1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
|
//===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file is a part of HWAddressSanitizer, an address basic correctness
/// checker based on tagged addressing.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/MemoryTaggingSupport.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "hwasan"
const char kHwasanModuleCtorName[] = "hwasan.module_ctor";
const char kHwasanNoteName[] = "hwasan.note";
const char kHwasanInitName[] = "__hwasan_init";
const char kHwasanPersonalityThunkName[] = "__hwasan_personality_thunk";
const char kHwasanShadowMemoryDynamicAddress[] =
"__hwasan_shadow_memory_dynamic_address";
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
static const size_t kDefaultShadowScale = 4;
static const uint64_t kDynamicShadowSentinel =
std::numeric_limits<uint64_t>::max();
static const unsigned kShadowBaseAlignment = 32;
static cl::opt<std::string>
ClMemoryAccessCallbackPrefix("hwasan-memory-access-callback-prefix",
cl::desc("Prefix for memory access callbacks"),
cl::Hidden, cl::init("__hwasan_"));
static cl::opt<bool> ClKasanMemIntrinCallbackPrefix(
"hwasan-kernel-mem-intrinsic-prefix",
cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClInstrumentWithCalls(
"hwasan-instrument-with-calls",
cl::desc("instrument reads and writes with callbacks"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads",
cl::desc("instrument read instructions"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClInstrumentWrites("hwasan-instrument-writes",
cl::desc("instrument write instructions"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClInstrumentAtomics(
"hwasan-instrument-atomics",
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClInstrumentByval("hwasan-instrument-byval",
cl::desc("instrument byval arguments"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClRecover("hwasan-recover",
cl::desc("Enable recovery mode (continue-after-error)."),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack",
cl::desc("instrument stack (allocas)"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClUseStackSafety("hwasan-use-stack-safety", cl::Hidden, cl::init(true),
cl::Hidden, cl::desc("Use Stack Safety analysis results"),
cl::Optional);
static cl::opt<size_t> ClMaxLifetimes(
"hwasan-max-lifetimes-for-alloca", cl::Hidden, cl::init(3),
cl::ReallyHidden,
cl::desc("How many lifetime ends to handle for a single alloca."),
cl::Optional);
static cl::opt<bool>
ClUseAfterScope("hwasan-use-after-scope",
cl::desc("detect use after scope within function"),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClUARRetagToZero(
"hwasan-uar-retag-to-zero",
cl::desc("Clear alloca tags before returning from the function to allow "
"non-instrumented and instrumented function calls mix. When set "
"to false, allocas are retagged before returning from the "
"function to detect use after return."),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClGenerateTagsWithCalls(
"hwasan-generate-tags-with-calls",
cl::desc("generate new tags with runtime library calls"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClGlobals("hwasan-globals", cl::desc("Instrument globals"),
cl::Hidden, cl::init(false));
static cl::opt<int> ClMatchAllTag(
"hwasan-match-all-tag",
cl::desc("don't report bad accesses via pointers with this tag"),
cl::Hidden, cl::init(-1));
static cl::opt<bool>
ClEnableKhwasan("hwasan-kernel",
cl::desc("Enable KernelHWAddressSanitizer instrumentation"),
cl::Hidden, cl::init(false));
// These flags allow to change the shadow mapping and control how shadow memory
// is accessed. The shadow mapping looks like:
// Shadow = (Mem >> scale) + offset
static cl::opt<uint64_t>
ClMappingOffset("hwasan-mapping-offset",
cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"),
cl::Hidden, cl::init(0));
static cl::opt<bool>
ClWithIfunc("hwasan-with-ifunc",
cl::desc("Access dynamic shadow through an ifunc global on "
"platforms that support this"),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClWithTls(
"hwasan-with-tls",
cl::desc("Access dynamic shadow through an thread-local pointer on "
"platforms that support this"),
cl::Hidden, cl::init(true));
// Mode for selecting how to insert frame record info into the stack ring
// buffer.
enum RecordStackHistoryMode {
// Do not record frame record info.
none,
// Insert instructions into the prologue for storing into the stack ring
// buffer directly.
instr,
// Add a call to __hwasan_add_frame_record in the runtime.
libcall,
};
static cl::opt<RecordStackHistoryMode> ClRecordStackHistory(
"hwasan-record-stack-history",
cl::desc("Record stack frames with tagged allocations in a thread-local "
"ring buffer"),
cl::values(clEnumVal(none, "Do not record stack ring history"),
clEnumVal(instr, "Insert instructions into the prologue for "
"storing into the stack ring buffer directly"),
clEnumVal(libcall, "Add a call to __hwasan_add_frame_record for "
"storing into the stack ring buffer")),
cl::Hidden, cl::init(instr));
static cl::opt<bool>
ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics",
cl::desc("instrument memory intrinsics"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClInstrumentLandingPads("hwasan-instrument-landing-pads",
cl::desc("instrument landing pads"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClUseShortGranules(
"hwasan-use-short-granules",
cl::desc("use short granules in allocas and outlined checks"), cl::Hidden,
cl::init(false));
static cl::opt<bool> ClInstrumentPersonalityFunctions(
"hwasan-instrument-personality-functions",
cl::desc("instrument personality functions"), cl::Hidden);
static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks",
cl::desc("inline all checks"),
cl::Hidden, cl::init(false));
// Enabled from clang by "-fsanitize-hwaddress-experimental-aliasing".
static cl::opt<bool> ClUsePageAliases("hwasan-experimental-use-page-aliases",
cl::desc("Use page aliasing in HWASan"),
cl::Hidden, cl::init(false));
namespace {
bool shouldUsePageAliases(const Triple &TargetTriple) {
return ClUsePageAliases && TargetTriple.getArch() == Triple::x86_64;
}
bool shouldInstrumentStack(const Triple &TargetTriple) {
return !shouldUsePageAliases(TargetTriple) && ClInstrumentStack;
}
bool shouldInstrumentWithCalls(const Triple &TargetTriple) {
return ClInstrumentWithCalls || TargetTriple.getArch() == Triple::x86_64;
}
bool mightUseStackSafetyAnalysis(bool DisableOptimization) {
return ClUseStackSafety.getNumOccurrences() ? ClUseStackSafety
: !DisableOptimization;
}
bool shouldUseStackSafetyAnalysis(const Triple &TargetTriple,
bool DisableOptimization) {
return shouldInstrumentStack(TargetTriple) &&
mightUseStackSafetyAnalysis(DisableOptimization);
}
bool shouldDetectUseAfterScope(const Triple &TargetTriple) {
return ClUseAfterScope && shouldInstrumentStack(TargetTriple);
}
/// An instrumentation pass implementing detection of addressability bugs
/// using tagged pointers.
class HWAddressSanitizer {
public:
HWAddressSanitizer(Module &M, bool CompileKernel, bool Recover,
const StackSafetyGlobalInfo *SSI)
: M(M), SSI(SSI) {
this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0
? ClEnableKhwasan
: CompileKernel;
initializeModule();
}
void setSSI(const StackSafetyGlobalInfo *S) { SSI = S; }
bool sanitizeFunction(Function &F, FunctionAnalysisManager &FAM);
void initializeModule();
void createHwasanCtorComdat();
void initializeCallbacks(Module &M);
Value *getOpaqueNoopCast(IRBuilder<> &IRB, Value *Val);
Value *getDynamicShadowIfunc(IRBuilder<> &IRB);
Value *getShadowNonTls(IRBuilder<> &IRB);
void untagPointerOperand(Instruction *I, Value *Addr);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
int64_t getAccessInfo(bool IsWrite, unsigned AccessSizeIndex);
void instrumentMemAccessOutline(Value *Ptr, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore);
void instrumentMemAccessInline(Value *Ptr, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore);
bool ignoreMemIntrinsic(MemIntrinsic *MI);
void instrumentMemIntrinsic(MemIntrinsic *MI);
bool instrumentMemAccess(InterestingMemoryOperand &O);
bool ignoreAccess(Instruction *Inst, Value *Ptr);
void getInterestingMemoryOperands(
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
void tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size);
Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag);
Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong);
bool instrumentStack(memtag::StackInfo &Info, Value *StackTag,
const DominatorTree &DT, const PostDominatorTree &PDT,
const LoopInfo &LI);
Value *readRegister(IRBuilder<> &IRB, StringRef Name);
bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec);
Value *getNextTagWithCall(IRBuilder<> &IRB);
Value *getStackBaseTag(IRBuilder<> &IRB);
Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI,
unsigned AllocaNo);
Value *getUARTag(IRBuilder<> &IRB, Value *StackTag);
Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty);
Value *applyTagMask(IRBuilder<> &IRB, Value *OldTag);
unsigned retagMask(unsigned AllocaNo);
void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord);
void instrumentGlobal(GlobalVariable *GV, uint8_t Tag);
void instrumentGlobals();
Value *getPC(IRBuilder<> &IRB);
Value *getSP(IRBuilder<> &IRB);
Value *getFrameRecordInfo(IRBuilder<> &IRB);
void instrumentPersonalityFunctions();
private:
LLVMContext *C;
Module &M;
const StackSafetyGlobalInfo *SSI;
Triple TargetTriple;
FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset;
FunctionCallee HWAsanHandleVfork;
/// This struct defines the shadow mapping using the rule:
/// shadow = (mem >> Scale) + Offset.
/// If InGlobal is true, then
/// extern char __hwasan_shadow[];
/// shadow = (mem >> Scale) + &__hwasan_shadow
/// If InTls is true, then
/// extern char *__hwasan_tls;
/// shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment)
///
/// If WithFrameRecord is true, then __hwasan_tls will be used to access the
/// ring buffer for storing stack allocations on targets that support it.
struct ShadowMapping {
uint8_t Scale;
uint64_t Offset;
bool InGlobal;
bool InTls;
bool WithFrameRecord;
void init(Triple &TargetTriple, bool InstrumentWithCalls);
Align getObjectAlignment() const { return Align(1ULL << Scale); }
};
ShadowMapping Mapping;
Type *VoidTy = Type::getVoidTy(M.getContext());
Type *IntptrTy;
Type *Int8PtrTy;
Type *Int8Ty;
Type *Int32Ty;
Type *Int64Ty = Type::getInt64Ty(M.getContext());
bool CompileKernel;
bool Recover;
bool OutlinedChecks;
bool UseShortGranules;
bool InstrumentLandingPads;
bool InstrumentWithCalls;
bool InstrumentStack;
bool DetectUseAfterScope;
bool UsePageAliases;
std::optional<uint8_t> MatchAllTag;
unsigned PointerTagShift;
uint64_t TagMaskByte;
Function *HwasanCtorFunction;
FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes];
FunctionCallee HwasanMemoryAccessCallbackSized[2];
FunctionCallee HwasanTagMemoryFunc;
FunctionCallee HwasanGenerateTagFunc;
FunctionCallee HwasanRecordFrameRecordFunc;
Constant *ShadowGlobal;
Value *ShadowBase = nullptr;
Value *StackBaseTag = nullptr;
Value *CachedSP = nullptr;
GlobalValue *ThreadPtrGlobal = nullptr;
};
} // end anonymous namespace
PreservedAnalyses HWAddressSanitizerPass::run(Module &M,
ModuleAnalysisManager &MAM) {
const StackSafetyGlobalInfo *SSI = nullptr;
auto TargetTriple = llvm::Triple(M.getTargetTriple());
if (shouldUseStackSafetyAnalysis(TargetTriple, Options.DisableOptimization))
SSI = &MAM.getResult<StackSafetyGlobalAnalysis>(M);
HWAddressSanitizer HWASan(M, Options.CompileKernel, Options.Recover, SSI);
bool Modified = false;
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
for (Function &F : M)
Modified |= HWASan.sanitizeFunction(F, FAM);
if (!Modified)
return PreservedAnalyses::all();
PreservedAnalyses PA = PreservedAnalyses::none();
// GlobalsAA is considered stateless and does not get invalidated unless
// explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
// make changes that require GlobalsAA to be invalidated.
PA.abandon<GlobalsAA>();
return PA;
}
void HWAddressSanitizerPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
static_cast<PassInfoMixin<HWAddressSanitizerPass> *>(this)->printPipeline(
OS, MapClassName2PassName);
OS << "<";
if (Options.CompileKernel)
OS << "kernel;";
if (Options.Recover)
OS << "recover";
OS << ">";
}
void HWAddressSanitizer::createHwasanCtorComdat() {
std::tie(HwasanCtorFunction, std::ignore) =
getOrCreateSanitizerCtorAndInitFunctions(
M, kHwasanModuleCtorName, kHwasanInitName,
/*InitArgTypes=*/{},
/*InitArgs=*/{},
// This callback is invoked when the functions are created the first
// time. Hook them into the global ctors list in that case:
[&](Function *Ctor, FunctionCallee) {
Comdat *CtorComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
Ctor->setComdat(CtorComdat);
appendToGlobalCtors(M, Ctor, 0, Ctor);
});
// Create a note that contains pointers to the list of global
// descriptors. Adding a note to the output file will cause the linker to
// create a PT_NOTE program header pointing to the note that we can use to
// find the descriptor list starting from the program headers. A function
// provided by the runtime initializes the shadow memory for the globals by
// accessing the descriptor list via the note. The dynamic loader needs to
// call this function whenever a library is loaded.
//
// The reason why we use a note for this instead of a more conventional
// approach of having a global constructor pass a descriptor list pointer to
// the runtime is because of an order of initialization problem. With
// constructors we can encounter the following problematic scenario:
//
// 1) library A depends on library B and also interposes one of B's symbols
// 2) B's constructors are called before A's (as required for correctness)
// 3) during construction, B accesses one of its "own" globals (actually
// interposed by A) and triggers a HWASAN failure due to the initialization
// for A not having happened yet
//
// Even without interposition it is possible to run into similar situations in
// cases where two libraries mutually depend on each other.
//
// We only need one note per binary, so put everything for the note in a
// comdat. This needs to be a comdat with an .init_array section to prevent
// newer versions of lld from discarding the note.
//
// Create the note even if we aren't instrumenting globals. This ensures that
// binaries linked from object files with both instrumented and
// non-instrumented globals will end up with a note, even if a comdat from an
// object file with non-instrumented globals is selected. The note is harmless
// if the runtime doesn't support it, since it will just be ignored.
Comdat *NoteComdat = M.getOrInsertComdat(kHwasanModuleCtorName);
Type *Int8Arr0Ty = ArrayType::get(Int8Ty, 0);
auto *Start =
new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
nullptr, "__start_hwasan_globals");
Start->setVisibility(GlobalValue::HiddenVisibility);
auto *Stop =
new GlobalVariable(M, Int8Arr0Ty, true, GlobalVariable::ExternalLinkage,
nullptr, "__stop_hwasan_globals");
Stop->setVisibility(GlobalValue::HiddenVisibility);
// Null-terminated so actually 8 bytes, which are required in order to align
// the note properly.
auto *Name = ConstantDataArray::get(*C, "LLVM\0\0\0");
auto *NoteTy = StructType::get(Int32Ty, Int32Ty, Int32Ty, Name->getType(),
Int32Ty, Int32Ty);
auto *Note =
new GlobalVariable(M, NoteTy, /*isConstant=*/true,
GlobalValue::PrivateLinkage, nullptr, kHwasanNoteName);
Note->setSection(".note.hwasan.globals");
Note->setComdat(NoteComdat);
Note->setAlignment(Align(4));
// The pointers in the note need to be relative so that the note ends up being
// placed in rodata, which is the standard location for notes.
auto CreateRelPtr = [&](Constant *Ptr) {
return ConstantExpr::getTrunc(
ConstantExpr::getSub(ConstantExpr::getPtrToInt(Ptr, Int64Ty),
ConstantExpr::getPtrToInt(Note, Int64Ty)),
Int32Ty);
};
Note->setInitializer(ConstantStruct::getAnon(
{ConstantInt::get(Int32Ty, 8), // n_namesz
ConstantInt::get(Int32Ty, 8), // n_descsz
ConstantInt::get(Int32Ty, ELF::NT_LLVM_HWASAN_GLOBALS), // n_type
Name, CreateRelPtr(Start), CreateRelPtr(Stop)}));
appendToCompilerUsed(M, Note);
// Create a zero-length global in hwasan_globals so that the linker will
// always create start and stop symbols.
auto *Dummy = new GlobalVariable(
M, Int8Arr0Ty, /*isConstantGlobal*/ true, GlobalVariable::PrivateLinkage,
Constant::getNullValue(Int8Arr0Ty), "hwasan.dummy.global");
Dummy->setSection("hwasan_globals");
Dummy->setComdat(NoteComdat);
Dummy->setMetadata(LLVMContext::MD_associated,
MDNode::get(*C, ValueAsMetadata::get(Note)));
appendToCompilerUsed(M, Dummy);
}
/// Module-level initialization.
///
/// inserts a call to __hwasan_init to the module's constructor list.
void HWAddressSanitizer::initializeModule() {
LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n");
auto &DL = M.getDataLayout();
TargetTriple = Triple(M.getTargetTriple());
// x86_64 currently has two modes:
// - Intel LAM (default)
// - pointer aliasing (heap only)
bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
UsePageAliases = shouldUsePageAliases(TargetTriple);
InstrumentWithCalls = shouldInstrumentWithCalls(TargetTriple);
InstrumentStack = shouldInstrumentStack(TargetTriple);
DetectUseAfterScope = shouldDetectUseAfterScope(TargetTriple);
PointerTagShift = IsX86_64 ? 57 : 56;
TagMaskByte = IsX86_64 ? 0x3F : 0xFF;
Mapping.init(TargetTriple, InstrumentWithCalls);
C = &(M.getContext());
IRBuilder<> IRB(*C);
IntptrTy = IRB.getIntPtrTy(DL);
Int8PtrTy = IRB.getInt8PtrTy();
Int8Ty = IRB.getInt8Ty();
Int32Ty = IRB.getInt32Ty();
HwasanCtorFunction = nullptr;
// Older versions of Android do not have the required runtime support for
// short granules, global or personality function instrumentation. On other
// platforms we currently require using the latest version of the runtime.
bool NewRuntime =
!TargetTriple.isAndroid() || !TargetTriple.isAndroidVersionLT(30);
UseShortGranules =
ClUseShortGranules.getNumOccurrences() ? ClUseShortGranules : NewRuntime;
OutlinedChecks =
(TargetTriple.isAArch64() || TargetTriple.isRISCV64()) &&
TargetTriple.isOSBinFormatELF() &&
(ClInlineAllChecks.getNumOccurrences() ? !ClInlineAllChecks : !Recover);
if (ClMatchAllTag.getNumOccurrences()) {
if (ClMatchAllTag != -1) {
MatchAllTag = ClMatchAllTag & 0xFF;
}
} else if (CompileKernel) {
MatchAllTag = 0xFF;
}
// If we don't have personality function support, fall back to landing pads.
InstrumentLandingPads = ClInstrumentLandingPads.getNumOccurrences()
? ClInstrumentLandingPads
: !NewRuntime;
if (!CompileKernel) {
createHwasanCtorComdat();
bool InstrumentGlobals =
ClGlobals.getNumOccurrences() ? ClGlobals : NewRuntime;
if (InstrumentGlobals && !UsePageAliases)
instrumentGlobals();
bool InstrumentPersonalityFunctions =
ClInstrumentPersonalityFunctions.getNumOccurrences()
? ClInstrumentPersonalityFunctions
: NewRuntime;
if (InstrumentPersonalityFunctions)
instrumentPersonalityFunctions();
}
if (!TargetTriple.isAndroid()) {
Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] {
auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false,
GlobalValue::ExternalLinkage, nullptr,
"__hwasan_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
appendToCompilerUsed(M, GV);
return GV;
});
ThreadPtrGlobal = cast<GlobalVariable>(C);
}
}
void HWAddressSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
const std::string TypeStr = AccessIsWrite ? "store" : "load";
const std::string EndingStr = Recover ? "_noabort" : "";
HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr,
FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false));
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
AccessSizeIndex++) {
HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + TypeStr +
itostr(1ULL << AccessSizeIndex) + EndingStr,
FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false));
}
}
HwasanTagMemoryFunc = M.getOrInsertFunction(
"__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy);
HwasanGenerateTagFunc =
M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty);
HwasanRecordFrameRecordFunc = M.getOrInsertFunction(
"__hwasan_add_frame_record", IRB.getVoidTy(), Int64Ty);
ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow",
ArrayType::get(IRB.getInt8Ty(), 0));
const std::string MemIntrinCallbackPrefix =
(CompileKernel && !ClKasanMemIntrinCallbackPrefix)
? std::string("")
: ClMemoryAccessCallbackPrefix;
HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy);
HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy);
HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt32Ty(), IntptrTy);
HWAsanHandleVfork =
M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy);
}
Value *HWAddressSanitizer::getOpaqueNoopCast(IRBuilder<> &IRB, Value *Val) {
// An empty inline asm with input reg == output reg.
// An opaque no-op cast, basically.
// This prevents code bloat as a result of rematerializing trivial definitions
// such as constants or global addresses at every load and store.
InlineAsm *Asm =
InlineAsm::get(FunctionType::get(Int8PtrTy, {Val->getType()}, false),
StringRef(""), StringRef("=r,0"),
/*hasSideEffects=*/false);
return IRB.CreateCall(Asm, {Val}, ".hwasan.shadow");
}
Value *HWAddressSanitizer::getDynamicShadowIfunc(IRBuilder<> &IRB) {
return getOpaqueNoopCast(IRB, ShadowGlobal);
}
Value *HWAddressSanitizer::getShadowNonTls(IRBuilder<> &IRB) {
if (Mapping.Offset != kDynamicShadowSentinel)
return getOpaqueNoopCast(
IRB, ConstantExpr::getIntToPtr(
ConstantInt::get(IntptrTy, Mapping.Offset), Int8PtrTy));
if (Mapping.InGlobal)
return getDynamicShadowIfunc(IRB);
Value *GlobalDynamicAddress =
IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal(
kHwasanShadowMemoryDynamicAddress, Int8PtrTy);
return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress);
}
bool HWAddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
// Do not instrument accesses from different address spaces; we cannot deal
// with them.
Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
if (PtrTy->getPointerAddressSpace() != 0)
return true;
// Ignore swifterror addresses.
// swifterror memory addresses are mem2reg promoted by instruction
// selection. As such they cannot have regular uses like an instrumentation
// function and it makes no sense to track them as memory.
if (Ptr->isSwiftError())
return true;
if (findAllocaForValue(Ptr)) {
if (!InstrumentStack)
return true;
if (SSI && SSI->stackAccessIsSafe(*Inst))
return true;
}
return false;
}
void HWAddressSanitizer::getInterestingMemoryOperands(
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
// Skip memory accesses inserted by another instrumentation.
if (I->hasMetadata(LLVMContext::MD_nosanitize))
return;
// Do not instrument the load fetching the dynamic shadow address.
if (ShadowBase == I)
return;
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
return;
Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
LI->getType(), LI->getAlign());
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
return;
Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
SI->getValueOperand()->getType(), SI->getAlign());
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
return;
Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
RMW->getValOperand()->getType(), std::nullopt);
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
return;
Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
XCHG->getCompareOperand()->getType(),
std::nullopt);
} else if (auto *CI = dyn_cast<CallInst>(I)) {
for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
ignoreAccess(I, CI->getArgOperand(ArgNo)))
continue;
Type *Ty = CI->getParamByValType(ArgNo);
Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
}
}
}
static unsigned getPointerOperandIndex(Instruction *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperandIndex();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperandIndex();
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I))
return RMW->getPointerOperandIndex();
if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I))
return XCHG->getPointerOperandIndex();
report_fatal_error("Unexpected instruction");
return -1;
}
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
size_t Res = countTrailingZeros(TypeSize / 8);
assert(Res < kNumberOfAccessSizes);
return Res;
}
void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) {
if (TargetTriple.isAArch64() || TargetTriple.getArch() == Triple::x86_64 ||
TargetTriple.isRISCV64())
return;
IRBuilder<> IRB(I);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Value *UntaggedPtr =
IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType());
I->setOperand(getPointerOperandIndex(I), UntaggedPtr);
}
Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) {
// Mem >> Scale
Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale);
if (Mapping.Offset == 0)
return IRB.CreateIntToPtr(Shadow, Int8PtrTy);
// (Mem >> Scale) + Offset
return IRB.CreateGEP(Int8Ty, ShadowBase, Shadow);
}
int64_t HWAddressSanitizer::getAccessInfo(bool IsWrite,
unsigned AccessSizeIndex) {
return (CompileKernel << HWASanAccessInfo::CompileKernelShift) |
(MatchAllTag.has_value() << HWASanAccessInfo::HasMatchAllShift) |
(MatchAllTag.value_or(0) << HWASanAccessInfo::MatchAllShift) |
(Recover << HWASanAccessInfo::RecoverShift) |
(IsWrite << HWASanAccessInfo::IsWriteShift) |
(AccessSizeIndex << HWASanAccessInfo::AccessSizeShift);
}
void HWAddressSanitizer::instrumentMemAccessOutline(Value *Ptr, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore) {
assert(!UsePageAliases);
const int64_t AccessInfo = getAccessInfo(IsWrite, AccessSizeIndex);
IRBuilder<> IRB(InsertBefore);
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy);
IRB.CreateCall(Intrinsic::getDeclaration(
M, UseShortGranules
? Intrinsic::hwasan_check_memaccess_shortgranules
: Intrinsic::hwasan_check_memaccess),
{ShadowBase, Ptr, ConstantInt::get(Int32Ty, AccessInfo)});
}
void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore) {
assert(!UsePageAliases);
const int64_t AccessInfo = getAccessInfo(IsWrite, AccessSizeIndex);
IRBuilder<> IRB(InsertBefore);
Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy);
Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, PointerTagShift),
IRB.getInt8Ty());
Value *AddrLong = untagPointer(IRB, PtrLong);
Value *Shadow = memToShadow(AddrLong, IRB);
Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow);
Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag);
if (MatchAllTag.has_value()) {
Value *TagNotIgnored = IRB.CreateICmpNE(
PtrTag, ConstantInt::get(PtrTag->getType(), *MatchAllTag));
TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored);
}
Instruction *CheckTerm =
SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false,
MDBuilder(*C).createBranchWeights(1, 100000));
IRB.SetInsertPoint(CheckTerm);
Value *OutOfShortGranuleTagRange =
IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15));
Instruction *CheckFailTerm =
SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover,
MDBuilder(*C).createBranchWeights(1, 100000));
IRB.SetInsertPoint(CheckTerm);
Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty);
PtrLowBits = IRB.CreateAdd(
PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1));
Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag);
SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false,
MDBuilder(*C).createBranchWeights(1, 100000),
(DomTreeUpdater *)nullptr, nullptr,
CheckFailTerm->getParent());
IRB.SetInsertPoint(CheckTerm);
Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15);
InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy);
Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr);
Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag);
SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false,
MDBuilder(*C).createBranchWeights(1, 100000),
(DomTreeUpdater *)nullptr, nullptr,
CheckFailTerm->getParent());
IRB.SetInsertPoint(CheckFailTerm);
InlineAsm *Asm;
switch (TargetTriple.getArch()) {
case Triple::x86_64:
// The signal handler will find the data address in rdi.
Asm = InlineAsm::get(
FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
"int3\nnopl " +
itostr(0x40 + (AccessInfo & HWASanAccessInfo::RuntimeMask)) +
"(%rax)",
"{rdi}",
/*hasSideEffects=*/true);
break;
case Triple::aarch64:
case Triple::aarch64_be:
// The signal handler will find the data address in x0.
Asm = InlineAsm::get(
FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
"brk #" + itostr(0x900 + (AccessInfo & HWASanAccessInfo::RuntimeMask)),
"{x0}",
/*hasSideEffects=*/true);
break;
case Triple::riscv64:
// The signal handler will find the data address in x10.
Asm = InlineAsm::get(
FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
"ebreak\naddiw x0, x11, " +
itostr(0x40 + (AccessInfo & HWASanAccessInfo::RuntimeMask)),
"{x10}",
/*hasSideEffects=*/true);
break;
default:
report_fatal_error("unsupported architecture");
}
IRB.CreateCall(Asm, PtrLong);
if (Recover)
cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent());
}
bool HWAddressSanitizer::ignoreMemIntrinsic(MemIntrinsic *MI) {
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
return (!ClInstrumentWrites || ignoreAccess(MTI, MTI->getDest())) &&
(!ClInstrumentReads || ignoreAccess(MTI, MTI->getSource()));
}
if (isa<MemSetInst>(MI))
return !ClInstrumentWrites || ignoreAccess(MI, MI->getDest());
return false;
}
void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
IRBuilder<> IRB(MI);
if (isa<MemTransferInst>(MI)) {
IRB.CreateCall(
isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy,
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
} else if (isa<MemSetInst>(MI)) {
IRB.CreateCall(
HWAsanMemset,
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
}
MI->eraseFromParent();
}
bool HWAddressSanitizer::instrumentMemAccess(InterestingMemoryOperand &O) {
Value *Addr = O.getPtr();
LLVM_DEBUG(dbgs() << "Instrumenting: " << O.getInsn() << "\n");
if (O.MaybeMask)
return false; // FIXME
IRBuilder<> IRB(O.getInsn());
if (isPowerOf2_64(O.TypeSize) &&
(O.TypeSize / 8 <= (1ULL << (kNumberOfAccessSizes - 1))) &&
(!O.Alignment || *O.Alignment >= Mapping.getObjectAlignment() ||
*O.Alignment >= O.TypeSize / 8)) {
size_t AccessSizeIndex = TypeSizeToSizeIndex(O.TypeSize);
if (InstrumentWithCalls) {
IRB.CreateCall(HwasanMemoryAccessCallback[O.IsWrite][AccessSizeIndex],
IRB.CreatePointerCast(Addr, IntptrTy));
} else if (OutlinedChecks) {
instrumentMemAccessOutline(Addr, O.IsWrite, AccessSizeIndex, O.getInsn());
} else {
instrumentMemAccessInline(Addr, O.IsWrite, AccessSizeIndex, O.getInsn());
}
} else {
IRB.CreateCall(HwasanMemoryAccessCallbackSized[O.IsWrite],
{IRB.CreatePointerCast(Addr, IntptrTy),
ConstantInt::get(IntptrTy, O.TypeSize / 8)});
}
untagPointerOperand(O.getInsn(), Addr);
return true;
}
void HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag,
size_t Size) {
size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
if (!UseShortGranules)
Size = AlignedSize;
Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty());
if (InstrumentWithCalls) {
IRB.CreateCall(HwasanTagMemoryFunc,
{IRB.CreatePointerCast(AI, Int8PtrTy), JustTag,
ConstantInt::get(IntptrTy, AlignedSize)});
} else {
size_t ShadowSize = Size >> Mapping.Scale;
Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB);
// If this memset is not inlined, it will be intercepted in the hwasan
// runtime library. That's OK, because the interceptor skips the checks if
// the address is in the shadow region.
// FIXME: the interceptor is not as fast as real memset. Consider lowering
// llvm.memset right here into either a sequence of stores, or a call to
// hwasan_tag_memory.
if (ShadowSize)
IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, Align(1));
if (Size != AlignedSize) {
const uint8_t SizeRemainder = Size % Mapping.getObjectAlignment().value();
IRB.CreateStore(ConstantInt::get(Int8Ty, SizeRemainder),
IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize));
IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32(
Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy),
AlignedSize - 1));
}
}
}
unsigned HWAddressSanitizer::retagMask(unsigned AllocaNo) {
if (TargetTriple.getArch() == Triple::x86_64)
return AllocaNo & TagMaskByte;
// A list of 8-bit numbers that have at most one run of non-zero bits.
// x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these
// masks.
// The list does not include the value 255, which is used for UAR.
//
// Because we are more likely to use earlier elements of this list than later
// ones, it is sorted in increasing order of probability of collision with a
// mask allocated (temporally) nearby. The program that generated this list
// can be found at:
// https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py
static unsigned FastMasks[] = {0, 128, 64, 192, 32, 96, 224, 112, 240,
48, 16, 120, 248, 56, 24, 8, 124, 252,
60, 28, 12, 4, 126, 254, 62, 30, 14,
6, 2, 127, 63, 31, 15, 7, 3, 1};
return FastMasks[AllocaNo % std::size(FastMasks)];
}
Value *HWAddressSanitizer::applyTagMask(IRBuilder<> &IRB, Value *OldTag) {
if (TargetTriple.getArch() == Triple::x86_64) {
Constant *TagMask = ConstantInt::get(IntptrTy, TagMaskByte);
Value *NewTag = IRB.CreateAnd(OldTag, TagMask);
return NewTag;
}
// aarch64 uses 8-bit tags, so no mask is needed.
return OldTag;
}
Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) {
return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy);
}
Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) {
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
if (StackBaseTag)
return StackBaseTag;
// Extract some entropy from the stack pointer for the tags.
// Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ
// between functions).
Value *StackPointerLong = getSP(IRB);
Value *StackTag =
applyTagMask(IRB, IRB.CreateXor(StackPointerLong,
IRB.CreateLShr(StackPointerLong, 20)));
StackTag->setName("hwasan.stack.base.tag");
return StackTag;
}
Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag,
AllocaInst *AI, unsigned AllocaNo) {
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
return IRB.CreateXor(StackTag,
ConstantInt::get(IntptrTy, retagMask(AllocaNo)));
}
Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) {
if (ClUARRetagToZero)
return ConstantInt::get(IntptrTy, 0);
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, TagMaskByte));
}
// Add a tag to an address.
Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty,
Value *PtrLong, Value *Tag) {
assert(!UsePageAliases);
Value *TaggedPtrLong;
if (CompileKernel) {
// Kernel addresses have 0xFF in the most significant byte.
Value *ShiftedTag =
IRB.CreateOr(IRB.CreateShl(Tag, PointerTagShift),
ConstantInt::get(IntptrTy, (1ULL << PointerTagShift) - 1));
TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag);
} else {
// Userspace can simply do OR (tag << PointerTagShift);
Value *ShiftedTag = IRB.CreateShl(Tag, PointerTagShift);
TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag);
}
return IRB.CreateIntToPtr(TaggedPtrLong, Ty);
}
// Remove tag from an address.
Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) {
assert(!UsePageAliases);
Value *UntaggedPtrLong;
if (CompileKernel) {
// Kernel addresses have 0xFF in the most significant byte.
UntaggedPtrLong =
IRB.CreateOr(PtrLong, ConstantInt::get(PtrLong->getType(),
0xFFULL << PointerTagShift));
} else {
// Userspace addresses have 0x00.
UntaggedPtrLong =
IRB.CreateAnd(PtrLong, ConstantInt::get(PtrLong->getType(),
~(0xFFULL << PointerTagShift)));
}
return UntaggedPtrLong;
}
Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) {
// Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER
// in Bionic's libc/private/bionic_tls.h.
Function *ThreadPointerFunc =
Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
Value *SlotPtr = IRB.CreatePointerCast(
IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
IRB.CreateCall(ThreadPointerFunc), 0x30),
Ty->getPointerTo(0));
return SlotPtr;
}
if (ThreadPtrGlobal)
return ThreadPtrGlobal;
return nullptr;
}
Value *HWAddressSanitizer::getPC(IRBuilder<> &IRB) {
if (TargetTriple.getArch() == Triple::aarch64)
return readRegister(IRB, "pc");
return IRB.CreatePtrToInt(IRB.GetInsertBlock()->getParent(), IntptrTy);
}
Value *HWAddressSanitizer::getSP(IRBuilder<> &IRB) {
if (!CachedSP) {
// FIXME: use addressofreturnaddress (but implement it in aarch64 backend
// first).
Function *F = IRB.GetInsertBlock()->getParent();
Module *M = F->getParent();
auto *GetStackPointerFn = Intrinsic::getDeclaration(
M, Intrinsic::frameaddress,
IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace()));
CachedSP = IRB.CreatePtrToInt(
IRB.CreateCall(GetStackPointerFn,
{Constant::getNullValue(IRB.getInt32Ty())}),
IntptrTy);
}
return CachedSP;
}
Value *HWAddressSanitizer::getFrameRecordInfo(IRBuilder<> &IRB) {
// Prepare ring buffer data.
Value *PC = getPC(IRB);
Value *SP = getSP(IRB);
// Mix SP and PC.
// Assumptions:
// PC is 0x0000PPPPPPPPPPPP (48 bits are meaningful, others are zero)
// SP is 0xsssssssssssSSSS0 (4 lower bits are zero)
// We only really need ~20 lower non-zero bits (SSSS), so we mix like this:
// 0xSSSSPPPPPPPPPPPP
SP = IRB.CreateShl(SP, 44);
return IRB.CreateOr(PC, SP);
}
void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) {
if (!Mapping.InTls)
ShadowBase = getShadowNonTls(IRB);
else if (!WithFrameRecord && TargetTriple.isAndroid())
ShadowBase = getDynamicShadowIfunc(IRB);
if (!WithFrameRecord && ShadowBase)
return;
Value *SlotPtr = nullptr;
Value *ThreadLong = nullptr;
Value *ThreadLongMaybeUntagged = nullptr;
auto getThreadLongMaybeUntagged = [&]() {
if (!SlotPtr)
SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy);
if (!ThreadLong)
ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr);
// Extract the address field from ThreadLong. Unnecessary on AArch64 with
// TBI.
return TargetTriple.isAArch64() ? ThreadLong
: untagPointer(IRB, ThreadLong);
};
if (WithFrameRecord) {
switch (ClRecordStackHistory) {
case libcall: {
// Emit a runtime call into hwasan rather than emitting instructions for
// recording stack history.
Value *FrameRecordInfo = getFrameRecordInfo(IRB);
IRB.CreateCall(HwasanRecordFrameRecordFunc, {FrameRecordInfo});
break;
}
case instr: {
ThreadLongMaybeUntagged = getThreadLongMaybeUntagged();
StackBaseTag = IRB.CreateAShr(ThreadLong, 3);
// Store data to ring buffer.
Value *FrameRecordInfo = getFrameRecordInfo(IRB);
Value *RecordPtr = IRB.CreateIntToPtr(ThreadLongMaybeUntagged,
IntptrTy->getPointerTo(0));
IRB.CreateStore(FrameRecordInfo, RecordPtr);
// Update the ring buffer. Top byte of ThreadLong defines the size of the
// buffer in pages, it must be a power of two, and the start of the buffer
// must be aligned by twice that much. Therefore wrap around of the ring
// buffer is simply Addr &= ~((ThreadLong >> 56) << 12).
// The use of AShr instead of LShr is due to
// https://bugs.llvm.org/show_bug.cgi?id=39030
// Runtime library makes sure not to use the highest bit.
Value *WrapMask = IRB.CreateXor(
IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true),
ConstantInt::get(IntptrTy, (uint64_t)-1));
Value *ThreadLongNew = IRB.CreateAnd(
IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask);
IRB.CreateStore(ThreadLongNew, SlotPtr);
break;
}
case none: {
llvm_unreachable(
"A stack history recording mode should've been selected.");
}
}
}
if (!ShadowBase) {
if (!ThreadLongMaybeUntagged)
ThreadLongMaybeUntagged = getThreadLongMaybeUntagged();
// Get shadow base address by aligning RecordPtr up.
// Note: this is not correct if the pointer is already aligned.
// Runtime library will make sure this never happens.
ShadowBase = IRB.CreateAdd(
IRB.CreateOr(
ThreadLongMaybeUntagged,
ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)),
ConstantInt::get(IntptrTy, 1), "hwasan.shadow");
ShadowBase = IRB.CreateIntToPtr(ShadowBase, Int8PtrTy);
}
}
Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Function *ReadRegister =
Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy);
MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)});
Value *Args[] = {MetadataAsValue::get(*C, MD)};
return IRB.CreateCall(ReadRegister, Args);
}
bool HWAddressSanitizer::instrumentLandingPads(
SmallVectorImpl<Instruction *> &LandingPadVec) {
for (auto *LP : LandingPadVec) {
IRBuilder<> IRB(LP->getNextNode());
IRB.CreateCall(
HWAsanHandleVfork,
{readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp"
: "sp")});
}
return true;
}
static bool isLifetimeIntrinsic(Value *V) {
auto *II = dyn_cast<IntrinsicInst>(V);
return II && II->isLifetimeStartOrEnd();
}
bool HWAddressSanitizer::instrumentStack(memtag::StackInfo &SInfo,
Value *StackTag,
const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI) {
// Ideally, we want to calculate tagged stack base pointer, and rewrite all
// alloca addresses using that. Unfortunately, offsets are not known yet
// (unless we use ASan-style mega-alloca). Instead we keep the base tag in a
// temp, shift-OR it into each alloca address and xor with the retag mask.
// This generates one extra instruction per alloca use.
unsigned int I = 0;
for (auto &KV : SInfo.AllocasToInstrument) {
auto N = I++;
auto *AI = KV.first;
memtag::AllocaInfo &Info = KV.second;
IRBuilder<> IRB(AI->getNextNode());
// Replace uses of the alloca with tagged address.
Value *Tag = getAllocaTag(IRB, StackTag, AI, N);
Value *AILong = IRB.CreatePointerCast(AI, IntptrTy);
Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag);
std::string Name =
AI->hasName() ? AI->getName().str() : "alloca." + itostr(N);
Replacement->setName(Name + ".hwasan");
size_t Size = memtag::getAllocaSizeInBytes(*AI);
size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment());
Value *AICast = IRB.CreatePointerCast(AI, Int8PtrTy);
auto HandleLifetime = [&](IntrinsicInst *II) {
// Set the lifetime intrinsic to cover the whole alloca. This reduces the
// set of assumptions we need to make about the lifetime. Without this we
// would need to ensure that we can track the lifetime pointer to a
// constant offset from the alloca, and would still need to change the
// size to include the extra alignment we use for the untagging to make
// the size consistent.
//
// The check for standard lifetime below makes sure that we have exactly
// one set of start / end in any execution (i.e. the ends are not
// reachable from each other), so this will not cause any problems.
II->setArgOperand(0, ConstantInt::get(Int64Ty, AlignedSize));
II->setArgOperand(1, AICast);
};
llvm::for_each(Info.LifetimeStart, HandleLifetime);
llvm::for_each(Info.LifetimeEnd, HandleLifetime);
AI->replaceUsesWithIf(Replacement, [AICast, AILong](Use &U) {
auto *User = U.getUser();
return User != AILong && User != AICast && !isLifetimeIntrinsic(User);
});
for (auto *DDI : Info.DbgVariableIntrinsics) {
// Prepend "tag_offset, N" to the dwarf expression.
// Tag offset logically applies to the alloca pointer, and it makes sense
// to put it at the beginning of the expression.
SmallVector<uint64_t, 8> NewOps = {dwarf::DW_OP_LLVM_tag_offset,
retagMask(N)};
for (size_t LocNo = 0; LocNo < DDI->getNumVariableLocationOps(); ++LocNo)
if (DDI->getVariableLocationOp(LocNo) == AI)
DDI->setExpression(DIExpression::appendOpsToArg(DDI->getExpression(),
NewOps, LocNo));
}
auto TagEnd = [&](Instruction *Node) {
IRB.SetInsertPoint(Node);
Value *UARTag = getUARTag(IRB, StackTag);
// When untagging, use the `AlignedSize` because we need to set the tags
// for the entire alloca to zero. If we used `Size` here, we would
// keep the last granule tagged, and store zero in the last byte of the
// last granule, due to how short granules are implemented.
tagAlloca(IRB, AI, UARTag, AlignedSize);
};
// Calls to functions that may return twice (e.g. setjmp) confuse the
// postdominator analysis, and will leave us to keep memory tagged after
// function return. Work around this by always untagging at every return
// statement if return_twice functions are called.
bool StandardLifetime =
SInfo.UnrecognizedLifetimes.empty() &&
memtag::isStandardLifetime(Info.LifetimeStart, Info.LifetimeEnd, &DT,
&LI, ClMaxLifetimes) &&
!SInfo.CallsReturnTwice;
if (DetectUseAfterScope && StandardLifetime) {
IntrinsicInst *Start = Info.LifetimeStart[0];
IRB.SetInsertPoint(Start->getNextNode());
tagAlloca(IRB, AI, Tag, Size);
if (!memtag::forAllReachableExits(DT, PDT, LI, Start, Info.LifetimeEnd,
SInfo.RetVec, TagEnd)) {
for (auto *End : Info.LifetimeEnd)
End->eraseFromParent();
}
} else {
tagAlloca(IRB, AI, Tag, Size);
for (auto *RI : SInfo.RetVec)
TagEnd(RI);
// We inserted tagging outside of the lifetimes, so we have to remove
// them.
for (auto &II : Info.LifetimeStart)
II->eraseFromParent();
for (auto &II : Info.LifetimeEnd)
II->eraseFromParent();
}
memtag::alignAndPadAlloca(Info, Mapping.getObjectAlignment());
}
for (auto &I : SInfo.UnrecognizedLifetimes)
I->eraseFromParent();
return true;
}
bool HWAddressSanitizer::sanitizeFunction(Function &F,
FunctionAnalysisManager &FAM) {
if (&F == HwasanCtorFunction)
return false;
if (!F.hasFnAttribute(Attribute::SanitizeHWAddress))
return false;
LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n");
SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
SmallVector<Instruction *, 8> LandingPadVec;
memtag::StackInfoBuilder SIB(SSI);
for (auto &Inst : instructions(F)) {
if (InstrumentStack) {
SIB.visit(Inst);
}
if (InstrumentLandingPads && isa<LandingPadInst>(Inst))
LandingPadVec.push_back(&Inst);
getInterestingMemoryOperands(&Inst, OperandsToInstrument);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst))
if (!ignoreMemIntrinsic(MI))
IntrinToInstrument.push_back(MI);
}
memtag::StackInfo &SInfo = SIB.get();
initializeCallbacks(*F.getParent());
bool Changed = false;
if (!LandingPadVec.empty())
Changed |= instrumentLandingPads(LandingPadVec);
if (SInfo.AllocasToInstrument.empty() && F.hasPersonalityFn() &&
F.getPersonalityFn()->getName() == kHwasanPersonalityThunkName) {
// __hwasan_personality_thunk is a no-op for functions without an
// instrumented stack, so we can drop it.
F.setPersonalityFn(nullptr);
Changed = true;
}
if (SInfo.AllocasToInstrument.empty() && OperandsToInstrument.empty() &&
IntrinToInstrument.empty())
return Changed;
assert(!ShadowBase);
Instruction *InsertPt = &*F.getEntryBlock().begin();
IRBuilder<> EntryIRB(InsertPt);
emitPrologue(EntryIRB,
/*WithFrameRecord*/ ClRecordStackHistory != none &&
Mapping.WithFrameRecord &&
!SInfo.AllocasToInstrument.empty());
if (!SInfo.AllocasToInstrument.empty()) {
const DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
const PostDominatorTree &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
const LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
Value *StackTag =
ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB);
instrumentStack(SInfo, StackTag, DT, PDT, LI);
}
// If we split the entry block, move any allocas that were originally in the
// entry block back into the entry block so that they aren't treated as
// dynamic allocas.
if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) {
InsertPt = &*F.getEntryBlock().begin();
for (Instruction &I :
llvm::make_early_inc_range(*EntryIRB.GetInsertBlock())) {
if (auto *AI = dyn_cast<AllocaInst>(&I))
if (isa<ConstantInt>(AI->getArraySize()))
I.moveBefore(InsertPt);
}
}
for (auto &Operand : OperandsToInstrument)
instrumentMemAccess(Operand);
if (ClInstrumentMemIntrinsics && !IntrinToInstrument.empty()) {
for (auto *Inst : IntrinToInstrument)
instrumentMemIntrinsic(Inst);
}
ShadowBase = nullptr;
StackBaseTag = nullptr;
CachedSP = nullptr;
return true;
}
void HWAddressSanitizer::instrumentGlobal(GlobalVariable *GV, uint8_t Tag) {
assert(!UsePageAliases);
Constant *Initializer = GV->getInitializer();
uint64_t SizeInBytes =
M.getDataLayout().getTypeAllocSize(Initializer->getType());
uint64_t NewSize = alignTo(SizeInBytes, Mapping.getObjectAlignment());
if (SizeInBytes != NewSize) {
// Pad the initializer out to the next multiple of 16 bytes and add the
// required short granule tag.
std::vector<uint8_t> Init(NewSize - SizeInBytes, 0);
Init.back() = Tag;
Constant *Padding = ConstantDataArray::get(*C, Init);
Initializer = ConstantStruct::getAnon({Initializer, Padding});
}
auto *NewGV = new GlobalVariable(M, Initializer->getType(), GV->isConstant(),
GlobalValue::ExternalLinkage, Initializer,
GV->getName() + ".hwasan");
NewGV->copyAttributesFrom(GV);
NewGV->setLinkage(GlobalValue::PrivateLinkage);
NewGV->copyMetadata(GV, 0);
NewGV->setAlignment(
std::max(GV->getAlign().valueOrOne(), Mapping.getObjectAlignment()));
// It is invalid to ICF two globals that have different tags. In the case
// where the size of the global is a multiple of the tag granularity the
// contents of the globals may be the same but the tags (i.e. symbol values)
// may be different, and the symbols are not considered during ICF. In the
// case where the size is not a multiple of the granularity, the short granule
// tags would discriminate two globals with different tags, but there would
// otherwise be nothing stopping such a global from being incorrectly ICF'd
// with an uninstrumented (i.e. tag 0) global that happened to have the short
// granule tag in the last byte.
NewGV->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
// Descriptor format (assuming little-endian):
// bytes 0-3: relative address of global
// bytes 4-6: size of global (16MB ought to be enough for anyone, but in case
// it isn't, we create multiple descriptors)
// byte 7: tag
auto *DescriptorTy = StructType::get(Int32Ty, Int32Ty);
const uint64_t MaxDescriptorSize = 0xfffff0;
for (uint64_t DescriptorPos = 0; DescriptorPos < SizeInBytes;
DescriptorPos += MaxDescriptorSize) {
auto *Descriptor =
new GlobalVariable(M, DescriptorTy, true, GlobalValue::PrivateLinkage,
nullptr, GV->getName() + ".hwasan.descriptor");
auto *GVRelPtr = ConstantExpr::getTrunc(
ConstantExpr::getAdd(
ConstantExpr::getSub(
ConstantExpr::getPtrToInt(NewGV, Int64Ty),
ConstantExpr::getPtrToInt(Descriptor, Int64Ty)),
ConstantInt::get(Int64Ty, DescriptorPos)),
Int32Ty);
uint32_t Size = std::min(SizeInBytes - DescriptorPos, MaxDescriptorSize);
auto *SizeAndTag = ConstantInt::get(Int32Ty, Size | (uint32_t(Tag) << 24));
Descriptor->setComdat(NewGV->getComdat());
Descriptor->setInitializer(ConstantStruct::getAnon({GVRelPtr, SizeAndTag}));
Descriptor->setSection("hwasan_globals");
Descriptor->setMetadata(LLVMContext::MD_associated,
MDNode::get(*C, ValueAsMetadata::get(NewGV)));
appendToCompilerUsed(M, Descriptor);
}
Constant *Aliasee = ConstantExpr::getIntToPtr(
ConstantExpr::getAdd(
ConstantExpr::getPtrToInt(NewGV, Int64Ty),
ConstantInt::get(Int64Ty, uint64_t(Tag) << PointerTagShift)),
GV->getType());
auto *Alias = GlobalAlias::create(GV->getValueType(), GV->getAddressSpace(),
GV->getLinkage(), "", Aliasee, &M);
Alias->setVisibility(GV->getVisibility());
Alias->takeName(GV);
GV->replaceAllUsesWith(Alias);
GV->eraseFromParent();
}
void HWAddressSanitizer::instrumentGlobals() {
std::vector<GlobalVariable *> Globals;
for (GlobalVariable &GV : M.globals()) {
if (GV.hasSanitizerMetadata() && GV.getSanitizerMetadata().NoHWAddress)
continue;
if (GV.isDeclarationForLinker() || GV.getName().startswith("llvm.") ||
GV.isThreadLocal())
continue;
// Common symbols can't have aliases point to them, so they can't be tagged.
if (GV.hasCommonLinkage())
continue;
// Globals with custom sections may be used in __start_/__stop_ enumeration,
// which would be broken both by adding tags and potentially by the extra
// padding/alignment that we insert.
if (GV.hasSection())
continue;
Globals.push_back(&GV);
}
MD5 Hasher;
Hasher.update(M.getSourceFileName());
MD5::MD5Result Hash;
Hasher.final(Hash);
uint8_t Tag = Hash[0];
for (GlobalVariable *GV : Globals) {
Tag &= TagMaskByte;
// Skip tag 0 in order to avoid collisions with untagged memory.
if (Tag == 0)
Tag = 1;
instrumentGlobal(GV, Tag++);
}
}
void HWAddressSanitizer::instrumentPersonalityFunctions() {
// We need to untag stack frames as we unwind past them. That is the job of
// the personality function wrapper, which either wraps an existing
// personality function or acts as a personality function on its own. Each
// function that has a personality function or that can be unwound past has
// its personality function changed to a thunk that calls the personality
// function wrapper in the runtime.
MapVector<Constant *, std::vector<Function *>> PersonalityFns;
for (Function &F : M) {
if (F.isDeclaration() || !F.hasFnAttribute(Attribute::SanitizeHWAddress))
continue;
if (F.hasPersonalityFn()) {
PersonalityFns[F.getPersonalityFn()->stripPointerCasts()].push_back(&F);
} else if (!F.hasFnAttribute(Attribute::NoUnwind)) {
PersonalityFns[nullptr].push_back(&F);
}
}
if (PersonalityFns.empty())
return;
FunctionCallee HwasanPersonalityWrapper = M.getOrInsertFunction(
"__hwasan_personality_wrapper", Int32Ty, Int32Ty, Int32Ty, Int64Ty,
Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy);
FunctionCallee UnwindGetGR = M.getOrInsertFunction("_Unwind_GetGR", VoidTy);
FunctionCallee UnwindGetCFA = M.getOrInsertFunction("_Unwind_GetCFA", VoidTy);
for (auto &P : PersonalityFns) {
std::string ThunkName = kHwasanPersonalityThunkName;
if (P.first)
ThunkName += ("." + P.first->getName()).str();
FunctionType *ThunkFnTy = FunctionType::get(
Int32Ty, {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int8PtrTy}, false);
bool IsLocal = P.first && (!isa<GlobalValue>(P.first) ||
cast<GlobalValue>(P.first)->hasLocalLinkage());
auto *ThunkFn = Function::Create(ThunkFnTy,
IsLocal ? GlobalValue::InternalLinkage
: GlobalValue::LinkOnceODRLinkage,
ThunkName, &M);
if (!IsLocal) {
ThunkFn->setVisibility(GlobalValue::HiddenVisibility);
ThunkFn->setComdat(M.getOrInsertComdat(ThunkName));
}
auto *BB = BasicBlock::Create(*C, "entry", ThunkFn);
IRBuilder<> IRB(BB);
CallInst *WrapperCall = IRB.CreateCall(
HwasanPersonalityWrapper,
{ThunkFn->getArg(0), ThunkFn->getArg(1), ThunkFn->getArg(2),
ThunkFn->getArg(3), ThunkFn->getArg(4),
P.first ? IRB.CreateBitCast(P.first, Int8PtrTy)
: Constant::getNullValue(Int8PtrTy),
IRB.CreateBitCast(UnwindGetGR.getCallee(), Int8PtrTy),
IRB.CreateBitCast(UnwindGetCFA.getCallee(), Int8PtrTy)});
WrapperCall->setTailCall();
IRB.CreateRet(WrapperCall);
for (Function *F : P.second)
F->setPersonalityFn(ThunkFn);
}
}
void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple,
bool InstrumentWithCalls) {
Scale = kDefaultShadowScale;
if (TargetTriple.isOSFuchsia()) {
// Fuchsia is always PIE, which means that the beginning of the address
// space is always available.
InGlobal = false;
InTls = false;
Offset = 0;
WithFrameRecord = true;
} else if (ClMappingOffset.getNumOccurrences() > 0) {
InGlobal = false;
InTls = false;
Offset = ClMappingOffset;
WithFrameRecord = false;
} else if (ClEnableKhwasan || InstrumentWithCalls) {
InGlobal = false;
InTls = false;
Offset = 0;
WithFrameRecord = false;
} else if (ClWithIfunc) {
InGlobal = true;
InTls = false;
Offset = kDynamicShadowSentinel;
WithFrameRecord = false;
} else if (ClWithTls) {
InGlobal = false;
InTls = true;
Offset = kDynamicShadowSentinel;
WithFrameRecord = true;
} else {
InGlobal = false;
InTls = false;
Offset = kDynamicShadowSentinel;
WithFrameRecord = false;
}
}
|