updated
        // before vectorizing the epilogue loop.
        for (VPRecipeBase &R : Header->phis()) {
          if (isa<VPCanonicalIVPHIRecipe>(&R))
            continue;

          Value *ResumeV = nullptr;
          // TODO: Move setting of resume values to prepareToExecute.
          if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
            ResumeV = MainILV.getReductionResumeValue(
                ReductionPhi->getRecurrenceDescriptor());
          } else {
            // Create induction resume values for both widened pointer and
            // integer/fp inductions and update the start value of the induction
            // recipes to use the resume value.
            PHINode *IndPhi = nullptr;
            const InductionDescriptor *ID;
            if (auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
              IndPhi = cast<PHINode>(Ind->getUnderlyingValue());
              ID = &Ind->getInductionDescriptor();
            } else {
              auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R);
              IndPhi = WidenInd->getPHINode();
              ID = &WidenInd->getInductionDescriptor();
            }

            ResumeV = MainILV.createInductionResumeValue(
                IndPhi, *ID, {EPI.MainLoopIterationCountCheck});
          }
          assert(ResumeV && "Must have a resume value");
          VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(ResumeV);
          cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
        }

        LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
                        DT, true);
        ++LoopsEpilogueVectorized;

        if (!MainILV.areSafetyChecksAdded())
          DisableRuntimeUnroll = true;
      } else {
        InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
                               VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
                               PSI, Checks);

        VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
        LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
        ++LoopsVectorized;

        // Add metadata to disable runtime unrolling a scalar loop when there
        // are no runtime checks about strides and memory. A scalar loop that is
        // rarely used is not worth unrolling.
        if (!LB.areSafetyChecksAdded())
          DisableRuntimeUnroll = true;
      }
      // Report the vectorization decision.
      ORE->emit([&]() {
        return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
                                  L->getHeader())
               << "vectorized loop (vectorization width: "
               << NV("VectorizationFactor", VF.Width)
               << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
      });
    }

    if (ORE->allowExtraAnalysis(LV_NAME))
      checkMixedPrecision(L, ORE);
  }

  std::optional<MDNode *> RemainderLoopID =
      makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
                                      LLVMLoopVectorizeFollowupEpilogue});
  if (RemainderLoopID) {
    L->setLoopID(*RemainderLoopID);
  } else {
    if (DisableRuntimeUnroll)
      AddRuntimeUnrollDisableMetaData(L);

    // Mark the loop as already vectorized to avoid vectorizing again.
    Hints.setAlreadyVectorized();
  }

  assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
  return true;
}

LoopVectorizeResult LoopVectorizePass::runImpl(
    Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
    DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
    DemandedBits &DB_, AssumptionCache &AC_, LoopAccessInfoManager &LAIs_,
    OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
  SE = &SE_;
  LI = &LI_;
  TTI = &TTI_;
  DT = &DT_;
  BFI = &BFI_;
  TLI = TLI_;
  AC = &AC_;
  LAIs = &LAIs_;
  DB = &DB_;
  ORE = &ORE_;
  PSI = PSI_;

  // Don't attempt if
  // 1. the target claims to have no vector registers, and
  // 2. interleaving won't help ILP.
  //
  // The second condition is necessary because, even if the target has no
  // vector registers, loop vectorization may still enable scalar
  // interleaving.
  if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
      TTI->getMaxInterleaveFactor(1) < 2)
    return LoopVectorizeResult(false, false);

  bool Changed = false, CFGChanged = false;

  // The vectorizer requires loops to be in simplified form.
  // Since simplification may add new inner loops, it has to run before the
  // legality and profitability checks. This means running the loop vectorizer
  // will simplify all loops, regardless of whether anything end up being
  // vectorized.
  for (const auto &L : *LI)
    Changed |= CFGChanged |=
        simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);

  // Build up a worklist of inner-loops to vectorize. This is necessary as
  // the act of vectorizing or partially unrolling a loop creates new loops
  // and can invalidate iterators across the loops.
  SmallVector<Loop *, 8> Worklist;

  for (Loop *L : *LI)
    collectSupportedLoops(*L, LI, ORE, Worklist);

  LoopsAnalyzed += Worklist.size();

  // Now walk the identified inner loops.
  while (!Worklist.empty()) {
    Loop *L = Worklist.pop_back_val();

    // For the inner loops we actually process, form LCSSA to simplify the
    // transform.
    Changed |= formLCSSARecursively(*L, *DT, LI, SE);

    Changed |= CFGChanged |= processLoop(L);

    if (Changed)
      LAIs->clear();
  }

  // Process each loop nest in the function.
  return LoopVectorizeResult(Changed, CFGChanged);
}

PreservedAnalyses LoopVectorizePass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
    auto &LI = AM.getResult<LoopAnalysis>(F);
    // There are no loops in the function. Return before computing other expensive
    // analyses.
    if (LI.empty())
      return PreservedAnalyses::all();
    auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
    auto &TTI = AM.getResult<TargetIRAnalysis>(F);
    auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
    auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
    auto &AC = AM.getResult<AssumptionAnalysis>(F);
    auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
    auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

    LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
    auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
    ProfileSummaryInfo *PSI =
        MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
    LoopVectorizeResult Result =
        runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AC, LAIs, ORE, PSI);
    if (!Result.MadeAnyChange)
      return PreservedAnalyses::all();
    PreservedAnalyses PA;

    // We currently do not preserve loopinfo/dominator analyses with outer loop
    // vectorization. Until this is addressed, mark these analyses as preserved
    // only for non-VPlan-native path.
    // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
    if (!EnableVPlanNativePath) {
      PA.preserve<LoopAnalysis>();
      PA.preserve<DominatorTreeAnalysis>();
    }

    if (Result.MadeCFGChange) {
      // Making CFG changes likely means a loop got vectorized. Indicate that
      // extra simplification passes should be run.
      // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
      // be run if runtime checks have been added.
      AM.getResult<ShouldRunExtraVectorPasses>(F);
      PA.preserve<ShouldRunExtraVectorPasses>();
    } else {
      PA.preserveSet<CFGAnalyses>();
    }
    return PA;
}

void LoopVectorizePass::printPipeline(
    raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
  static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
      OS, MapClassName2PassName);

  OS << "<";
  OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
  OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
  OS << ">";
}