1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does the inverse transformation of what LICM does.
// It traverses all of the instructions in the loop's preheader and sinks
// them to the loop body where frequency is lower than the loop's preheader.
// This pass is a reverse-transformation of LICM. It differs from the Sink
// pass in the following ways:
//
// * It only handles sinking of instructions from the loop's preheader to the
// loop's body
// * It uses alias set tracker to get more accurate alias info
// * It uses block frequency info to find the optimal sinking locations
//
// Overall algorithm:
//
// For I in Preheader:
// InsertBBs = BBs that uses I
// For BB in sorted(LoopBBs):
// DomBBs = BBs in InsertBBs that are dominated by BB
// if freq(DomBBs) > freq(BB)
// InsertBBs = UseBBs - DomBBs + BB
// For BB in InsertBBs:
// Insert I at BB's beginning
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopSink.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loopsink"
STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
static cl::opt<unsigned> SinkFrequencyPercentThreshold(
"sink-freq-percent-threshold", cl::Hidden, cl::init(90),
cl::desc("Do not sink instructions that require cloning unless they "
"execute less than this percent of the time."));
static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
"max-uses-for-sinking", cl::Hidden, cl::init(30),
cl::desc("Do not sink instructions that have too many uses."));
/// Return adjusted total frequency of \p BBs.
///
/// * If there is only one BB, sinking instruction will not introduce code
/// size increase. Thus there is no need to adjust the frequency.
/// * If there are more than one BB, sinking would lead to code size increase.
/// In this case, we add some "tax" to the total frequency to make it harder
/// to sink. E.g.
/// Freq(Preheader) = 100
/// Freq(BBs) = sum(50, 49) = 99
/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
/// BBs as the difference is too small to justify the code size increase.
/// To model this, The adjusted Freq(BBs) will be:
/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
BlockFrequencyInfo &BFI) {
BlockFrequency T = 0;
for (BasicBlock *B : BBs)
T += BFI.getBlockFreq(B);
if (BBs.size() > 1)
T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
return T;
}
/// Return a set of basic blocks to insert sinked instructions.
///
/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
///
/// * Inside the loop \p L
/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
/// that domintates the UseBB
/// * Has minimum total frequency that is no greater than preheader frequency
///
/// The purpose of the function is to find the optimal sinking points to
/// minimize execution cost, which is defined as "sum of frequency of
/// BBsToSinkInto".
/// As a result, the returned BBsToSinkInto needs to have minimum total
/// frequency.
/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
/// frequency, the optimal solution is not sinking (return empty set).
///
/// \p ColdLoopBBs is used to help find the optimal sinking locations.
/// It stores a list of BBs that is:
///
/// * Inside the loop \p L
/// * Has a frequency no larger than the loop's preheader
/// * Sorted by BB frequency
///
/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
/// caller.
static SmallPtrSet<BasicBlock *, 2>
findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
DominatorTree &DT, BlockFrequencyInfo &BFI) {
SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
if (UseBBs.size() == 0)
return BBsToSinkInto;
BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
// For every iteration:
// * Pick the ColdestBB from ColdLoopBBs
// * Find the set BBsDominatedByColdestBB that satisfy:
// - BBsDominatedByColdestBB is a subset of BBsToSinkInto
// - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
// * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
// BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
// BBsToSinkInto
for (BasicBlock *ColdestBB : ColdLoopBBs) {
BBsDominatedByColdestBB.clear();
for (BasicBlock *SinkedBB : BBsToSinkInto)
if (DT.dominates(ColdestBB, SinkedBB))
BBsDominatedByColdestBB.insert(SinkedBB);
if (BBsDominatedByColdestBB.size() == 0)
continue;
if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
BFI.getBlockFreq(ColdestBB)) {
for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
BBsToSinkInto.erase(DominatedBB);
}
BBsToSinkInto.insert(ColdestBB);
}
}
// Can't sink into blocks that have no valid insertion point.
for (BasicBlock *BB : BBsToSinkInto) {
if (BB->getFirstInsertionPt() == BB->end()) {
BBsToSinkInto.clear();
break;
}
}
// If the total frequency of BBsToSinkInto is larger than preheader frequency,
// do not sink.
if (adjustedSumFreq(BBsToSinkInto, BFI) >
BFI.getBlockFreq(L.getLoopPreheader()))
BBsToSinkInto.clear();
return BBsToSinkInto;
}
// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
// sinking is successful.
// \p LoopBlockNumber is used to sort the insertion blocks to ensure
// determinism.
static bool sinkInstruction(
Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
// Compute the set of blocks in loop L which contain a use of I.
SmallPtrSet<BasicBlock *, 2> BBs;
for (auto &U : I.uses()) {
Instruction *UI = cast<Instruction>(U.getUser());
// We cannot sink I to PHI-uses.
if (isa<PHINode>(UI))
return false;
// We cannot sink I if it has uses outside of the loop.
if (!L.contains(LI.getLoopFor(UI->getParent())))
return false;
BBs.insert(UI->getParent());
}
// findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
// BBs.size() to avoid expensive computation.
// FIXME: Handle code size growth for min_size and opt_size.
if (BBs.size() > MaxNumberOfUseBBsForSinking)
return false;
// Find the set of BBs that we should insert a copy of I.
SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
if (BBsToSinkInto.empty())
return false;
// Return if any of the candidate blocks to sink into is non-cold.
if (BBsToSinkInto.size() > 1 &&
!llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
return false;
// Copy the final BBs into a vector and sort them using the total ordering
// of the loop block numbers as iterating the set doesn't give a useful
// order. No need to stable sort as the block numbers are a total ordering.
SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
});
BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
// FIXME: Optimize the efficiency for cloned value replacement. The current
// implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(1)) {
assert(LoopBlockNumber.find(N)->second >
LoopBlockNumber.find(MoveBB)->second &&
"BBs not sorted!");
// Clone I and replace its uses.
Instruction *IC = I.clone();
IC->setName(I.getName());
IC->insertBefore(&*N->getFirstInsertionPt());
if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
// Create a new MemoryAccess and let MemorySSA set its defining access.
MemoryAccess *NewMemAcc =
MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
if (NewMemAcc) {
if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
MSSAU->insertDef(MemDef, /*RenameUses=*/true);
else {
auto *MemUse = cast<MemoryUse>(NewMemAcc);
MSSAU->insertUse(MemUse, /*RenameUses=*/true);
}
}
}
// Replaces uses of I with IC in N
I.replaceUsesWithIf(IC, [N](Use &U) {
return cast<Instruction>(U.getUser())->getParent() == N;
});
// Replaces uses of I with IC in blocks dominated by N
replaceDominatedUsesWith(&I, IC, DT, N);
LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
<< '\n');
NumLoopSunkCloned++;
}
LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
NumLoopSunk++;
I.moveBefore(&*MoveBB->getFirstInsertionPt());
if (MSSAU)
if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
MSSAU->getMemorySSA()->getMemoryAccess(&I)))
MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
return true;
}
/// Sinks instructions from loop's preheader to the loop body if the
/// sum frequency of inserted copy is smaller than preheader's frequency.
static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
DominatorTree &DT,
BlockFrequencyInfo &BFI,
MemorySSA &MSSA,
ScalarEvolution *SE) {
BasicBlock *Preheader = L.getLoopPreheader();
assert(Preheader && "Expected loop to have preheader");
assert(Preheader->getParent()->hasProfileData() &&
"Unexpected call when profile data unavailable.");
const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
// If there are no basic blocks with lower frequency than the preheader then
// we can avoid the detailed analysis as we will never find profitable sinking
// opportunities.
if (all_of(L.blocks(), [&](const BasicBlock *BB) {
return BFI.getBlockFreq(BB) > PreheaderFreq;
}))
return false;
MemorySSAUpdater MSSAU(&MSSA);
SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, &L, &MSSA);
bool Changed = false;
// Sort loop's basic blocks by frequency
SmallVector<BasicBlock *, 10> ColdLoopBBs;
SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
int i = 0;
for (BasicBlock *B : L.blocks())
if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
ColdLoopBBs.push_back(B);
LoopBlockNumber[B] = ++i;
}
llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
});
// Traverse preheader's instructions in reverse order because if A depends
// on B (A appears after B), A needs to be sunk first before B can be
// sinked.
for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) {
if (isa<PHINode>(&I))
continue;
// No need to check for instruction's operands are loop invariant.
assert(L.hasLoopInvariantOperands(&I) &&
"Insts in a loop's preheader should have loop invariant operands!");
if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags))
continue;
if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
&MSSAU)) {
Changed = true;
if (SE)
SE->forgetBlockAndLoopDispositions(&I);
}
}
return Changed;
}
PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
// Nothing to do if there are no loops.
if (LI.empty())
return PreservedAnalyses::all();
AAResults &AA = FAM.getResult<AAManager>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
// We want to do a postorder walk over the loops. Since loops are a tree this
// is equivalent to a reversed preorder walk and preorder is easy to compute
// without recursion. Since we reverse the preorder, we will visit siblings
// in reverse program order. This isn't expected to matter at all but is more
// consistent with sinking algorithms which generally work bottom-up.
SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
bool Changed = false;
do {
Loop &L = *PreorderLoops.pop_back_val();
BasicBlock *Preheader = L.getLoopPreheader();
if (!Preheader)
continue;
// Enable LoopSink only when runtime profile is available.
// With static profile, the sinking decision may be sub-optimal.
if (!Preheader->getParent()->hasProfileData())
continue;
// Note that we don't pass SCEV here because it is only used to invalidate
// loops in SCEV and we don't preserve (or request) SCEV at all making that
// unnecessary.
Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA,
/*ScalarEvolution*/ nullptr);
} while (!PreorderLoops.empty());
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<MemorySSAAnalysis>();
if (VerifyMemorySSA)
MSSA.verifyMemorySSA();
return PA;
}
namespace {
struct LegacyLoopSinkPass : public LoopPass {
static char ID;
LegacyLoopSinkPass() : LoopPass(ID) {
initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
// Enable LoopSink only when runtime profile is available.
// With static profile, the sinking decision may be sub-optimal.
if (!Preheader->getParent()->hasProfileData())
return false;
AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
bool Changed = sinkLoopInvariantInstructions(
*L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
MSSA, SE ? &SE->getSE() : nullptr);
if (VerifyMemorySSA)
MSSA.verifyMemorySSA();
return Changed;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
getLoopAnalysisUsage(AU);
AU.addRequired<MemorySSAWrapperPass>();
AU.addPreserved<MemorySSAWrapperPass>();
}
};
}
char LegacyLoopSinkPass::ID = 0;
INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
|