1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
//===- PoisonChecking.cpp - -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements a transform pass which instruments IR such that poison semantics
// are made explicit. That is, it provides a (possibly partial) executable
// semantics for every instruction w.r.t. poison as specified in the LLVM
// LangRef. There are obvious parallels to the sanitizer tools, but this pass
// is focused purely on the semantics of LLVM IR, not any particular source
// language. If you're looking for something to see if your C/C++ contains
// UB, this is not it.
//
// The rewritten semantics of each instruction will include the following
// components:
//
// 1) The original instruction, unmodified.
// 2) A propagation rule which translates dynamic information about the poison
// state of each input to whether the dynamic output of the instruction
// produces poison.
// 3) A creation rule which validates any poison producing flags on the
// instruction itself (e.g. checks for overflow on nsw).
// 4) A check rule which traps (to a handler function) if this instruction must
// execute undefined behavior given the poison state of it's inputs.
//
// This is a must analysis based transform; that is, the resulting code may
// produce a false negative result (not report UB when actually exists
// according to the LangRef spec), but should never produce a false positive
// (report UB where it doesn't exist).
//
// Use cases for this pass include:
// - Understanding (and testing!) the implications of the definition of poison
// from the LangRef.
// - Validating the output of a IR fuzzer to ensure that all programs produced
// are well defined on the specific input used.
// - Finding/confirming poison specific miscompiles by checking the poison
// status of an input/IR pair is the same before and after an optimization
// transform.
// - Checking that a bugpoint reduction does not introduce UB which didn't
// exist in the original program being reduced.
//
// The major sources of inaccuracy are currently:
// - Most validation rules not yet implemented for instructions with poison
// relavant flags. At the moment, only nsw/nuw on add/sub are supported.
// - UB which is control dependent on a branch on poison is not yet
// reported. Currently, only data flow dependence is modeled.
// - Poison which is propagated through memory is not modeled. As such,
// storing poison to memory and then reloading it will cause a false negative
// as we consider the reloaded value to not be poisoned.
// - Poison propagation across function boundaries is not modeled. At the
// moment, all arguments and return values are assumed not to be poison.
// - Undef is not modeled. In particular, the optimizer's freedom to pick
// concrete values for undef bits so as to maximize potential for producing
// poison is not modeled.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/PoisonChecking.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
#define DEBUG_TYPE "poison-checking"
static cl::opt<bool>
LocalCheck("poison-checking-function-local",
cl::init(false),
cl::desc("Check that returns are non-poison (for testing)"));
static bool isConstantFalse(Value* V) {
assert(V->getType()->isIntegerTy(1));
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->isZero();
return false;
}
static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
if (Ops.size() == 0)
return B.getFalse();
unsigned i = 0;
for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
if (i == Ops.size())
return B.getFalse();
Value *Accum = Ops[i++];
for (Value *Op : llvm::drop_begin(Ops, i))
if (!isConstantFalse(Op))
Accum = B.CreateOr(Accum, Op);
return Accum;
}
static void generateCreationChecksForBinOp(Instruction &I,
SmallVectorImpl<Value*> &Checks) {
assert(isa<BinaryOperator>(I));
IRBuilder<> B(&I);
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
switch (I.getOpcode()) {
default:
return;
case Instruction::Add: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::Sub: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::Mul: {
if (I.hasNoSignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
if (I.hasNoUnsignedWrap()) {
auto *OverflowOp =
B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
}
break;
}
case Instruction::UDiv: {
if (I.isExact()) {
auto *Check =
B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
ConstantInt::get(LHS->getType(), 0));
Checks.push_back(Check);
}
break;
}
case Instruction::SDiv: {
if (I.isExact()) {
auto *Check =
B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
ConstantInt::get(LHS->getType(), 0));
Checks.push_back(Check);
}
break;
}
case Instruction::AShr:
case Instruction::LShr:
case Instruction::Shl: {
Value *ShiftCheck =
B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
ConstantInt::get(RHS->getType(),
LHS->getType()->getScalarSizeInBits()));
Checks.push_back(ShiftCheck);
break;
}
};
}
/// Given an instruction which can produce poison on non-poison inputs
/// (i.e. canCreatePoison returns true), generate runtime checks to produce
/// boolean indicators of when poison would result.
static void generateCreationChecks(Instruction &I,
SmallVectorImpl<Value*> &Checks) {
IRBuilder<> B(&I);
if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
generateCreationChecksForBinOp(I, Checks);
// Handle non-binops separately
switch (I.getOpcode()) {
default:
// Note there are a couple of missing cases here, once implemented, this
// should become an llvm_unreachable.
break;
case Instruction::ExtractElement: {
Value *Vec = I.getOperand(0);
auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
if (!VecVTy)
break;
Value *Idx = I.getOperand(1);
unsigned NumElts = VecVTy->getNumElements();
Value *Check =
B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
ConstantInt::get(Idx->getType(), NumElts));
Checks.push_back(Check);
break;
}
case Instruction::InsertElement: {
Value *Vec = I.getOperand(0);
auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType());
if (!VecVTy)
break;
Value *Idx = I.getOperand(2);
unsigned NumElts = VecVTy->getNumElements();
Value *Check =
B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
ConstantInt::get(Idx->getType(), NumElts));
Checks.push_back(Check);
break;
}
};
}
static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
auto Itr = ValToPoison.find(V);
if (Itr != ValToPoison.end())
return Itr->second;
if (isa<Constant>(V)) {
return ConstantInt::getFalse(V->getContext());
}
// Return false for unknwon values - this implements a non-strict mode where
// unhandled IR constructs are simply considered to never produce poison. At
// some point in the future, we probably want a "strict mode" for testing if
// nothing else.
return ConstantInt::getFalse(V->getContext());
}
static void CreateAssert(IRBuilder<> &B, Value *Cond) {
assert(Cond->getType()->isIntegerTy(1));
if (auto *CI = dyn_cast<ConstantInt>(Cond))
if (CI->isAllOnesValue())
return;
Module *M = B.GetInsertBlock()->getModule();
M->getOrInsertFunction("__poison_checker_assert",
Type::getVoidTy(M->getContext()),
Type::getInt1Ty(M->getContext()));
Function *TrapFunc = M->getFunction("__poison_checker_assert");
B.CreateCall(TrapFunc, Cond);
}
static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
assert(Cond->getType()->isIntegerTy(1));
CreateAssert(B, B.CreateNot(Cond));
}
static bool rewrite(Function &F) {
auto * const Int1Ty = Type::getInt1Ty(F.getContext());
DenseMap<Value *, Value *> ValToPoison;
for (BasicBlock &BB : F)
for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
auto *OldPHI = cast<PHINode>(&*I);
auto *NewPHI = PHINode::Create(Int1Ty, OldPHI->getNumIncomingValues());
for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
NewPHI->addIncoming(UndefValue::get(Int1Ty),
OldPHI->getIncomingBlock(i));
NewPHI->insertBefore(OldPHI);
ValToPoison[OldPHI] = NewPHI;
}
for (BasicBlock &BB : F)
for (Instruction &I : BB) {
if (isa<PHINode>(I)) continue;
IRBuilder<> B(cast<Instruction>(&I));
// Note: There are many more sources of documented UB, but this pass only
// attempts to find UB triggered by propagation of poison.
SmallVector<const Value *, 4> NonPoisonOps;
SmallPtrSet<const Value *, 4> SeenNonPoisonOps;
getGuaranteedNonPoisonOps(&I, NonPoisonOps);
for (const Value *Op : NonPoisonOps)
if (SeenNonPoisonOps.insert(Op).second)
CreateAssertNot(B,
getPoisonFor(ValToPoison, const_cast<Value *>(Op)));
if (LocalCheck)
if (auto *RI = dyn_cast<ReturnInst>(&I))
if (RI->getNumOperands() != 0) {
Value *Op = RI->getOperand(0);
CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
}
SmallVector<Value*, 4> Checks;
for (const Use &U : I.operands()) {
if (ValToPoison.count(U) && propagatesPoison(U))
Checks.push_back(getPoisonFor(ValToPoison, U));
}
if (canCreatePoison(cast<Operator>(&I)))
generateCreationChecks(I, Checks);
ValToPoison[&I] = buildOrChain(B, Checks);
}
for (BasicBlock &BB : F)
for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
auto *OldPHI = cast<PHINode>(&*I);
if (!ValToPoison.count(OldPHI))
continue; // skip the newly inserted phis
auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
auto *OldVal = OldPHI->getIncomingValue(i);
NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
}
}
return true;
}
PreservedAnalyses PoisonCheckingPass::run(Module &M,
ModuleAnalysisManager &AM) {
bool Changed = false;
for (auto &F : M)
Changed |= rewrite(F);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
PreservedAnalyses PoisonCheckingPass::run(Function &F,
FunctionAnalysisManager &AM) {
return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
/* Major TODO Items:
- Control dependent poison UB
- Strict mode - (i.e. must analyze every operand)
- Poison through memory
- Function ABIs
- Full coverage of intrinsics, etc.. (ouch)
Instructions w/Unclear Semantics:
- shufflevector - It would seem reasonable for an out of bounds mask element
to produce poison, but the LangRef does not state.
- all binary ops w/vector operands - The likely interpretation would be that
any element overflowing should produce poison for the entire result, but
the LangRef does not state.
- Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems
strange that only certian flags should be documented as producing poison.
Cases of clear poison semantics not yet implemented:
- Exact flags on ashr/lshr produce poison
- NSW/NUW flags on shl produce poison
- Inbounds flag on getelementptr produce poison
- fptosi/fptoui (out of bounds input) produce poison
- Scalable vector types for insertelement/extractelement
- Floating point binary ops w/fmf nnan/noinfs flags produce poison
*/
|