aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Scalar/LoopFuse.cpp
blob: 0eecec3737366f2fb3080bfe63289824545f6c7a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the loop fusion pass.
/// The implementation is largely based on the following document:
///
///       Code Transformations to Augment the Scope of Loop Fusion in a
///         Production Compiler
///       Christopher Mark Barton
///       MSc Thesis
///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
///
/// The general approach taken is to collect sets of control flow equivalent
/// loops and test whether they can be fused. The necessary conditions for
/// fusion are:
///    1. The loops must be adjacent (there cannot be any statements between
///       the two loops).
///    2. The loops must be conforming (they must execute the same number of
///       iterations).
///    3. The loops must be control flow equivalent (if one loop executes, the
///       other is guaranteed to execute).
///    4. There cannot be any negative distance dependencies between the loops.
/// If all of these conditions are satisfied, it is safe to fuse the loops.
///
/// This implementation creates FusionCandidates that represent the loop and the
/// necessary information needed by fusion. It then operates on the fusion
/// candidates, first confirming that the candidate is eligible for fusion. The
/// candidates are then collected into control flow equivalent sets, sorted in
/// dominance order. Each set of control flow equivalent candidates is then
/// traversed, attempting to fuse pairs of candidates in the set. If all
/// requirements for fusion are met, the two candidates are fused, creating a
/// new (fused) candidate which is then added back into the set to consider for
/// additional fusion.
///
/// This implementation currently does not make any modifications to remove
/// conditions for fusion. Code transformations to make loops conform to each of
/// the conditions for fusion are discussed in more detail in the document
/// above. These can be added to the current implementation in the future.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopFuse.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/CodeMoverUtils.h"
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"

using namespace llvm;

#define DEBUG_TYPE "loop-fusion"

STATISTIC(FuseCounter, "Loops fused");
STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
STATISTIC(InvalidPreheader, "Loop has invalid preheader");
STATISTIC(InvalidHeader, "Loop has invalid header");
STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
STATISTIC(InvalidLatch, "Loop has invalid latch");
STATISTIC(InvalidLoop, "Loop is invalid");
STATISTIC(AddressTakenBB, "Basic block has address taken");
STATISTIC(MayThrowException, "Loop may throw an exception");
STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
STATISTIC(UnknownTripCount, "Loop has unknown trip count");
STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
STATISTIC(NonAdjacent, "Loops are not adjacent");
STATISTIC(
    NonEmptyPreheader,
    "Loop has a non-empty preheader with instructions that cannot be moved");
STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
STATISTIC(NonIdenticalGuards, "Candidates have different guards");
STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
                             "instructions that cannot be moved");
STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
                              "instructions that cannot be moved");
STATISTIC(NotRotated, "Candidate is not rotated");
STATISTIC(OnlySecondCandidateIsGuarded,
          "The second candidate is guarded while the first one is not");
STATISTIC(NumHoistedInsts, "Number of hoisted preheader instructions.");
STATISTIC(NumSunkInsts, "Number of hoisted preheader instructions.");

enum FusionDependenceAnalysisChoice {
  FUSION_DEPENDENCE_ANALYSIS_SCEV,
  FUSION_DEPENDENCE_ANALYSIS_DA,
  FUSION_DEPENDENCE_ANALYSIS_ALL,
};

static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
    "loop-fusion-dependence-analysis",
    cl::desc("Which dependence analysis should loop fusion use?"),
    cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
                          "Use the scalar evolution interface"),
               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
                          "Use the dependence analysis interface"),
               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
                          "Use all available analyses")),
    cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL));

static cl::opt<unsigned> FusionPeelMaxCount(
    "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
    cl::desc("Max number of iterations to be peeled from a loop, such that "
             "fusion can take place"));

#ifndef NDEBUG
static cl::opt<bool>
    VerboseFusionDebugging("loop-fusion-verbose-debug",
                           cl::desc("Enable verbose debugging for Loop Fusion"),
                           cl::Hidden, cl::init(false));
#endif

namespace {
/// This class is used to represent a candidate for loop fusion. When it is
/// constructed, it checks the conditions for loop fusion to ensure that it
/// represents a valid candidate. It caches several parts of a loop that are
/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
/// of continually querying the underlying Loop to retrieve these values. It is
/// assumed these will not change throughout loop fusion.
///
/// The invalidate method should be used to indicate that the FusionCandidate is
/// no longer a valid candidate for fusion. Similarly, the isValid() method can
/// be used to ensure that the FusionCandidate is still valid for fusion.
struct FusionCandidate {
  /// Cache of parts of the loop used throughout loop fusion. These should not
  /// need to change throughout the analysis and transformation.
  /// These parts are cached to avoid repeatedly looking up in the Loop class.

  /// Preheader of the loop this candidate represents
  BasicBlock *Preheader;
  /// Header of the loop this candidate represents
  BasicBlock *Header;
  /// Blocks in the loop that exit the loop
  BasicBlock *ExitingBlock;
  /// The successor block of this loop (where the exiting blocks go to)
  BasicBlock *ExitBlock;
  /// Latch of the loop
  BasicBlock *Latch;
  /// The loop that this fusion candidate represents
  Loop *L;
  /// Vector of instructions in this loop that read from memory
  SmallVector<Instruction *, 16> MemReads;
  /// Vector of instructions in this loop that write to memory
  SmallVector<Instruction *, 16> MemWrites;
  /// Are all of the members of this fusion candidate still valid
  bool Valid;
  /// Guard branch of the loop, if it exists
  BranchInst *GuardBranch;
  /// Peeling Paramaters of the Loop.
  TTI::PeelingPreferences PP;
  /// Can you Peel this Loop?
  bool AbleToPeel;
  /// Has this loop been Peeled
  bool Peeled;

  /// Dominator and PostDominator trees are needed for the
  /// FusionCandidateCompare function, required by FusionCandidateSet to
  /// determine where the FusionCandidate should be inserted into the set. These
  /// are used to establish ordering of the FusionCandidates based on dominance.
  DominatorTree &DT;
  const PostDominatorTree *PDT;

  OptimizationRemarkEmitter &ORE;

  FusionCandidate(Loop *L, DominatorTree &DT, const PostDominatorTree *PDT,
                  OptimizationRemarkEmitter &ORE, TTI::PeelingPreferences PP)
      : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
        ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
        Latch(L->getLoopLatch()), L(L), Valid(true),
        GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
        Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {

    // Walk over all blocks in the loop and check for conditions that may
    // prevent fusion. For each block, walk over all instructions and collect
    // the memory reads and writes If any instructions that prevent fusion are
    // found, invalidate this object and return.
    for (BasicBlock *BB : L->blocks()) {
      if (BB->hasAddressTaken()) {
        invalidate();
        reportInvalidCandidate(AddressTakenBB);
        return;
      }

      for (Instruction &I : *BB) {
        if (I.mayThrow()) {
          invalidate();
          reportInvalidCandidate(MayThrowException);
          return;
        }
        if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
          if (SI->isVolatile()) {
            invalidate();
            reportInvalidCandidate(ContainsVolatileAccess);
            return;
          }
        }
        if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
          if (LI->isVolatile()) {
            invalidate();
            reportInvalidCandidate(ContainsVolatileAccess);
            return;
          }
        }
        if (I.mayWriteToMemory())
          MemWrites.push_back(&I);
        if (I.mayReadFromMemory())
          MemReads.push_back(&I);
      }
    }
  }

  /// Check if all members of the class are valid.
  bool isValid() const {
    return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
           !L->isInvalid() && Valid;
  }

  /// Verify that all members are in sync with the Loop object.
  void verify() const {
    assert(isValid() && "Candidate is not valid!!");
    assert(!L->isInvalid() && "Loop is invalid!");
    assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
    assert(Header == L->getHeader() && "Header is out of sync");
    assert(ExitingBlock == L->getExitingBlock() &&
           "Exiting Blocks is out of sync");
    assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
    assert(Latch == L->getLoopLatch() && "Latch is out of sync");
  }

  /// Get the entry block for this fusion candidate.
  ///
  /// If this fusion candidate represents a guarded loop, the entry block is the
  /// loop guard block. If it represents an unguarded loop, the entry block is
  /// the preheader of the loop.
  BasicBlock *getEntryBlock() const {
    if (GuardBranch)
      return GuardBranch->getParent();
    else
      return Preheader;
  }

  /// After Peeling the loop is modified quite a bit, hence all of the Blocks
  /// need to be updated accordingly.
  void updateAfterPeeling() {
    Preheader = L->getLoopPreheader();
    Header = L->getHeader();
    ExitingBlock = L->getExitingBlock();
    ExitBlock = L->getExitBlock();
    Latch = L->getLoopLatch();
    verify();
  }

  /// Given a guarded loop, get the successor of the guard that is not in the
  /// loop.
  ///
  /// This method returns the successor of the loop guard that is not located
  /// within the loop (i.e., the successor of the guard that is not the
  /// preheader).
  /// This method is only valid for guarded loops.
  BasicBlock *getNonLoopBlock() const {
    assert(GuardBranch && "Only valid on guarded loops.");
    assert(GuardBranch->isConditional() &&
           "Expecting guard to be a conditional branch.");
    if (Peeled)
      return GuardBranch->getSuccessor(1);
    return (GuardBranch->getSuccessor(0) == Preheader)
               ? GuardBranch->getSuccessor(1)
               : GuardBranch->getSuccessor(0);
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump() const {
    dbgs() << "\tGuardBranch: ";
    if (GuardBranch)
      dbgs() << *GuardBranch;
    else
      dbgs() << "nullptr";
    dbgs() << "\n"
           << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
           << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
           << "\n"
           << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
           << "\tExitingBB: "
           << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
           << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
           << "\n"
           << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
           << "\tEntryBlock: "
           << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
           << "\n";
  }
#endif

  /// Determine if a fusion candidate (representing a loop) is eligible for
  /// fusion. Note that this only checks whether a single loop can be fused - it
  /// does not check whether it is *legal* to fuse two loops together.
  bool isEligibleForFusion(ScalarEvolution &SE) const {
    if (!isValid()) {
      LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
      if (!Preheader)
        ++InvalidPreheader;
      if (!Header)
        ++InvalidHeader;
      if (!ExitingBlock)
        ++InvalidExitingBlock;
      if (!ExitBlock)
        ++InvalidExitBlock;
      if (!Latch)
        ++InvalidLatch;
      if (L->isInvalid())
        ++InvalidLoop;

      return false;
    }

    // Require ScalarEvolution to be able to determine a trip count.
    if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
                        << " trip count not computable!\n");
      return reportInvalidCandidate(UnknownTripCount);
    }

    if (!L->isLoopSimplifyForm()) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
                        << " is not in simplified form!\n");
      return reportInvalidCandidate(NotSimplifiedForm);
    }

    if (!L->isRotatedForm()) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
      return reportInvalidCandidate(NotRotated);
    }

    return true;
  }

private:
  // This is only used internally for now, to clear the MemWrites and MemReads
  // list and setting Valid to false. I can't envision other uses of this right
  // now, since once FusionCandidates are put into the FusionCandidateSet they
  // are immutable. Thus, any time we need to change/update a FusionCandidate,
  // we must create a new one and insert it into the FusionCandidateSet to
  // ensure the FusionCandidateSet remains ordered correctly.
  void invalidate() {
    MemWrites.clear();
    MemReads.clear();
    Valid = false;
  }

  bool reportInvalidCandidate(llvm::Statistic &Stat) const {
    using namespace ore;
    assert(L && Preheader && "Fusion candidate not initialized properly!");
#if LLVM_ENABLE_STATS
    ++Stat;
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
                                        L->getStartLoc(), Preheader)
             << "[" << Preheader->getParent()->getName() << "]: "
             << "Loop is not a candidate for fusion: " << Stat.getDesc());
#endif
    return false;
  }
};

struct FusionCandidateCompare {
  /// Comparison functor to sort two Control Flow Equivalent fusion candidates
  /// into dominance order.
  /// If LHS dominates RHS and RHS post-dominates LHS, return true;
  /// If RHS dominates LHS and LHS post-dominates RHS, return false;
  /// If both LHS and RHS are not dominating each other then, non-strictly
  /// post dominate check will decide the order of candidates. If RHS
  /// non-strictly post dominates LHS then, return true. If LHS non-strictly
  /// post dominates RHS then, return false. If both are non-strictly post
  /// dominate each other then, level in the post dominator tree will decide
  /// the order of candidates.
  bool operator()(const FusionCandidate &LHS,
                  const FusionCandidate &RHS) const {
    const DominatorTree *DT = &(LHS.DT);

    BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
    BasicBlock *RHSEntryBlock = RHS.getEntryBlock();

    // Do not save PDT to local variable as it is only used in asserts and thus
    // will trigger an unused variable warning if building without asserts.
    assert(DT && LHS.PDT && "Expecting valid dominator tree");

    // Do this compare first so if LHS == RHS, function returns false.
    if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
      // RHS dominates LHS
      // Verify LHS post-dominates RHS
      assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
      return false;
    }

    if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
      // Verify RHS Postdominates LHS
      assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
      return true;
    }

    // If two FusionCandidates are in the same level of dominator tree,
    // they will not dominate each other, but may still be control flow
    // equivalent. To sort those FusionCandidates, nonStrictlyPostDominate()
    // function is needed.
    bool WrongOrder =
        nonStrictlyPostDominate(LHSEntryBlock, RHSEntryBlock, DT, LHS.PDT);
    bool RightOrder =
        nonStrictlyPostDominate(RHSEntryBlock, LHSEntryBlock, DT, LHS.PDT);
    if (WrongOrder && RightOrder) {
      // If common predecessor of LHS and RHS post dominates both
      // FusionCandidates then, Order of FusionCandidate can be
      // identified by its level in post dominator tree.
      DomTreeNode *LNode = LHS.PDT->getNode(LHSEntryBlock);
      DomTreeNode *RNode = LHS.PDT->getNode(RHSEntryBlock);
      return LNode->getLevel() > RNode->getLevel();
    } else if (WrongOrder)
      return false;
    else if (RightOrder)
      return true;

    // If LHS does not non-strict Postdominate RHS and RHS does not non-strict
    // Postdominate LHS then, there is no dominance relationship between the
    // two FusionCandidates. Thus, they should not be in the same set together.
    llvm_unreachable(
        "No dominance relationship between these fusion candidates!");
  }
};

using LoopVector = SmallVector<Loop *, 4>;

// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
// dominates FC1 and FC1 post-dominates FC0.
// std::set was chosen because we want a sorted data structure with stable
// iterators. A subsequent patch to loop fusion will enable fusing non-adjacent
// loops by moving intervening code around. When this intervening code contains
// loops, those loops will be moved also. The corresponding FusionCandidates
// will also need to be moved accordingly. As this is done, having stable
// iterators will simplify the logic. Similarly, having an efficient insert that
// keeps the FusionCandidateSet sorted will also simplify the implementation.
using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;

#if !defined(NDEBUG)
static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                     const FusionCandidate &FC) {
  if (FC.isValid())
    OS << FC.Preheader->getName();
  else
    OS << "<Invalid>";

  return OS;
}

static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                     const FusionCandidateSet &CandSet) {
  for (const FusionCandidate &FC : CandSet)
    OS << FC << '\n';

  return OS;
}

static void
printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
  dbgs() << "Fusion Candidates: \n";
  for (const auto &CandidateSet : FusionCandidates) {
    dbgs() << "*** Fusion Candidate Set ***\n";
    dbgs() << CandidateSet;
    dbgs() << "****************************\n";
  }
}
#endif

/// Collect all loops in function at the same nest level, starting at the
/// outermost level.
///
/// This data structure collects all loops at the same nest level for a
/// given function (specified by the LoopInfo object). It starts at the
/// outermost level.
struct LoopDepthTree {
  using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
  using iterator = LoopsOnLevelTy::iterator;
  using const_iterator = LoopsOnLevelTy::const_iterator;

  LoopDepthTree(LoopInfo &LI) : Depth(1) {
    if (!LI.empty())
      LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
  }

  /// Test whether a given loop has been removed from the function, and thus is
  /// no longer valid.
  bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }

  /// Record that a given loop has been removed from the function and is no
  /// longer valid.
  void removeLoop(const Loop *L) { RemovedLoops.insert(L); }

  /// Descend the tree to the next (inner) nesting level
  void descend() {
    LoopsOnLevelTy LoopsOnNextLevel;

    for (const LoopVector &LV : *this)
      for (Loop *L : LV)
        if (!isRemovedLoop(L) && L->begin() != L->end())
          LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));

    LoopsOnLevel = LoopsOnNextLevel;
    RemovedLoops.clear();
    Depth++;
  }

  bool empty() const { return size() == 0; }
  size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
  unsigned getDepth() const { return Depth; }

  iterator begin() { return LoopsOnLevel.begin(); }
  iterator end() { return LoopsOnLevel.end(); }
  const_iterator begin() const { return LoopsOnLevel.begin(); }
  const_iterator end() const { return LoopsOnLevel.end(); }

private:
  /// Set of loops that have been removed from the function and are no longer
  /// valid.
  SmallPtrSet<const Loop *, 8> RemovedLoops;

  /// Depth of the current level, starting at 1 (outermost loops).
  unsigned Depth;

  /// Vector of loops at the current depth level that have the same parent loop
  LoopsOnLevelTy LoopsOnLevel;
};

#ifndef NDEBUG
static void printLoopVector(const LoopVector &LV) {
  dbgs() << "****************************\n";
  for (auto *L : LV)
    printLoop(*L, dbgs());
  dbgs() << "****************************\n";
}
#endif

struct LoopFuser {
private:
  // Sets of control flow equivalent fusion candidates for a given nest level.
  FusionCandidateCollection FusionCandidates;

  LoopDepthTree LDT;
  DomTreeUpdater DTU;

  LoopInfo &LI;
  DominatorTree &DT;
  DependenceInfo &DI;
  ScalarEvolution &SE;
  PostDominatorTree &PDT;
  OptimizationRemarkEmitter &ORE;
  AssumptionCache &AC;
  const TargetTransformInfo &TTI;

public:
  LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
            ScalarEvolution &SE, PostDominatorTree &PDT,
            OptimizationRemarkEmitter &ORE, const DataLayout &DL,
            AssumptionCache &AC, const TargetTransformInfo &TTI)
      : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
        DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}

  /// This is the main entry point for loop fusion. It will traverse the
  /// specified function and collect candidate loops to fuse, starting at the
  /// outermost nesting level and working inwards.
  bool fuseLoops(Function &F) {
#ifndef NDEBUG
    if (VerboseFusionDebugging) {
      LI.print(dbgs());
    }
#endif

    LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
                      << "\n");
    bool Changed = false;

    while (!LDT.empty()) {
      LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
                        << LDT.getDepth() << "\n";);

      for (const LoopVector &LV : LDT) {
        assert(LV.size() > 0 && "Empty loop set was build!");

        // Skip singleton loop sets as they do not offer fusion opportunities on
        // this level.
        if (LV.size() == 1)
          continue;
#ifndef NDEBUG
        if (VerboseFusionDebugging) {
          LLVM_DEBUG({
            dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
            printLoopVector(LV);
          });
        }
#endif

        collectFusionCandidates(LV);
        Changed |= fuseCandidates();
      }

      // Finished analyzing candidates at this level.
      // Descend to the next level and clear all of the candidates currently
      // collected. Note that it will not be possible to fuse any of the
      // existing candidates with new candidates because the new candidates will
      // be at a different nest level and thus not be control flow equivalent
      // with all of the candidates collected so far.
      LLVM_DEBUG(dbgs() << "Descend one level!\n");
      LDT.descend();
      FusionCandidates.clear();
    }

    if (Changed)
      LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););

#ifndef NDEBUG
    assert(DT.verify());
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
    return Changed;
  }

private:
  /// Determine if two fusion candidates are control flow equivalent.
  ///
  /// Two fusion candidates are control flow equivalent if when one executes,
  /// the other is guaranteed to execute. This is determined using dominators
  /// and post-dominators: if A dominates B and B post-dominates A then A and B
  /// are control-flow equivalent.
  bool isControlFlowEquivalent(const FusionCandidate &FC0,
                               const FusionCandidate &FC1) const {
    assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");

    return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
                                     DT, PDT);
  }

  /// Iterate over all loops in the given loop set and identify the loops that
  /// are eligible for fusion. Place all eligible fusion candidates into Control
  /// Flow Equivalent sets, sorted by dominance.
  void collectFusionCandidates(const LoopVector &LV) {
    for (Loop *L : LV) {
      TTI::PeelingPreferences PP =
          gatherPeelingPreferences(L, SE, TTI, std::nullopt, std::nullopt);
      FusionCandidate CurrCand(L, DT, &PDT, ORE, PP);
      if (!CurrCand.isEligibleForFusion(SE))
        continue;

      // Go through each list in FusionCandidates and determine if L is control
      // flow equivalent with the first loop in that list. If it is, append LV.
      // If not, go to the next list.
      // If no suitable list is found, start another list and add it to
      // FusionCandidates.
      bool FoundSet = false;

      for (auto &CurrCandSet : FusionCandidates) {
        if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
          CurrCandSet.insert(CurrCand);
          FoundSet = true;
#ifndef NDEBUG
          if (VerboseFusionDebugging)
            LLVM_DEBUG(dbgs() << "Adding " << CurrCand
                              << " to existing candidate set\n");
#endif
          break;
        }
      }
      if (!FoundSet) {
        // No set was found. Create a new set and add to FusionCandidates
#ifndef NDEBUG
        if (VerboseFusionDebugging)
          LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
#endif
        FusionCandidateSet NewCandSet;
        NewCandSet.insert(CurrCand);
        FusionCandidates.push_back(NewCandSet);
      }
      NumFusionCandidates++;
    }
  }

  /// Determine if it is beneficial to fuse two loops.
  ///
  /// For now, this method simply returns true because we want to fuse as much
  /// as possible (primarily to test the pass). This method will evolve, over
  /// time, to add heuristics for profitability of fusion.
  bool isBeneficialFusion(const FusionCandidate &FC0,
                          const FusionCandidate &FC1) {
    return true;
  }

  /// Determine if two fusion candidates have the same trip count (i.e., they
  /// execute the same number of iterations).
  ///
  /// This function will return a pair of values. The first is a boolean,
  /// stating whether or not the two candidates are known at compile time to
  /// have the same TripCount. The second is the difference in the two
  /// TripCounts. This information can be used later to determine whether or not
  /// peeling can be performed on either one of the candidates.
  std::pair<bool, std::optional<unsigned>>
  haveIdenticalTripCounts(const FusionCandidate &FC0,
                          const FusionCandidate &FC1) const {
    const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
    if (isa<SCEVCouldNotCompute>(TripCount0)) {
      UncomputableTripCount++;
      LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
      return {false, std::nullopt};
    }

    const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
    if (isa<SCEVCouldNotCompute>(TripCount1)) {
      UncomputableTripCount++;
      LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
      return {false, std::nullopt};
    }

    LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
                      << *TripCount1 << " are "
                      << (TripCount0 == TripCount1 ? "identical" : "different")
                      << "\n");

    if (TripCount0 == TripCount1)
      return {true, 0};

    LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
                         "determining the difference between trip counts\n");

    // Currently only considering loops with a single exit point
    // and a non-constant trip count.
    const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
    const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);

    // If any of the tripcounts are zero that means that loop(s) do not have
    // a single exit or a constant tripcount.
    if (TC0 == 0 || TC1 == 0) {
      LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
                           "have a constant number of iterations. Peeling "
                           "is not benefical\n");
      return {false, std::nullopt};
    }

    std::optional<unsigned> Difference;
    int Diff = TC0 - TC1;

    if (Diff > 0)
      Difference = Diff;
    else {
      LLVM_DEBUG(
          dbgs() << "Difference is less than 0. FC1 (second loop) has more "
                    "iterations than the first one. Currently not supported\n");
    }

    LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
                      << "\n");

    return {false, Difference};
  }

  void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
                           unsigned PeelCount) {
    assert(FC0.AbleToPeel && "Should be able to peel loop");

    LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
                      << " iterations of the first loop. \n");

    ValueToValueMapTy VMap;
    FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true, VMap);
    if (FC0.Peeled) {
      LLVM_DEBUG(dbgs() << "Done Peeling\n");

#ifndef NDEBUG
      auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);

      assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
             "Loops should have identical trip counts after peeling");
#endif

      FC0.PP.PeelCount += PeelCount;

      // Peeling does not update the PDT
      PDT.recalculate(*FC0.Preheader->getParent());

      FC0.updateAfterPeeling();

      // In this case the iterations of the loop are constant, so the first
      // loop will execute completely (will not jump from one of
      // the peeled blocks to the second loop). Here we are updating the
      // branch conditions of each of the peeled blocks, such that it will
      // branch to its successor which is not the preheader of the second loop
      // in the case of unguarded loops, or the succesors of the exit block of
      // the first loop otherwise. Doing this update will ensure that the entry
      // block of the first loop dominates the entry block of the second loop.
      BasicBlock *BB =
          FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
      if (BB) {
        SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
        SmallVector<Instruction *, 8> WorkList;
        for (BasicBlock *Pred : predecessors(BB)) {
          if (Pred != FC0.ExitBlock) {
            WorkList.emplace_back(Pred->getTerminator());
            TreeUpdates.emplace_back(
                DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
          }
        }
        // Cannot modify the predecessors inside the above loop as it will cause
        // the iterators to be nullptrs, causing memory errors.
        for (Instruction *CurrentBranch : WorkList) {
          BasicBlock *Succ = CurrentBranch->getSuccessor(0);
          if (Succ == BB)
            Succ = CurrentBranch->getSuccessor(1);
          ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
        }

        DTU.applyUpdates(TreeUpdates);
        DTU.flush();
      }
      LLVM_DEBUG(
          dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
                 << " iterations from the first loop.\n"
                    "Both Loops have the same number of iterations now.\n");
    }
  }

  /// Walk each set of control flow equivalent fusion candidates and attempt to
  /// fuse them. This does a single linear traversal of all candidates in the
  /// set. The conditions for legal fusion are checked at this point. If a pair
  /// of fusion candidates passes all legality checks, they are fused together
  /// and a new fusion candidate is created and added to the FusionCandidateSet.
  /// The original fusion candidates are then removed, as they are no longer
  /// valid.
  bool fuseCandidates() {
    bool Fused = false;
    LLVM_DEBUG(printFusionCandidates(FusionCandidates));
    for (auto &CandidateSet : FusionCandidates) {
      if (CandidateSet.size() < 2)
        continue;

      LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
                        << CandidateSet << "\n");

      for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
        assert(!LDT.isRemovedLoop(FC0->L) &&
               "Should not have removed loops in CandidateSet!");
        auto FC1 = FC0;
        for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
          assert(!LDT.isRemovedLoop(FC1->L) &&
                 "Should not have removed loops in CandidateSet!");

          LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
                     dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");

          FC0->verify();
          FC1->verify();

          // Check if the candidates have identical tripcounts (first value of
          // pair), and if not check the difference in the tripcounts between
          // the loops (second value of pair). The difference is not equal to
          // std::nullopt iff the loops iterate a constant number of times, and
          // have a single exit.
          std::pair<bool, std::optional<unsigned>> IdenticalTripCountRes =
              haveIdenticalTripCounts(*FC0, *FC1);
          bool SameTripCount = IdenticalTripCountRes.first;
          std::optional<unsigned> TCDifference = IdenticalTripCountRes.second;

          // Here we are checking that FC0 (the first loop) can be peeled, and
          // both loops have different tripcounts.
          if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
            if (*TCDifference > FusionPeelMaxCount) {
              LLVM_DEBUG(dbgs()
                         << "Difference in loop trip counts: " << *TCDifference
                         << " is greater than maximum peel count specificed: "
                         << FusionPeelMaxCount << "\n");
            } else {
              // Dependent on peeling being performed on the first loop, and
              // assuming all other conditions for fusion return true.
              SameTripCount = true;
            }
          }

          if (!SameTripCount) {
            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
                                 "counts. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonEqualTripCount);
            continue;
          }

          if (!isAdjacent(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs()
                       << "Fusion candidates are not adjacent. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
            continue;
          }

          if ((!FC0->GuardBranch && FC1->GuardBranch) ||
              (FC0->GuardBranch && !FC1->GuardBranch)) {
            LLVM_DEBUG(dbgs() << "The one of candidate is guarded while the "
                                 "another one is not. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(
                *FC0, *FC1, OnlySecondCandidateIsGuarded);
            continue;
          }

          // Ensure that FC0 and FC1 have identical guards.
          // If one (or both) are not guarded, this check is not necessary.
          if (FC0->GuardBranch && FC1->GuardBranch &&
              !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
                                 "guards. Not Fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonIdenticalGuards);
            continue;
          }

          if (FC0->GuardBranch) {
            assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");

            if (!isSafeToMoveBefore(*FC0->ExitBlock,
                                    *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
                                    &PDT, &DI)) {
              LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
                                   "instructions in exit block. Not fusing.\n");
              reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                         NonEmptyExitBlock);
              continue;
            }

            if (!isSafeToMoveBefore(
                    *FC1->GuardBranch->getParent(),
                    *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
                    &DI)) {
              LLVM_DEBUG(dbgs()
                         << "Fusion candidate contains unsafe "
                            "instructions in guard block. Not fusing.\n");
              reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                         NonEmptyGuardBlock);
              continue;
            }
          }

          // Check the dependencies across the loops and do not fuse if it would
          // violate them.
          if (!dependencesAllowFusion(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       InvalidDependencies);
            continue;
          }

          // If the second loop has instructions in the pre-header, attempt to
          // hoist them up to the first loop's pre-header or sink them into the
          // body of the second loop.
          SmallVector<Instruction *, 4> SafeToHoist;
          SmallVector<Instruction *, 4> SafeToSink;
          // At this point, this is the last remaining legality check.
          // Which means if we can make this pre-header empty, we can fuse
          // these loops
          if (!isEmptyPreheader(*FC1)) {
            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
                                 "preheader.\n");

            // If it is not safe to hoist/sink all instructions in the
            // pre-header, we cannot fuse these loops.
            if (!collectMovablePreheaderInsts(*FC0, *FC1, SafeToHoist,
                                              SafeToSink)) {
              LLVM_DEBUG(dbgs() << "Could not hoist/sink all instructions in "
                                   "Fusion Candidate Pre-header.\n"
                                << "Not Fusing.\n");
              reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                         NonEmptyPreheader);
              continue;
            }
          }

          bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
          LLVM_DEBUG(dbgs()
                     << "\tFusion appears to be "
                     << (BeneficialToFuse ? "" : "un") << "profitable!\n");
          if (!BeneficialToFuse) {
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       FusionNotBeneficial);
            continue;
          }
          // All analysis has completed and has determined that fusion is legal
          // and profitable. At this point, start transforming the code and
          // perform fusion.

          // Execute the hoist/sink operations on preheader instructions
          movePreheaderInsts(*FC0, *FC1, SafeToHoist, SafeToSink);

          LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
                            << *FC1 << "\n");

          FusionCandidate FC0Copy = *FC0;
          // Peel the loop after determining that fusion is legal. The Loops
          // will still be safe to fuse after the peeling is performed.
          bool Peel = TCDifference && *TCDifference > 0;
          if (Peel)
            peelFusionCandidate(FC0Copy, *FC1, *TCDifference);

          // Report fusion to the Optimization Remarks.
          // Note this needs to be done *before* performFusion because
          // performFusion will change the original loops, making it not
          // possible to identify them after fusion is complete.
          reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
                                               FuseCounter);

          FusionCandidate FusedCand(
              performFusion((Peel ? FC0Copy : *FC0), *FC1), DT, &PDT, ORE,
              FC0Copy.PP);
          FusedCand.verify();
          assert(FusedCand.isEligibleForFusion(SE) &&
                 "Fused candidate should be eligible for fusion!");

          // Notify the loop-depth-tree that these loops are not valid objects
          LDT.removeLoop(FC1->L);

          CandidateSet.erase(FC0);
          CandidateSet.erase(FC1);

          auto InsertPos = CandidateSet.insert(FusedCand);

          assert(InsertPos.second &&
                 "Unable to insert TargetCandidate in CandidateSet!");

          // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
          // of the FC1 loop will attempt to fuse the new (fused) loop with the
          // remaining candidates in the current candidate set.
          FC0 = FC1 = InsertPos.first;

          LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
                            << "\n");

          Fused = true;
        }
      }
    }
    return Fused;
  }

  // Returns true if the instruction \p I can be hoisted to the end of the
  // preheader of \p FC0. \p SafeToHoist contains the instructions that are
  // known to be safe to hoist. The instructions encountered that cannot be
  // hoisted are in \p NotHoisting.
  // TODO: Move functionality into CodeMoverUtils
  bool canHoistInst(Instruction &I,
                    const SmallVector<Instruction *, 4> &SafeToHoist,
                    const SmallVector<Instruction *, 4> &NotHoisting,
                    const FusionCandidate &FC0) const {
    const BasicBlock *FC0PreheaderTarget = FC0.Preheader->getSingleSuccessor();
    assert(FC0PreheaderTarget &&
           "Expected single successor for loop preheader.");

    for (Use &Op : I.operands()) {
      if (auto *OpInst = dyn_cast<Instruction>(Op)) {
        bool OpHoisted = is_contained(SafeToHoist, OpInst);
        // Check if we have already decided to hoist this operand. In this
        // case, it does not dominate FC0 *yet*, but will after we hoist it.
        if (!(OpHoisted || DT.dominates(OpInst, FC0PreheaderTarget))) {
          return false;
        }
      }
    }

    // PHIs in FC1's header only have FC0 blocks as predecessors. PHIs
    // cannot be hoisted and should be sunk to the exit of the fused loop.
    if (isa<PHINode>(I))
      return false;

    // If this isn't a memory inst, hoisting is safe
    if (!I.mayReadOrWriteMemory())
      return true;

    LLVM_DEBUG(dbgs() << "Checking if this mem inst can be hoisted.\n");
    for (Instruction *NotHoistedInst : NotHoisting) {
      if (auto D = DI.depends(&I, NotHoistedInst, true)) {
        // Dependency is not read-before-write, write-before-read or
        // write-before-write
        if (D->isFlow() || D->isAnti() || D->isOutput()) {
          LLVM_DEBUG(dbgs() << "Inst depends on an instruction in FC1's "
                               "preheader that is not being hoisted.\n");
          return false;
        }
      }
    }

    for (Instruction *ReadInst : FC0.MemReads) {
      if (auto D = DI.depends(ReadInst, &I, true)) {
        // Dependency is not read-before-write
        if (D->isAnti()) {
          LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC0.\n");
          return false;
        }
      }
    }

    for (Instruction *WriteInst : FC0.MemWrites) {
      if (auto D = DI.depends(WriteInst, &I, true)) {
        // Dependency is not write-before-read or write-before-write
        if (D->isFlow() || D->isOutput()) {
          LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC0.\n");
          return false;
        }
      }
    }
    return true;
  }

  // Returns true if the instruction \p I can be sunk to the top of the exit
  // block of \p FC1.
  // TODO: Move functionality into CodeMoverUtils
  bool canSinkInst(Instruction &I, const FusionCandidate &FC1) const {
    for (User *U : I.users()) {
      if (auto *UI{dyn_cast<Instruction>(U)}) {
        // Cannot sink if user in loop
        // If FC1 has phi users of this value, we cannot sink it into FC1.
        if (FC1.L->contains(UI)) {
          // Cannot hoist or sink this instruction. No hoisting/sinking
          // should take place, loops should not fuse
          return false;
        }
      }
    }

    // If this isn't a memory inst, sinking is safe
    if (!I.mayReadOrWriteMemory())
      return true;

    for (Instruction *ReadInst : FC1.MemReads) {
      if (auto D = DI.depends(&I, ReadInst, true)) {
        // Dependency is not write-before-read
        if (D->isFlow()) {
          LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC1.\n");
          return false;
        }
      }
    }

    for (Instruction *WriteInst : FC1.MemWrites) {
      if (auto D = DI.depends(&I, WriteInst, true)) {
        // Dependency is not write-before-write or read-before-write
        if (D->isOutput() || D->isAnti()) {
          LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC1.\n");
          return false;
        }
      }
    }

    return true;
  }

  /// Collect instructions in the \p FC1 Preheader that can be hoisted
  /// to the \p FC0 Preheader or sunk into the \p FC1 Body
  bool collectMovablePreheaderInsts(
      const FusionCandidate &FC0, const FusionCandidate &FC1,
      SmallVector<Instruction *, 4> &SafeToHoist,
      SmallVector<Instruction *, 4> &SafeToSink) const {
    BasicBlock *FC1Preheader = FC1.Preheader;
    // Save the instructions that are not being hoisted, so we know not to hoist
    // mem insts that they dominate.
    SmallVector<Instruction *, 4> NotHoisting;

    for (Instruction &I : *FC1Preheader) {
      // Can't move a branch
      if (&I == FC1Preheader->getTerminator())
        continue;
      // If the instruction has side-effects, give up.
      // TODO: The case of mayReadFromMemory we can handle but requires
      // additional work with a dependence analysis so for now we give
      // up on memory reads.
      if (I.mayThrow() || !I.willReturn()) {
        LLVM_DEBUG(dbgs() << "Inst: " << I << " may throw or won't return.\n");
        return false;
      }

      LLVM_DEBUG(dbgs() << "Checking Inst: " << I << "\n");

      if (I.isAtomic() || I.isVolatile()) {
        LLVM_DEBUG(
            dbgs() << "\tInstruction is volatile or atomic. Cannot move it.\n");
        return false;
      }

      if (canHoistInst(I, SafeToHoist, NotHoisting, FC0)) {
        SafeToHoist.push_back(&I);
        LLVM_DEBUG(dbgs() << "\tSafe to hoist.\n");
      } else {
        LLVM_DEBUG(dbgs() << "\tCould not hoist. Trying to sink...\n");
        NotHoisting.push_back(&I);

        if (canSinkInst(I, FC1)) {
          SafeToSink.push_back(&I);
          LLVM_DEBUG(dbgs() << "\tSafe to sink.\n");
        } else {
          LLVM_DEBUG(dbgs() << "\tCould not sink.\n");
          return false;
        }
      }
    }
    LLVM_DEBUG(
        dbgs() << "All preheader instructions could be sunk or hoisted!\n");
    return true;
  }

  /// Rewrite all additive recurrences in a SCEV to use a new loop.
  class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
  public:
    AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
                       bool UseMax = true)
        : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
          NewL(NewL) {}

    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
      const Loop *ExprL = Expr->getLoop();
      SmallVector<const SCEV *, 2> Operands;
      if (ExprL == &OldL) {
        append_range(Operands, Expr->operands());
        return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
      }

      if (OldL.contains(ExprL)) {
        bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
        if (!UseMax || !Pos || !Expr->isAffine()) {
          Valid = false;
          return Expr;
        }
        return visit(Expr->getStart());
      }

      for (const SCEV *Op : Expr->operands())
        Operands.push_back(visit(Op));
      return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
    }

    bool wasValidSCEV() const { return Valid; }

  private:
    bool Valid, UseMax;
    const Loop &OldL, &NewL;
  };

  /// Return false if the access functions of \p I0 and \p I1 could cause
  /// a negative dependence.
  bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
                            Instruction &I1, bool EqualIsInvalid) {
    Value *Ptr0 = getLoadStorePointerOperand(&I0);
    Value *Ptr1 = getLoadStorePointerOperand(&I1);
    if (!Ptr0 || !Ptr1)
      return false;

    const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
    const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
                        << *SCEVPtr1 << "\n");
#endif
    AddRecLoopReplacer Rewriter(SE, L0, L1);
    SCEVPtr0 = Rewriter.visit(SCEVPtr0);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
                        << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
#endif
    if (!Rewriter.wasValidSCEV())
      return false;

    // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
    //       L0) and the other is not. We could check if it is monotone and test
    //       the beginning and end value instead.

    BasicBlock *L0Header = L0.getHeader();
    auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
      const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
      if (!AddRec)
        return false;
      return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
             !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
    };
    if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
      return false;

    ICmpInst::Predicate Pred =
        EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
    bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
                        << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
                        << "\n");
#endif
    return IsAlwaysGE;
  }

  /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
  /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
  /// specified by @p DepChoice are used to determine this.
  bool dependencesAllowFusion(const FusionCandidate &FC0,
                              const FusionCandidate &FC1, Instruction &I0,
                              Instruction &I1, bool AnyDep,
                              FusionDependenceAnalysisChoice DepChoice) {
#ifndef NDEBUG
    if (VerboseFusionDebugging) {
      LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
                        << DepChoice << "\n");
    }
#endif
    switch (DepChoice) {
    case FUSION_DEPENDENCE_ANALYSIS_SCEV:
      return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
    case FUSION_DEPENDENCE_ANALYSIS_DA: {
      auto DepResult = DI.depends(&I0, &I1, true);
      if (!DepResult)
        return true;
#ifndef NDEBUG
      if (VerboseFusionDebugging) {
        LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
                   dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
                          << (DepResult->isOrdered() ? "true" : "false")
                          << "]\n");
        LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
                          << "\n");
      }
#endif

      if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
        LLVM_DEBUG(
            dbgs() << "TODO: Implement pred/succ dependence handling!\n");

      // TODO: Can we actually use the dependence info analysis here?
      return false;
    }

    case FUSION_DEPENDENCE_ANALYSIS_ALL:
      return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
                                    FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
             dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
                                    FUSION_DEPENDENCE_ANALYSIS_DA);
    }

    llvm_unreachable("Unknown fusion dependence analysis choice!");
  }

  /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
  bool dependencesAllowFusion(const FusionCandidate &FC0,
                              const FusionCandidate &FC1) {
    LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
                      << "\n");
    assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
    assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));

    for (Instruction *WriteL0 : FC0.MemWrites) {
      for (Instruction *WriteL1 : FC1.MemWrites)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
      for (Instruction *ReadL1 : FC1.MemReads)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
    }

    for (Instruction *WriteL1 : FC1.MemWrites) {
      for (Instruction *WriteL0 : FC0.MemWrites)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
      for (Instruction *ReadL0 : FC0.MemReads)
        if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
    }

    // Walk through all uses in FC1. For each use, find the reaching def. If the
    // def is located in FC0 then it is is not safe to fuse.
    for (BasicBlock *BB : FC1.L->blocks())
      for (Instruction &I : *BB)
        for (auto &Op : I.operands())
          if (Instruction *Def = dyn_cast<Instruction>(Op))
            if (FC0.L->contains(Def->getParent())) {
              InvalidDependencies++;
              return false;
            }

    return true;
  }

  /// Determine if two fusion candidates are adjacent in the CFG.
  ///
  /// This method will determine if there are additional basic blocks in the CFG
  /// between the exit of \p FC0 and the entry of \p FC1.
  /// If the two candidates are guarded loops, then it checks whether the
  /// non-loop successor of the \p FC0 guard branch is the entry block of \p
  /// FC1. If not, then the loops are not adjacent. If the two candidates are
  /// not guarded loops, then it checks whether the exit block of \p FC0 is the
  /// preheader of \p FC1.
  bool isAdjacent(const FusionCandidate &FC0,
                  const FusionCandidate &FC1) const {
    // If the successor of the guard branch is FC1, then the loops are adjacent
    if (FC0.GuardBranch)
      return FC0.getNonLoopBlock() == FC1.getEntryBlock();
    else
      return FC0.ExitBlock == FC1.getEntryBlock();
  }

  bool isEmptyPreheader(const FusionCandidate &FC) const {
    return FC.Preheader->size() == 1;
  }

  /// Hoist \p FC1 Preheader instructions to \p FC0 Preheader
  /// and sink others into the body of \p FC1.
  void movePreheaderInsts(const FusionCandidate &FC0,
                          const FusionCandidate &FC1,
                          SmallVector<Instruction *, 4> &HoistInsts,
                          SmallVector<Instruction *, 4> &SinkInsts) const {
    // All preheader instructions except the branch must be hoisted or sunk
    assert(HoistInsts.size() + SinkInsts.size() == FC1.Preheader->size() - 1 &&
           "Attempting to sink and hoist preheader instructions, but not all "
           "the preheader instructions are accounted for.");

    NumHoistedInsts += HoistInsts.size();
    NumSunkInsts += SinkInsts.size();

    LLVM_DEBUG(if (VerboseFusionDebugging) {
      if (!HoistInsts.empty())
        dbgs() << "Hoisting: \n";
      for (Instruction *I : HoistInsts)
        dbgs() << *I << "\n";
      if (!SinkInsts.empty())
        dbgs() << "Sinking: \n";
      for (Instruction *I : SinkInsts)
        dbgs() << *I << "\n";
    });

    for (Instruction *I : HoistInsts) {
      assert(I->getParent() == FC1.Preheader);
      I->moveBefore(FC0.Preheader->getTerminator());
    }
    // insert instructions in reverse order to maintain dominance relationship
    for (Instruction *I : reverse(SinkInsts)) {
      assert(I->getParent() == FC1.Preheader);
      I->moveBefore(&*FC1.ExitBlock->getFirstInsertionPt());
    }
  }

  /// Determine if two fusion candidates have identical guards
  ///
  /// This method will determine if two fusion candidates have the same guards.
  /// The guards are considered the same if:
  ///   1. The instructions to compute the condition used in the compare are
  ///      identical.
  ///   2. The successors of the guard have the same flow into/around the loop.
  /// If the compare instructions are identical, then the first successor of the
  /// guard must go to the same place (either the preheader of the loop or the
  /// NonLoopBlock). In other words, the the first successor of both loops must
  /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
  /// the NonLoopBlock). The same must be true for the second successor.
  bool haveIdenticalGuards(const FusionCandidate &FC0,
                           const FusionCandidate &FC1) const {
    assert(FC0.GuardBranch && FC1.GuardBranch &&
           "Expecting FC0 and FC1 to be guarded loops.");

    if (auto FC0CmpInst =
            dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
      if (auto FC1CmpInst =
              dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
        if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
          return false;

    // The compare instructions are identical.
    // Now make sure the successor of the guards have the same flow into/around
    // the loop
    if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
      return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
    else
      return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
  }

  /// Modify the latch branch of FC to be unconditional since successors of the
  /// branch are the same.
  void simplifyLatchBranch(const FusionCandidate &FC) const {
    BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
    if (FCLatchBranch) {
      assert(FCLatchBranch->isConditional() &&
             FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
             "Expecting the two successors of FCLatchBranch to be the same");
      BranchInst *NewBranch =
          BranchInst::Create(FCLatchBranch->getSuccessor(0));
      ReplaceInstWithInst(FCLatchBranch, NewBranch);
    }
  }

  /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
  /// successor, then merge FC0.Latch with its unique successor.
  void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
    moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
    if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
      MergeBlockIntoPredecessor(Succ, &DTU, &LI);
      DTU.flush();
    }
  }

  /// Fuse two fusion candidates, creating a new fused loop.
  ///
  /// This method contains the mechanics of fusing two loops, represented by \p
  /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
  /// postdominates \p FC0 (making them control flow equivalent). It also
  /// assumes that the other conditions for fusion have been met: adjacent,
  /// identical trip counts, and no negative distance dependencies exist that
  /// would prevent fusion. Thus, there is no checking for these conditions in
  /// this method.
  ///
  /// Fusion is performed by rewiring the CFG to update successor blocks of the
  /// components of tho loop. Specifically, the following changes are done:
  ///
  ///   1. The preheader of \p FC1 is removed as it is no longer necessary
  ///   (because it is currently only a single statement block).
  ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
  ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
  ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
  ///
  /// All of these modifications are done with dominator tree updates, thus
  /// keeping the dominator (and post dominator) information up-to-date.
  ///
  /// This can be improved in the future by actually merging blocks during
  /// fusion. For example, the preheader of \p FC1 can be merged with the
  /// preheader of \p FC0. This would allow loops with more than a single
  /// statement in the preheader to be fused. Similarly, the latch blocks of the
  /// two loops could also be fused into a single block. This will require
  /// analysis to prove it is safe to move the contents of the block past
  /// existing code, which currently has not been implemented.
  Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
    assert(FC0.isValid() && FC1.isValid() &&
           "Expecting valid fusion candidates");

    LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
               dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););

    // Move instructions from the preheader of FC1 to the end of the preheader
    // of FC0.
    moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);

    // Fusing guarded loops is handled slightly differently than non-guarded
    // loops and has been broken out into a separate method instead of trying to
    // intersperse the logic within a single method.
    if (FC0.GuardBranch)
      return fuseGuardedLoops(FC0, FC1);

    assert(FC1.Preheader ==
           (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
    assert(FC1.Preheader->size() == 1 &&
           FC1.Preheader->getSingleSuccessor() == FC1.Header);

    // Remember the phi nodes originally in the header of FC0 in order to rewire
    // them later. However, this is only necessary if the new loop carried
    // values might not dominate the exiting branch. While we do not generally
    // test if this is the case but simply insert intermediate phi nodes, we
    // need to make sure these intermediate phi nodes have different
    // predecessors. To this end, we filter the special case where the exiting
    // block is the latch block of the first loop. Nothing needs to be done
    // anyway as all loop carried values dominate the latch and thereby also the
    // exiting branch.
    SmallVector<PHINode *, 8> OriginalFC0PHIs;
    if (FC0.ExitingBlock != FC0.Latch)
      for (PHINode &PHI : FC0.Header->phis())
        OriginalFC0PHIs.push_back(&PHI);

    // Replace incoming blocks for header PHIs first.
    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);

    // Then modify the control flow and update DT and PDT.
    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;

    // The old exiting block of the first loop (FC0) has to jump to the header
    // of the second as we need to execute the code in the second header block
    // regardless of the trip count. That is, if the trip count is 0, so the
    // back edge is never taken, we still have to execute both loop headers,
    // especially (but not only!) if the second is a do-while style loop.
    // However, doing so might invalidate the phi nodes of the first loop as
    // the new values do only need to dominate their latch and not the exiting
    // predicate. To remedy this potential problem we always introduce phi
    // nodes in the header of the second loop later that select the loop carried
    // value, if the second header was reached through an old latch of the
    // first, or undef otherwise. This is sound as exiting the first implies the
    // second will exit too, __without__ taking the back-edge. [Their
    // trip-counts are equal after all.
    // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
    // to FC1.Header? I think this is basically what the three sequences are
    // trying to accomplish; however, doing this directly in the CFG may mean
    // the DT/PDT becomes invalid
    if (!FC0.Peeled) {
      FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
                                                           FC1.Header);
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
    } else {
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));

      // Remove the ExitBlock of the first Loop (also not needed)
      FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
                                                           FC1.Header);
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
      FC0.ExitBlock->getTerminator()->eraseFromParent();
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
      new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
    }

    // The pre-header of L1 is not necessary anymore.
    assert(pred_empty(FC1.Preheader));
    FC1.Preheader->getTerminator()->eraseFromParent();
    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1.Preheader, FC1.Header));

    // Moves the phi nodes from the second to the first loops header block.
    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
      if (SE.isSCEVable(PHI->getType()))
        SE.forgetValue(PHI);
      if (PHI->hasNUsesOrMore(1))
        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
      else
        PHI->eraseFromParent();
    }

    // Introduce new phi nodes in the second loop header to ensure
    // exiting the first and jumping to the header of the second does not break
    // the SSA property of the phis originally in the first loop. See also the
    // comment above.
    Instruction *L1HeaderIP = &FC1.Header->front();
    for (PHINode *LCPHI : OriginalFC0PHIs) {
      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
      assert(L1LatchBBIdx >= 0 &&
             "Expected loop carried value to be rewired at this point!");

      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);

      PHINode *L1HeaderPHI = PHINode::Create(
          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
                               FC0.ExitingBlock);

      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
    }

    // Replace latch terminator destinations.
    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);

    // Modify the latch branch of FC0 to be unconditional as both successors of
    // the branch are the same.
    simplifyLatchBranch(FC0);

    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
    // performed the updates above.
    if (FC0.Latch != FC0.ExitingBlock)
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.Latch, FC1.Header));

    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC0.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
                                                       FC1.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC1.Latch, FC1.Header));

    // Update DT/PDT
    DTU.applyUpdates(TreeUpdates);

    LI.removeBlock(FC1.Preheader);
    DTU.deleteBB(FC1.Preheader);
    if (FC0.Peeled) {
      LI.removeBlock(FC0.ExitBlock);
      DTU.deleteBB(FC0.ExitBlock);
    }

    DTU.flush();

    // Is there a way to keep SE up-to-date so we don't need to forget the loops
    // and rebuild the information in subsequent passes of fusion?
    // Note: Need to forget the loops before merging the loop latches, as
    // mergeLatch may remove the only block in FC1.
    SE.forgetLoop(FC1.L);
    SE.forgetLoop(FC0.L);
    SE.forgetLoopDispositions();

    // Move instructions from FC0.Latch to FC1.Latch.
    // Note: mergeLatch requires an updated DT.
    mergeLatch(FC0, FC1);

    // Merge the loops.
    SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
    for (BasicBlock *BB : Blocks) {
      FC0.L->addBlockEntry(BB);
      FC1.L->removeBlockFromLoop(BB);
      if (LI.getLoopFor(BB) != FC1.L)
        continue;
      LI.changeLoopFor(BB, FC0.L);
    }
    while (!FC1.L->isInnermost()) {
      const auto &ChildLoopIt = FC1.L->begin();
      Loop *ChildLoop = *ChildLoopIt;
      FC1.L->removeChildLoop(ChildLoopIt);
      FC0.L->addChildLoop(ChildLoop);
    }

    // Delete the now empty loop L1.
    LI.erase(FC1.L);

#ifndef NDEBUG
    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Fusion done:\n");

    return FC0.L;
  }

  /// Report details on loop fusion opportunities.
  ///
  /// This template function can be used to report both successful and missed
  /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
  /// be one of:
  ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
  ///     given two valid fusion candidates.
  ///   - OptimizationRemark to report successful fusion of two fusion
  ///     candidates.
  /// The remarks will be printed using the form:
  ///    <path/filename>:<line number>:<column number>: [<function name>]:
  ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
  template <typename RemarkKind>
  void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
                        llvm::Statistic &Stat) {
    assert(FC0.Preheader && FC1.Preheader &&
           "Expecting valid fusion candidates");
    using namespace ore;
#if LLVM_ENABLE_STATS
    ++Stat;
    ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
                        FC0.Preheader)
             << "[" << FC0.Preheader->getParent()->getName()
             << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
             << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
             << ": " << Stat.getDesc());
#endif
  }

  /// Fuse two guarded fusion candidates, creating a new fused loop.
  ///
  /// Fusing guarded loops is handled much the same way as fusing non-guarded
  /// loops. The rewiring of the CFG is slightly different though, because of
  /// the presence of the guards around the loops and the exit blocks after the
  /// loop body. As such, the new loop is rewired as follows:
  ///    1. Keep the guard branch from FC0 and use the non-loop block target
  /// from the FC1 guard branch.
  ///    2. Remove the exit block from FC0 (this exit block should be empty
  /// right now).
  ///    3. Remove the guard branch for FC1
  ///    4. Remove the preheader for FC1.
  /// The exit block successor for the latch of FC0 is updated to be the header
  /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
  /// be the header of FC0, thus creating the fused loop.
  Loop *fuseGuardedLoops(const FusionCandidate &FC0,
                         const FusionCandidate &FC1) {
    assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");

    BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
    BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
    BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
    BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
    BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();

    // Move instructions from the exit block of FC0 to the beginning of the exit
    // block of FC1, in the case that the FC0 loop has not been peeled. In the
    // case that FC0 loop is peeled, then move the instructions of the successor
    // of the FC0 Exit block to the beginning of the exit block of FC1.
    moveInstructionsToTheBeginning(
        (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
        DT, PDT, DI);

    // Move instructions from the guard block of FC1 to the end of the guard
    // block of FC0.
    moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);

    assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");

    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;

    ////////////////////////////////////////////////////////////////////////////
    // Update the Loop Guard
    ////////////////////////////////////////////////////////////////////////////
    // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
    // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
    // Thus, one path from the guard goes to the preheader for FC0 (and thus
    // executes the new fused loop) and the other path goes to the NonLoopBlock
    // for FC1 (where FC1 guard would have gone if FC1 was not executed).
    FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
    FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);

    BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
    BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);

    // The guard of FC1 is not necessary anymore.
    FC1.GuardBranch->eraseFromParent();
    new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);

    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));

    if (FC0.Peeled) {
      // Remove the Block after the ExitBlock of FC0
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
      FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
      new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
                          FC0ExitBlockSuccessor);
    }

    assert(pred_empty(FC1GuardBlock) &&
           "Expecting guard block to have no predecessors");
    assert(succ_empty(FC1GuardBlock) &&
           "Expecting guard block to have no successors");

    // Remember the phi nodes originally in the header of FC0 in order to rewire
    // them later. However, this is only necessary if the new loop carried
    // values might not dominate the exiting branch. While we do not generally
    // test if this is the case but simply insert intermediate phi nodes, we
    // need to make sure these intermediate phi nodes have different
    // predecessors. To this end, we filter the special case where the exiting
    // block is the latch block of the first loop. Nothing needs to be done
    // anyway as all loop carried values dominate the latch and thereby also the
    // exiting branch.
    // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
    // (because the loops are rotated. Thus, nothing will ever be added to
    // OriginalFC0PHIs.
    SmallVector<PHINode *, 8> OriginalFC0PHIs;
    if (FC0.ExitingBlock != FC0.Latch)
      for (PHINode &PHI : FC0.Header->phis())
        OriginalFC0PHIs.push_back(&PHI);

    assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");

    // Replace incoming blocks for header PHIs first.
    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);

    // The old exiting block of the first loop (FC0) has to jump to the header
    // of the second as we need to execute the code in the second header block
    // regardless of the trip count. That is, if the trip count is 0, so the
    // back edge is never taken, we still have to execute both loop headers,
    // especially (but not only!) if the second is a do-while style loop.
    // However, doing so might invalidate the phi nodes of the first loop as
    // the new values do only need to dominate their latch and not the exiting
    // predicate. To remedy this potential problem we always introduce phi
    // nodes in the header of the second loop later that select the loop carried
    // value, if the second header was reached through an old latch of the
    // first, or undef otherwise. This is sound as exiting the first implies the
    // second will exit too, __without__ taking the back-edge (their
    // trip-counts are equal after all).
    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
                                                         FC1.Header);

    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));

    // Remove FC0 Exit Block
    // The exit block for FC0 is no longer needed since control will flow
    // directly to the header of FC1. Since it is an empty block, it can be
    // removed at this point.
    // TODO: In the future, we can handle non-empty exit blocks my merging any
    // instructions from FC0 exit block into FC1 exit block prior to removing
    // the block.
    assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
    FC0.ExitBlock->getTerminator()->eraseFromParent();
    new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);

    // Remove FC1 Preheader
    // The pre-header of L1 is not necessary anymore.
    assert(pred_empty(FC1.Preheader));
    FC1.Preheader->getTerminator()->eraseFromParent();
    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1.Preheader, FC1.Header));

    // Moves the phi nodes from the second to the first loops header block.
    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
      if (SE.isSCEVable(PHI->getType()))
        SE.forgetValue(PHI);
      if (PHI->hasNUsesOrMore(1))
        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
      else
        PHI->eraseFromParent();
    }

    // Introduce new phi nodes in the second loop header to ensure
    // exiting the first and jumping to the header of the second does not break
    // the SSA property of the phis originally in the first loop. See also the
    // comment above.
    Instruction *L1HeaderIP = &FC1.Header->front();
    for (PHINode *LCPHI : OriginalFC0PHIs) {
      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
      assert(L1LatchBBIdx >= 0 &&
             "Expected loop carried value to be rewired at this point!");

      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);

      PHINode *L1HeaderPHI = PHINode::Create(
          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
                               FC0.ExitingBlock);

      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
    }

    // Update the latches

    // Replace latch terminator destinations.
    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);

    // Modify the latch branch of FC0 to be unconditional as both successors of
    // the branch are the same.
    simplifyLatchBranch(FC0);

    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
    // performed the updates above.
    if (FC0.Latch != FC0.ExitingBlock)
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.Latch, FC1.Header));

    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC0.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
                                                       FC1.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC1.Latch, FC1.Header));

    // All done
    // Apply the updates to the Dominator Tree and cleanup.

    assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
    assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");

    // Update DT/PDT
    DTU.applyUpdates(TreeUpdates);

    LI.removeBlock(FC1GuardBlock);
    LI.removeBlock(FC1.Preheader);
    LI.removeBlock(FC0.ExitBlock);
    if (FC0.Peeled) {
      LI.removeBlock(FC0ExitBlockSuccessor);
      DTU.deleteBB(FC0ExitBlockSuccessor);
    }
    DTU.deleteBB(FC1GuardBlock);
    DTU.deleteBB(FC1.Preheader);
    DTU.deleteBB(FC0.ExitBlock);
    DTU.flush();

    // Is there a way to keep SE up-to-date so we don't need to forget the loops
    // and rebuild the information in subsequent passes of fusion?
    // Note: Need to forget the loops before merging the loop latches, as
    // mergeLatch may remove the only block in FC1.
    SE.forgetLoop(FC1.L);
    SE.forgetLoop(FC0.L);
    SE.forgetLoopDispositions();

    // Move instructions from FC0.Latch to FC1.Latch.
    // Note: mergeLatch requires an updated DT.
    mergeLatch(FC0, FC1);

    // Merge the loops.
    SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
    for (BasicBlock *BB : Blocks) {
      FC0.L->addBlockEntry(BB);
      FC1.L->removeBlockFromLoop(BB);
      if (LI.getLoopFor(BB) != FC1.L)
        continue;
      LI.changeLoopFor(BB, FC0.L);
    }
    while (!FC1.L->isInnermost()) {
      const auto &ChildLoopIt = FC1.L->begin();
      Loop *ChildLoop = *ChildLoopIt;
      FC1.L->removeChildLoop(ChildLoopIt);
      FC0.L->addChildLoop(ChildLoop);
    }

    // Delete the now empty loop L1.
    LI.erase(FC1.L);

#ifndef NDEBUG
    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Fusion done:\n");

    return FC0.L;
  }
};

struct LoopFuseLegacy : public FunctionPass {

  static char ID;

  LoopFuseLegacy() : FunctionPass(ID) {
    initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredID(LoopSimplifyID);
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<DependenceAnalysisWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetTransformInfoWrapperPass>();

    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<PostDominatorTreeWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
    auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    const TargetTransformInfo &TTI =
        getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    const DataLayout &DL = F.getParent()->getDataLayout();

    LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
    return LF.fuseLoops(F);
  }
};
} // namespace

PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &DI = AM.getResult<DependenceAnalysis>(F);
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
  const DataLayout &DL = F.getParent()->getDataLayout();

  // Ensure loops are in simplifed form which is a pre-requisite for loop fusion
  // pass. Added only for new PM since the legacy PM has already added
  // LoopSimplify pass as a dependency.
  bool Changed = false;
  for (auto &L : LI) {
    Changed |=
        simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
  }
  if (Changed)
    PDT.recalculate(F);

  LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
  Changed |= LF.fuseLoops(F);
  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<PostDominatorTreeAnalysis>();
  PA.preserve<ScalarEvolutionAnalysis>();
  PA.preserve<LoopAnalysis>();
  return PA;
}

char LoopFuseLegacy::ID = 0;

INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)

FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }