aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Utils/LoopPeel.cpp
blob: 2acbe9002309b7bef4ad3514b52e3e17ba7e09b4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
//===- LoopPeel.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loop Peeling Utilities.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <optional>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-peel"

STATISTIC(NumPeeled, "Number of loops peeled");

static cl::opt<unsigned> UnrollPeelCount(
    "unroll-peel-count", cl::Hidden,
    cl::desc("Set the unroll peeling count, for testing purposes"));

static cl::opt<bool>
    UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
                       cl::desc("Allows loops to be peeled when the dynamic "
                                "trip count is known to be low."));

static cl::opt<bool>
    UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
                                cl::init(false), cl::Hidden,
                                cl::desc("Allows loop nests to be peeled."));

static cl::opt<unsigned> UnrollPeelMaxCount(
    "unroll-peel-max-count", cl::init(7), cl::Hidden,
    cl::desc("Max average trip count which will cause loop peeling."));

static cl::opt<unsigned> UnrollForcePeelCount(
    "unroll-force-peel-count", cl::init(0), cl::Hidden,
    cl::desc("Force a peel count regardless of profiling information."));

static cl::opt<bool> DisableAdvancedPeeling(
    "disable-advanced-peeling", cl::init(false), cl::Hidden,
    cl::desc(
        "Disable advance peeling. Issues for convergent targets (D134803)."));

static const char *PeeledCountMetaData = "llvm.loop.peeled.count";

// Check whether we are capable of peeling this loop.
bool llvm::canPeel(const Loop *L) {
  // Make sure the loop is in simplified form
  if (!L->isLoopSimplifyForm())
    return false;
  if (!DisableAdvancedPeeling)
    return true;

  SmallVector<BasicBlock *, 4> Exits;
  L->getUniqueNonLatchExitBlocks(Exits);
  // The latch must either be the only exiting block or all non-latch exit
  // blocks have either a deopt or unreachable terminator or compose a chain of
  // blocks where the last one is either deopt or unreachable terminated. Both
  // deopt and unreachable terminators are a strong indication they are not
  // taken. Note that this is a profitability check, not a legality check. Also
  // note that LoopPeeling currently can only update the branch weights of latch
  // blocks and branch weights to blocks with deopt or unreachable do not need
  // updating.
  return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
}

namespace {

// As a loop is peeled, it may be the case that Phi nodes become
// loop-invariant (ie, known because there is only one choice).
// For example, consider the following function:
//   void g(int);
//   void binary() {
//     int x = 0;
//     int y = 0;
//     int a = 0;
//     for(int i = 0; i <100000; ++i) {
//       g(x);
//       x = y;
//       g(a);
//       y = a + 1;
//       a = 5;
//     }
//   }
// Peeling 3 iterations is beneficial because the values for x, y and a
// become known.  The IR for this loop looks something like the following:
//
//   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
//   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
//   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
//   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
//   ...
//   tail call void @_Z1gi(i32 signext %x)
//   tail call void @_Z1gi(i32 signext %a)
//   %add = add nuw nsw i32 %a, 1
//   %inc = add nuw nsw i32 %i, 1
//   %exitcond = icmp eq i32 %inc, 100000
//   br i1 %exitcond, label %for.cond.cleanup, label %for.body
//
// The arguments for the calls to g will become known after 3 iterations
// of the loop, because the phi nodes values become known after 3 iterations
// of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
// The first iteration has g(0), g(0); the second has g(0), g(5); the
// third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
// Now consider the phi nodes:
//   %a is a phi with constants so it is determined after iteration 1.
//   %y is a phi based on a constant and %a so it is determined on
//     the iteration after %a is determined, so iteration 2.
//   %x is a phi based on a constant and %y so it is determined on
//     the iteration after %y, so iteration 3.
//   %i is based on itself (and is an induction variable) so it is
//     never determined.
// This means that peeling off 3 iterations will result in being able to
// remove the phi nodes for %a, %y, and %x.  The arguments for the
// corresponding calls to g are determined and the code for computing
// x, y, and a can be removed.
//
// The PhiAnalyzer class calculates how many times a loop should be
// peeled based on the above analysis of the phi nodes in the loop while
// respecting the maximum specified.
class PhiAnalyzer {
public:
  PhiAnalyzer(const Loop &L, unsigned MaxIterations);

  // Calculate the sufficient minimum number of iterations of the loop to peel
  // such that phi instructions become determined (subject to allowable limits)
  std::optional<unsigned> calculateIterationsToPeel();

protected:
  using PeelCounter = std::optional<unsigned>;
  const PeelCounter Unknown = std::nullopt;

  // Add 1 respecting Unknown and return Unknown if result over MaxIterations
  PeelCounter addOne(PeelCounter PC) const {
    if (PC == Unknown)
      return Unknown;
    return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
  }

  // Calculate the number of iterations after which the given value
  // becomes an invariant.
  PeelCounter calculate(const Value &);

  const Loop &L;
  const unsigned MaxIterations;

  // Map of Values to number of iterations to invariance
  SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
};

PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
    : L(L), MaxIterations(MaxIterations) {
  assert(canPeel(&L) && "loop is not suitable for peeling");
  assert(MaxIterations > 0 && "no peeling is allowed?");
}

// This function calculates the number of iterations after which the value
// becomes an invariant. The pre-calculated values are memorized in a map.
// N.B. This number will be Unknown or <= MaxIterations.
// The function is calculated according to the following definition:
// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
//   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
//   G(%y) = 0 if %y is a loop invariant
//   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
//   G(%y) = TODO: if %y is an expression based on phis and loop invariants
//           The example looks like:
//           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
//           %y = phi(0, 5)
//           %a = %y + 1
//   G(%y) = Unknown otherwise (including phi not in header block)
PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
  // If we already know the answer, take it from the map.
  auto I = IterationsToInvariance.find(&V);
  if (I != IterationsToInvariance.end())
    return I->second;

  // Place Unknown to map to avoid infinite recursion. Such
  // cycles can never stop on an invariant.
  IterationsToInvariance[&V] = Unknown;

  if (L.isLoopInvariant(&V))
    // Loop invariant so known at start.
    return (IterationsToInvariance[&V] = 0);
  if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
    if (Phi->getParent() != L.getHeader()) {
      // Phi is not in header block so Unknown.
      assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
      return Unknown;
    }
    // We need to analyze the input from the back edge and add 1.
    Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
    PeelCounter Iterations = calculate(*Input);
    assert(IterationsToInvariance[Input] == Iterations &&
           "unexpected value saved");
    return (IterationsToInvariance[Phi] = addOne(Iterations));
  }
  if (const Instruction *I = dyn_cast<Instruction>(&V)) {
    if (isa<CmpInst>(I) || I->isBinaryOp()) {
      // Binary instructions get the max of the operands.
      PeelCounter LHS = calculate(*I->getOperand(0));
      if (LHS == Unknown)
        return Unknown;
      PeelCounter RHS = calculate(*I->getOperand(1));
      if (RHS == Unknown)
        return Unknown;
      return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
    }
    if (I->isCast())
      // Cast instructions get the value of the operand.
      return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
  }
  // TODO: handle more expressions

  // Everything else is Unknown.
  assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
  return Unknown;
}

std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
  unsigned Iterations = 0;
  for (auto &PHI : L.getHeader()->phis()) {
    PeelCounter ToInvariance = calculate(PHI);
    if (ToInvariance != Unknown) {
      assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
      Iterations = std::max(Iterations, *ToInvariance);
      if (Iterations == MaxIterations)
        break;
    }
  }
  assert((Iterations <= MaxIterations) && "bad result in phi analysis");
  return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
}

} // unnamed namespace

// Try to find any invariant memory reads that will become dereferenceable in
// the remainder loop after peeling. The load must also be used (transitively)
// by an exit condition. Returns the number of iterations to peel off (at the
// moment either 0 or 1).
static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
                                                      DominatorTree &DT,
                                                      AssumptionCache *AC) {
  // Skip loops with a single exiting block, because there should be no benefit
  // for the heuristic below.
  if (L.getExitingBlock())
    return 0;

  // All non-latch exit blocks must have an UnreachableInst terminator.
  // Otherwise the heuristic below may not be profitable.
  SmallVector<BasicBlock *, 4> Exits;
  L.getUniqueNonLatchExitBlocks(Exits);
  if (any_of(Exits, [](const BasicBlock *BB) {
        return !isa<UnreachableInst>(BB->getTerminator());
      }))
    return 0;

  // Now look for invariant loads that dominate the latch and are not known to
  // be dereferenceable. If there are such loads and no writes, they will become
  // dereferenceable in the loop if the first iteration is peeled off. Also
  // collect the set of instructions controlled by such loads. Only peel if an
  // exit condition uses (transitively) such a load.
  BasicBlock *Header = L.getHeader();
  BasicBlock *Latch = L.getLoopLatch();
  SmallPtrSet<Value *, 8> LoadUsers;
  const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
  for (BasicBlock *BB : L.blocks()) {
    for (Instruction &I : *BB) {
      if (I.mayWriteToMemory())
        return 0;

      auto Iter = LoadUsers.find(&I);
      if (Iter != LoadUsers.end()) {
        for (Value *U : I.users())
          LoadUsers.insert(U);
      }
      // Do not look for reads in the header; they can already be hoisted
      // without peeling.
      if (BB == Header)
        continue;
      if (auto *LI = dyn_cast<LoadInst>(&I)) {
        Value *Ptr = LI->getPointerOperand();
        if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
            !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
          for (Value *U : I.users())
            LoadUsers.insert(U);
      }
    }
  }
  SmallVector<BasicBlock *> ExitingBlocks;
  L.getExitingBlocks(ExitingBlocks);
  if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
        return LoadUsers.contains(Exiting->getTerminator());
      }))
    return 1;
  return 0;
}

// Return the number of iterations to peel off that make conditions in the
// body true/false. For example, if we peel 2 iterations off the loop below,
// the condition i < 2 can be evaluated at compile time.
//  for (i = 0; i < n; i++)
//    if (i < 2)
//      ..
//    else
//      ..
//   }
static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
                                         ScalarEvolution &SE) {
  assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
  unsigned DesiredPeelCount = 0;

  for (auto *BB : L.blocks()) {
    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || BI->isUnconditional())
      continue;

    // Ignore loop exit condition.
    if (L.getLoopLatch() == BB)
      continue;

    Value *Condition = BI->getCondition();
    Value *LeftVal, *RightVal;
    CmpInst::Predicate Pred;
    if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
      continue;

    const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
    const SCEV *RightSCEV = SE.getSCEV(RightVal);

    // Do not consider predicates that are known to be true or false
    // independently of the loop iteration.
    if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
      continue;

    // Check if we have a condition with one AddRec and one non AddRec
    // expression. Normalize LeftSCEV to be the AddRec.
    if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
      if (isa<SCEVAddRecExpr>(RightSCEV)) {
        std::swap(LeftSCEV, RightSCEV);
        Pred = ICmpInst::getSwappedPredicate(Pred);
      } else
        continue;
    }

    const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);

    // Avoid huge SCEV computations in the loop below, make sure we only
    // consider AddRecs of the loop we are trying to peel.
    if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
      continue;
    if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
        !SE.getMonotonicPredicateType(LeftAR, Pred))
      continue;

    // Check if extending the current DesiredPeelCount lets us evaluate Pred
    // or !Pred in the loop body statically.
    unsigned NewPeelCount = DesiredPeelCount;

    const SCEV *IterVal = LeftAR->evaluateAtIteration(
        SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);

    // If the original condition is not known, get the negated predicate
    // (which holds on the else branch) and check if it is known. This allows
    // us to peel of iterations that make the original condition false.
    if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
      Pred = ICmpInst::getInversePredicate(Pred);

    const SCEV *Step = LeftAR->getStepRecurrence(SE);
    const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
    auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
                                 &NewPeelCount]() {
      IterVal = NextIterVal;
      NextIterVal = SE.getAddExpr(IterVal, Step);
      NewPeelCount++;
    };

    auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
      return NewPeelCount < MaxPeelCount;
    };

    while (CanPeelOneMoreIteration() &&
           SE.isKnownPredicate(Pred, IterVal, RightSCEV))
      PeelOneMoreIteration();

    // With *that* peel count, does the predicate !Pred become known in the
    // first iteration of the loop body after peeling?
    if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
                             RightSCEV))
      continue; // If not, give up.

    // However, for equality comparisons, that isn't always sufficient to
    // eliminate the comparsion in loop body, we may need to peel one more
    // iteration. See if that makes !Pred become unknown again.
    if (ICmpInst::isEquality(Pred) &&
        !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
                             RightSCEV) &&
        !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
        SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
      if (!CanPeelOneMoreIteration())
        continue; // Need to peel one more iteration, but can't. Give up.
      PeelOneMoreIteration(); // Great!
    }

    DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
  }

  return DesiredPeelCount;
}

/// This "heuristic" exactly matches implicit behavior which used to exist
/// inside getLoopEstimatedTripCount.  It was added here to keep an
/// improvement inside that API from causing peeling to become more aggressive.
/// This should probably be removed.
static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return true;

  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
    return true;

  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
          LatchBR->getSuccessor(1) == L->getHeader()) &&
         "At least one edge out of the latch must go to the header");

  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getUniqueNonLatchExitBlocks(ExitBlocks);
  return any_of(ExitBlocks, [](const BasicBlock *EB) {
      return !EB->getTerminatingDeoptimizeCall();
    });
}


// Return the number of iterations we want to peel off.
void llvm::computePeelCount(Loop *L, unsigned LoopSize,
                            TargetTransformInfo::PeelingPreferences &PP,
                            unsigned TripCount, DominatorTree &DT,
                            ScalarEvolution &SE, AssumptionCache *AC,
                            unsigned Threshold) {
  assert(LoopSize > 0 && "Zero loop size is not allowed!");
  // Save the PP.PeelCount value set by the target in
  // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
  unsigned TargetPeelCount = PP.PeelCount;
  PP.PeelCount = 0;
  if (!canPeel(L))
    return;

  // Only try to peel innermost loops by default.
  // The constraint can be relaxed by the target in TTI.getPeelingPreferences
  // or by the flag -unroll-allow-loop-nests-peeling.
  if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
    return;

  // If the user provided a peel count, use that.
  bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
  if (UserPeelCount) {
    LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
                      << " iterations.\n");
    PP.PeelCount = UnrollForcePeelCount;
    PP.PeelProfiledIterations = true;
    return;
  }

  // Skip peeling if it's disabled.
  if (!PP.AllowPeeling)
    return;

  // Check that we can peel at least one iteration.
  if (2 * LoopSize > Threshold)
    return;

  unsigned AlreadyPeeled = 0;
  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
    AlreadyPeeled = *Peeled;
  // Stop if we already peeled off the maximum number of iterations.
  if (AlreadyPeeled >= UnrollPeelMaxCount)
    return;

  // Pay respect to limitations implied by loop size and the max peel count.
  unsigned MaxPeelCount = UnrollPeelMaxCount;
  MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);

  // Start the max computation with the PP.PeelCount value set by the target
  // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
  unsigned DesiredPeelCount = TargetPeelCount;

  // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
  // iterations of the loop. For this we compute the number for iterations after
  // which every Phi is guaranteed to become an invariant, and try to peel the
  // maximum number of iterations among these values, thus turning all those
  // Phis into invariants.
  if (MaxPeelCount > DesiredPeelCount) {
    // Check how many iterations are useful for resolving Phis
    auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
    if (NumPeels)
      DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
  }

  DesiredPeelCount = std::max(DesiredPeelCount,
                              countToEliminateCompares(*L, MaxPeelCount, SE));

  if (DesiredPeelCount == 0)
    DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);

  if (DesiredPeelCount > 0) {
    DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
    // Consider max peel count limitation.
    assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
    if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
      LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
                        << " iteration(s) to turn"
                        << " some Phis into invariants.\n");
      PP.PeelCount = DesiredPeelCount;
      PP.PeelProfiledIterations = false;
      return;
    }
  }

  // Bail if we know the statically calculated trip count.
  // In this case we rather prefer partial unrolling.
  if (TripCount)
    return;

  // Do not apply profile base peeling if it is disabled.
  if (!PP.PeelProfiledIterations)
    return;
  // If we don't know the trip count, but have reason to believe the average
  // trip count is low, peeling should be beneficial, since we will usually
  // hit the peeled section.
  // We only do this in the presence of profile information, since otherwise
  // our estimates of the trip count are not reliable enough.
  if (L->getHeader()->getParent()->hasProfileData()) {
    if (violatesLegacyMultiExitLoopCheck(L))
      return;
    std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
    if (!EstimatedTripCount)
      return;

    LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
                      << *EstimatedTripCount << "\n");

    if (*EstimatedTripCount) {
      if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
        unsigned PeelCount = *EstimatedTripCount;
        LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
        PP.PeelCount = PeelCount;
        return;
      }
      LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
      LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
      LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
      LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
      LLVM_DEBUG(dbgs() << "Max peel count by cost: "
                        << (Threshold / LoopSize - 1) << "\n");
    }
  }
}

struct WeightInfo {
  // Weights for current iteration.
  SmallVector<uint32_t> Weights;
  // Weights to subtract after each iteration.
  const SmallVector<uint32_t> SubWeights;
};

/// Update the branch weights of an exiting block of a peeled-off loop
/// iteration.
/// Let F is a weight of the edge to continue (fallthrough) into the loop.
/// Let E is a weight of the edge to an exit.
/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
/// go to exit.
/// Then, Estimated ExitCount = F / E.
/// For I-th (counting from 0) peeled off iteration we set the the weights for
/// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
/// The probability to go to exit 1/(EC-I) increases. At the same time
/// the estimated exit count in the remainder loop reduces by I.
/// To avoid dealing with division rounding we can just multiple both part
/// of weights to E and use weight as (F - I * E, E).
static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
  MDBuilder MDB(Term->getContext());
  Term->setMetadata(LLVMContext::MD_prof,
                    MDB.createBranchWeights(Info.Weights));
  for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
    if (SubWeight != 0)
      Info.Weights[Idx] = Info.Weights[Idx] > SubWeight
                              ? Info.Weights[Idx] - SubWeight
                              : 1;
}

/// Initialize the weights for all exiting blocks.
static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
                              Loop *L) {
  SmallVector<BasicBlock *> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  for (BasicBlock *ExitingBlock : ExitingBlocks) {
    Instruction *Term = ExitingBlock->getTerminator();
    SmallVector<uint32_t> Weights;
    if (!extractBranchWeights(*Term, Weights))
      continue;

    // See the comment on updateBranchWeights() for an explanation of what we
    // do here.
    uint32_t FallThroughWeights = 0;
    uint32_t ExitWeights = 0;
    for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
      if (L->contains(Succ))
        FallThroughWeights += Weight;
      else
        ExitWeights += Weight;
    }

    // Don't try to update weights for degenerate case.
    if (FallThroughWeights == 0)
      continue;

    SmallVector<uint32_t> SubWeights;
    for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
      if (!L->contains(Succ)) {
        // Exit weights stay the same.
        SubWeights.push_back(0);
        continue;
      }

      // Subtract exit weights on each iteration, distributed across all
      // fallthrough edges.
      double W = (double)Weight / (double)FallThroughWeights;
      SubWeights.push_back((uint32_t)(ExitWeights * W));
    }

    WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
  }
}

/// Update the weights of original exiting block after peeling off all
/// iterations.
static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) {
  MDBuilder MDB(Term->getContext());
  Term->setMetadata(LLVMContext::MD_prof,
                    MDB.createBranchWeights(Info.Weights));
}

/// Clones the body of the loop L, putting it between \p InsertTop and \p
/// InsertBot.
/// \param IterNumber The serial number of the iteration currently being
/// peeled off.
/// \param ExitEdges The exit edges of the original loop.
/// \param[out] NewBlocks A list of the blocks in the newly created clone
/// \param[out] VMap The value map between the loop and the new clone.
/// \param LoopBlocks A helper for DFS-traversal of the loop.
/// \param LVMap A value-map that maps instructions from the original loop to
/// instructions in the last peeled-off iteration.
static void cloneLoopBlocks(
    Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
    SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
    SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
    ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
    LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
    ScalarEvolution &SE) {
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  BasicBlock *PreHeader = L->getLoopPreheader();

  Function *F = Header->getParent();
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
  Loop *ParentLoop = L->getParentLoop();

  // For each block in the original loop, create a new copy,
  // and update the value map with the newly created values.
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
    NewBlocks.push_back(NewBB);

    // If an original block is an immediate child of the loop L, its copy
    // is a child of a ParentLoop after peeling. If a block is a child of
    // a nested loop, it is handled in the cloneLoop() call below.
    if (ParentLoop && LI->getLoopFor(*BB) == L)
      ParentLoop->addBasicBlockToLoop(NewBB, *LI);

    VMap[*BB] = NewBB;

    // If dominator tree is available, insert nodes to represent cloned blocks.
    if (DT) {
      if (Header == *BB)
        DT->addNewBlock(NewBB, InsertTop);
      else {
        DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
        // VMap must contain entry for IDom, as the iteration order is RPO.
        DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
      }
    }
  }

  {
    // Identify what other metadata depends on the cloned version. After
    // cloning, replace the metadata with the corrected version for both
    // memory instructions and noalias intrinsics.
    std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
    cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
                               Header->getContext(), Ext);
  }

  // Recursively create the new Loop objects for nested loops, if any,
  // to preserve LoopInfo.
  for (Loop *ChildLoop : *L) {
    cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
  }

  // Hook-up the control flow for the newly inserted blocks.
  // The new header is hooked up directly to the "top", which is either
  // the original loop preheader (for the first iteration) or the previous
  // iteration's exiting block (for every other iteration)
  InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));

  // Similarly, for the latch:
  // The original exiting edge is still hooked up to the loop exit.
  // The backedge now goes to the "bottom", which is either the loop's real
  // header (for the last peeled iteration) or the copied header of the next
  // iteration (for every other iteration)
  BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
  auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
  for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
    if (LatchTerm->getSuccessor(idx) == Header) {
      LatchTerm->setSuccessor(idx, InsertBot);
      break;
    }
  if (DT)
    DT->changeImmediateDominator(InsertBot, NewLatch);

  // The new copy of the loop body starts with a bunch of PHI nodes
  // that pick an incoming value from either the preheader, or the previous
  // loop iteration. Since this copy is no longer part of the loop, we
  // resolve this statically:
  // For the first iteration, we use the value from the preheader directly.
  // For any other iteration, we replace the phi with the value generated by
  // the immediately preceding clone of the loop body (which represents
  // the previous iteration).
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
    if (IterNumber == 0) {
      VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
    } else {
      Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
      if (LatchInst && L->contains(LatchInst))
        VMap[&*I] = LVMap[LatchInst];
      else
        VMap[&*I] = LatchVal;
    }
    NewPHI->eraseFromParent();
  }

  // Fix up the outgoing values - we need to add a value for the iteration
  // we've just created. Note that this must happen *after* the incoming
  // values are adjusted, since the value going out of the latch may also be
  // a value coming into the header.
  for (auto Edge : ExitEdges)
    for (PHINode &PHI : Edge.second->phis()) {
      Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
      Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
      if (LatchInst && L->contains(LatchInst))
        LatchVal = VMap[LatchVal];
      PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
      SE.forgetValue(&PHI);
    }

  // LastValueMap is updated with the values for the current loop
  // which are used the next time this function is called.
  for (auto KV : VMap)
    LVMap[KV.first] = KV.second;
}

TargetTransformInfo::PeelingPreferences
llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
                               const TargetTransformInfo &TTI,
                               std::optional<bool> UserAllowPeeling,
                               std::optional<bool> UserAllowProfileBasedPeeling,
                               bool UnrollingSpecficValues) {
  TargetTransformInfo::PeelingPreferences PP;

  // Set the default values.
  PP.PeelCount = 0;
  PP.AllowPeeling = true;
  PP.AllowLoopNestsPeeling = false;
  PP.PeelProfiledIterations = true;

  // Get the target specifc values.
  TTI.getPeelingPreferences(L, SE, PP);

  // User specified values using cl::opt.
  if (UnrollingSpecficValues) {
    if (UnrollPeelCount.getNumOccurrences() > 0)
      PP.PeelCount = UnrollPeelCount;
    if (UnrollAllowPeeling.getNumOccurrences() > 0)
      PP.AllowPeeling = UnrollAllowPeeling;
    if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
      PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
  }

  // User specifed values provided by argument.
  if (UserAllowPeeling)
    PP.AllowPeeling = *UserAllowPeeling;
  if (UserAllowProfileBasedPeeling)
    PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;

  return PP;
}

/// Peel off the first \p PeelCount iterations of loop \p L.
///
/// Note that this does not peel them off as a single straight-line block.
/// Rather, each iteration is peeled off separately, and needs to check the
/// exit condition.
/// For loops that dynamically execute \p PeelCount iterations or less
/// this provides a benefit, since the peeled off iterations, which account
/// for the bulk of dynamic execution, can be further simplified by scalar
/// optimizations.
bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
                    ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
                    bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
  assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
  assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");

  LoopBlocksDFS LoopBlocks(L);
  LoopBlocks.perform(LI);

  BasicBlock *Header = L->getHeader();
  BasicBlock *PreHeader = L->getLoopPreheader();
  BasicBlock *Latch = L->getLoopLatch();
  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
  L->getExitEdges(ExitEdges);

  // Remember dominators of blocks we might reach through exits to change them
  // later. Immediate dominator of such block might change, because we add more
  // routes which can lead to the exit: we can reach it from the peeled
  // iterations too.
  DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
  for (auto *BB : L->blocks()) {
    auto *BBDomNode = DT.getNode(BB);
    SmallVector<BasicBlock *, 16> ChildrenToUpdate;
    for (auto *ChildDomNode : BBDomNode->children()) {
      auto *ChildBB = ChildDomNode->getBlock();
      if (!L->contains(ChildBB))
        ChildrenToUpdate.push_back(ChildBB);
    }
    // The new idom of the block will be the nearest common dominator
    // of all copies of the previous idom. This is equivalent to the
    // nearest common dominator of the previous idom and the first latch,
    // which dominates all copies of the previous idom.
    BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
    for (auto *ChildBB : ChildrenToUpdate)
      NonLoopBlocksIDom[ChildBB] = NewIDom;
  }

  Function *F = Header->getParent();

  // Set up all the necessary basic blocks. It is convenient to split the
  // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
  // body, and a new preheader for the "real" loop.

  // Peeling the first iteration transforms.
  //
  // PreHeader:
  // ...
  // Header:
  //   LoopBody
  //   If (cond) goto Header
  // Exit:
  //
  // into
  //
  // InsertTop:
  //   LoopBody
  //   If (!cond) goto Exit
  // InsertBot:
  // NewPreHeader:
  // ...
  // Header:
  //  LoopBody
  //  If (cond) goto Header
  // Exit:
  //
  // Each following iteration will split the current bottom anchor in two,
  // and put the new copy of the loop body between these two blocks. That is,
  // after peeling another iteration from the example above, we'll split
  // InsertBot, and get:
  //
  // InsertTop:
  //   LoopBody
  //   If (!cond) goto Exit
  // InsertBot:
  //   LoopBody
  //   If (!cond) goto Exit
  // InsertBot.next:
  // NewPreHeader:
  // ...
  // Header:
  //  LoopBody
  //  If (cond) goto Header
  // Exit:

  BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
  BasicBlock *InsertBot =
      SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
  BasicBlock *NewPreHeader =
      SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);

  InsertTop->setName(Header->getName() + ".peel.begin");
  InsertBot->setName(Header->getName() + ".peel.next");
  NewPreHeader->setName(PreHeader->getName() + ".peel.newph");

  Instruction *LatchTerm =
      cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());

  // If we have branch weight information, we'll want to update it for the
  // newly created branches.
  DenseMap<Instruction *, WeightInfo> Weights;
  initBranchWeights(Weights, L);

  // Identify what noalias metadata is inside the loop: if it is inside the
  // loop, the associated metadata must be cloned for each iteration.
  SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
  identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);

  // For each peeled-off iteration, make a copy of the loop.
  for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
    SmallVector<BasicBlock *, 8> NewBlocks;
    ValueToValueMapTy VMap;

    cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
                    LoopBlocks, VMap, LVMap, &DT, LI,
                    LoopLocalNoAliasDeclScopes, *SE);

    // Remap to use values from the current iteration instead of the
    // previous one.
    remapInstructionsInBlocks(NewBlocks, VMap);

    // Update IDoms of the blocks reachable through exits.
    if (Iter == 0)
      for (auto BBIDom : NonLoopBlocksIDom)
        DT.changeImmediateDominator(BBIDom.first,
                                     cast<BasicBlock>(LVMap[BBIDom.second]));
#ifdef EXPENSIVE_CHECKS
    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif

    for (auto &[Term, Info] : Weights) {
      auto *TermCopy = cast<Instruction>(VMap[Term]);
      updateBranchWeights(TermCopy, Info);
    }

    // Remove Loop metadata from the latch branch instruction
    // because it is not the Loop's latch branch anymore.
    auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
    LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);

    InsertTop = InsertBot;
    InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
    InsertBot->setName(Header->getName() + ".peel.next");

    F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
              F->end());
  }

  // Now adjust the phi nodes in the loop header to get their initial values
  // from the last peeled-off iteration instead of the preheader.
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PHI = cast<PHINode>(I);
    Value *NewVal = PHI->getIncomingValueForBlock(Latch);
    Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
    if (LatchInst && L->contains(LatchInst))
      NewVal = LVMap[LatchInst];

    PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
  }

  for (const auto &[Term, Info] : Weights)
    fixupBranchWeights(Term, Info);

  // Update Metadata for count of peeled off iterations.
  unsigned AlreadyPeeled = 0;
  if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
    AlreadyPeeled = *Peeled;
  addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);

  if (Loop *ParentLoop = L->getParentLoop())
    L = ParentLoop;

  // We modified the loop, update SE.
  SE->forgetTopmostLoop(L);

#ifdef EXPENSIVE_CHECKS
  // Finally DomtTree must be correct.
  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif

  // FIXME: Incrementally update loop-simplify
  simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);

  NumPeeled++;

  return true;
}