1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
//===-- MemoryOpRemark.cpp - Auto-init remark analysis---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the analysis for the "auto-init" remark.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/MemoryOpRemark.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include <optional>
using namespace llvm;
using namespace llvm::ore;
MemoryOpRemark::~MemoryOpRemark() = default;
bool MemoryOpRemark::canHandle(const Instruction *I, const TargetLibraryInfo &TLI) {
if (isa<StoreInst>(I))
return true;
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::memcpy_inline:
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
return true;
default:
return false;
}
}
if (auto *CI = dyn_cast<CallInst>(I)) {
auto *CF = CI->getCalledFunction();
if (!CF)
return false;
if (!CF->hasName())
return false;
LibFunc LF;
bool KnownLibCall = TLI.getLibFunc(*CF, LF) && TLI.has(LF);
if (!KnownLibCall)
return false;
switch (LF) {
case LibFunc_memcpy_chk:
case LibFunc_mempcpy_chk:
case LibFunc_memset_chk:
case LibFunc_memmove_chk:
case LibFunc_memcpy:
case LibFunc_mempcpy:
case LibFunc_memset:
case LibFunc_memmove:
case LibFunc_bzero:
case LibFunc_bcopy:
return true;
default:
return false;
}
}
return false;
}
void MemoryOpRemark::visit(const Instruction *I) {
// For some of them, we can provide more information:
// For stores:
// * size
// * volatile / atomic
if (auto *SI = dyn_cast<StoreInst>(I)) {
visitStore(*SI);
return;
}
// For intrinsics:
// * user-friendly name
// * size
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
visitIntrinsicCall(*II);
return;
}
// For calls:
// * known/unknown function (e.g. the compiler knows bzero, but it doesn't
// know my_bzero)
// * memory operation size
if (auto *CI = dyn_cast<CallInst>(I)) {
visitCall(*CI);
return;
}
visitUnknown(*I);
}
std::string MemoryOpRemark::explainSource(StringRef Type) const {
return (Type + ".").str();
}
StringRef MemoryOpRemark::remarkName(RemarkKind RK) const {
switch (RK) {
case RK_Store:
return "MemoryOpStore";
case RK_Unknown:
return "MemoryOpUnknown";
case RK_IntrinsicCall:
return "MemoryOpIntrinsicCall";
case RK_Call:
return "MemoryOpCall";
}
llvm_unreachable("missing RemarkKind case");
}
static void inlineVolatileOrAtomicWithExtraArgs(bool *Inline, bool Volatile,
bool Atomic,
DiagnosticInfoIROptimization &R) {
if (Inline && *Inline)
R << " Inlined: " << NV("StoreInlined", true) << ".";
if (Volatile)
R << " Volatile: " << NV("StoreVolatile", true) << ".";
if (Atomic)
R << " Atomic: " << NV("StoreAtomic", true) << ".";
// Emit the false cases under ExtraArgs. This won't show them in the remark
// message but will end up in the serialized remarks.
if ((Inline && !*Inline) || !Volatile || !Atomic)
R << setExtraArgs();
if (Inline && !*Inline)
R << " Inlined: " << NV("StoreInlined", false) << ".";
if (!Volatile)
R << " Volatile: " << NV("StoreVolatile", false) << ".";
if (!Atomic)
R << " Atomic: " << NV("StoreAtomic", false) << ".";
}
static std::optional<uint64_t>
getSizeInBytes(std::optional<uint64_t> SizeInBits) {
if (!SizeInBits || *SizeInBits % 8 != 0)
return std::nullopt;
return *SizeInBits / 8;
}
template<typename ...Ts>
std::unique_ptr<DiagnosticInfoIROptimization>
MemoryOpRemark::makeRemark(Ts... Args) {
switch (diagnosticKind()) {
case DK_OptimizationRemarkAnalysis:
return std::make_unique<OptimizationRemarkAnalysis>(Args...);
case DK_OptimizationRemarkMissed:
return std::make_unique<OptimizationRemarkMissed>(Args...);
default:
llvm_unreachable("unexpected DiagnosticKind");
}
}
void MemoryOpRemark::visitStore(const StoreInst &SI) {
bool Volatile = SI.isVolatile();
bool Atomic = SI.isAtomic();
int64_t Size = DL.getTypeStoreSize(SI.getOperand(0)->getType());
auto R = makeRemark(RemarkPass.data(), remarkName(RK_Store), &SI);
*R << explainSource("Store") << "\nStore size: " << NV("StoreSize", Size)
<< " bytes.";
visitPtr(SI.getOperand(1), /*IsRead=*/false, *R);
inlineVolatileOrAtomicWithExtraArgs(nullptr, Volatile, Atomic, *R);
ORE.emit(*R);
}
void MemoryOpRemark::visitUnknown(const Instruction &I) {
auto R = makeRemark(RemarkPass.data(), remarkName(RK_Unknown), &I);
*R << explainSource("Initialization");
ORE.emit(*R);
}
void MemoryOpRemark::visitIntrinsicCall(const IntrinsicInst &II) {
SmallString<32> CallTo;
bool Atomic = false;
bool Inline = false;
switch (II.getIntrinsicID()) {
case Intrinsic::memcpy_inline:
CallTo = "memcpy";
Inline = true;
break;
case Intrinsic::memcpy:
CallTo = "memcpy";
break;
case Intrinsic::memmove:
CallTo = "memmove";
break;
case Intrinsic::memset:
CallTo = "memset";
break;
case Intrinsic::memcpy_element_unordered_atomic:
CallTo = "memcpy";
Atomic = true;
break;
case Intrinsic::memmove_element_unordered_atomic:
CallTo = "memmove";
Atomic = true;
break;
case Intrinsic::memset_element_unordered_atomic:
CallTo = "memset";
Atomic = true;
break;
default:
return visitUnknown(II);
}
auto R = makeRemark(RemarkPass.data(), remarkName(RK_IntrinsicCall), &II);
visitCallee(CallTo.str(), /*KnownLibCall=*/true, *R);
visitSizeOperand(II.getOperand(2), *R);
auto *CIVolatile = dyn_cast<ConstantInt>(II.getOperand(3));
// No such thing as a memory intrinsic that is both atomic and volatile.
bool Volatile = !Atomic && CIVolatile && CIVolatile->getZExtValue();
switch (II.getIntrinsicID()) {
case Intrinsic::memcpy_inline:
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memcpy_element_unordered_atomic:
visitPtr(II.getOperand(1), /*IsRead=*/true, *R);
visitPtr(II.getOperand(0), /*IsRead=*/false, *R);
break;
case Intrinsic::memset:
case Intrinsic::memset_element_unordered_atomic:
visitPtr(II.getOperand(0), /*IsRead=*/false, *R);
break;
}
inlineVolatileOrAtomicWithExtraArgs(&Inline, Volatile, Atomic, *R);
ORE.emit(*R);
}
void MemoryOpRemark::visitCall(const CallInst &CI) {
Function *F = CI.getCalledFunction();
if (!F)
return visitUnknown(CI);
LibFunc LF;
bool KnownLibCall = TLI.getLibFunc(*F, LF) && TLI.has(LF);
auto R = makeRemark(RemarkPass.data(), remarkName(RK_Call), &CI);
visitCallee(F, KnownLibCall, *R);
visitKnownLibCall(CI, LF, *R);
ORE.emit(*R);
}
template <typename FTy>
void MemoryOpRemark::visitCallee(FTy F, bool KnownLibCall,
DiagnosticInfoIROptimization &R) {
R << "Call to ";
if (!KnownLibCall)
R << NV("UnknownLibCall", "unknown") << " function ";
R << NV("Callee", F) << explainSource("");
}
void MemoryOpRemark::visitKnownLibCall(const CallInst &CI, LibFunc LF,
DiagnosticInfoIROptimization &R) {
switch (LF) {
default:
return;
case LibFunc_memset_chk:
case LibFunc_memset:
visitSizeOperand(CI.getOperand(2), R);
visitPtr(CI.getOperand(0), /*IsRead=*/false, R);
break;
case LibFunc_bzero:
visitSizeOperand(CI.getOperand(1), R);
visitPtr(CI.getOperand(0), /*IsRead=*/false, R);
break;
case LibFunc_memcpy_chk:
case LibFunc_mempcpy_chk:
case LibFunc_memmove_chk:
case LibFunc_memcpy:
case LibFunc_mempcpy:
case LibFunc_memmove:
case LibFunc_bcopy:
visitSizeOperand(CI.getOperand(2), R);
visitPtr(CI.getOperand(1), /*IsRead=*/true, R);
visitPtr(CI.getOperand(0), /*IsRead=*/false, R);
break;
}
}
void MemoryOpRemark::visitSizeOperand(Value *V, DiagnosticInfoIROptimization &R) {
if (auto *Len = dyn_cast<ConstantInt>(V)) {
uint64_t Size = Len->getZExtValue();
R << " Memory operation size: " << NV("StoreSize", Size) << " bytes.";
}
}
static std::optional<StringRef> nameOrNone(const Value *V) {
if (V->hasName())
return V->getName();
return std::nullopt;
}
void MemoryOpRemark::visitVariable(const Value *V,
SmallVectorImpl<VariableInfo> &Result) {
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
auto *Ty = GV->getValueType();
uint64_t Size = DL.getTypeSizeInBits(Ty).getFixedValue();
VariableInfo Var{nameOrNone(GV), Size};
if (!Var.isEmpty())
Result.push_back(std::move(Var));
return;
}
// If we find some information in the debug info, take that.
bool FoundDI = false;
// Try to get an llvm.dbg.declare, which has a DILocalVariable giving us the
// real debug info name and size of the variable.
for (const DbgVariableIntrinsic *DVI :
FindDbgAddrUses(const_cast<Value *>(V))) {
if (DILocalVariable *DILV = DVI->getVariable()) {
std::optional<uint64_t> DISize = getSizeInBytes(DILV->getSizeInBits());
VariableInfo Var{DILV->getName(), DISize};
if (!Var.isEmpty()) {
Result.push_back(std::move(Var));
FoundDI = true;
}
}
}
if (FoundDI) {
assert(!Result.empty());
return;
}
const auto *AI = dyn_cast<AllocaInst>(V);
if (!AI)
return;
// If not, get it from the alloca.
std::optional<TypeSize> TySize = AI->getAllocationSize(DL);
std::optional<uint64_t> Size =
TySize ? std::optional(TySize->getFixedValue()) : std::nullopt;
VariableInfo Var{nameOrNone(AI), Size};
if (!Var.isEmpty())
Result.push_back(std::move(Var));
}
void MemoryOpRemark::visitPtr(Value *Ptr, bool IsRead, DiagnosticInfoIROptimization &R) {
// Find if Ptr is a known variable we can give more information on.
SmallVector<Value *, 2> Objects;
getUnderlyingObjectsForCodeGen(Ptr, Objects);
SmallVector<VariableInfo, 2> VIs;
for (const Value *V : Objects)
visitVariable(V, VIs);
if (VIs.empty()) {
bool CanBeNull;
bool CanBeFreed;
uint64_t Size = Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
if (!Size)
return;
VIs.push_back({std::nullopt, Size});
}
R << (IsRead ? "\n Read Variables: " : "\n Written Variables: ");
for (unsigned i = 0; i < VIs.size(); ++i) {
const VariableInfo &VI = VIs[i];
assert(!VI.isEmpty() && "No extra content to display.");
if (i != 0)
R << ", ";
if (VI.Name)
R << NV(IsRead ? "RVarName" : "WVarName", *VI.Name);
else
R << NV(IsRead ? "RVarName" : "WVarName", "<unknown>");
if (VI.Size)
R << " (" << NV(IsRead ? "RVarSize" : "WVarSize", *VI.Size) << " bytes)";
}
R << ".";
}
bool AutoInitRemark::canHandle(const Instruction *I) {
if (!I->hasMetadata(LLVMContext::MD_annotation))
return false;
return any_of(I->getMetadata(LLVMContext::MD_annotation)->operands(),
[](const MDOperand &Op) {
return cast<MDString>(Op.get())->getString() == "auto-init";
});
}
std::string AutoInitRemark::explainSource(StringRef Type) const {
return (Type + " inserted by -ftrivial-auto-var-init.").str();
}
StringRef AutoInitRemark::remarkName(RemarkKind RK) const {
switch (RK) {
case RK_Store:
return "AutoInitStore";
case RK_Unknown:
return "AutoInitUnknownInstruction";
case RK_IntrinsicCall:
return "AutoInitIntrinsicCall";
case RK_Call:
return "AutoInitCall";
}
llvm_unreachable("missing RemarkKind case");
}
|