aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
blob: 61e62adbe327327af412f94c56f35c16023f4857 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

#define DEBUG_TYPE "instcombine"

using namespace llvm;
using namespace PatternMatch;

STATISTIC(NumAggregateReconstructionsSimplified,
          "Number of aggregate reconstructions turned into reuse of the "
          "original aggregate");

/// Return true if the value is cheaper to scalarize than it is to leave as a
/// vector operation. If the extract index \p EI is a constant integer then
/// some operations may be cheap to scalarize.
///
/// FIXME: It's possible to create more instructions than previously existed.
static bool cheapToScalarize(Value *V, Value *EI) {
  ConstantInt *CEI = dyn_cast<ConstantInt>(EI);

  // If we can pick a scalar constant value out of a vector, that is free.
  if (auto *C = dyn_cast<Constant>(V))
    return CEI || C->getSplatValue();

  if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
    ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
    // Index needs to be lower than the minimum size of the vector, because
    // for scalable vector, the vector size is known at run time.
    return CEI->getValue().ult(EC.getKnownMinValue());
  }

  // An insertelement to the same constant index as our extract will simplify
  // to the scalar inserted element. An insertelement to a different constant
  // index is irrelevant to our extract.
  if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
    return CEI;

  if (match(V, m_OneUse(m_Load(m_Value()))))
    return true;

  if (match(V, m_OneUse(m_UnOp())))
    return true;

  Value *V0, *V1;
  if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
      return true;

  CmpInst::Predicate UnusedPred;
  if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
      return true;

  return false;
}

// If we have a PHI node with a vector type that is only used to feed
// itself and be an operand of extractelement at a constant location,
// try to replace the PHI of the vector type with a PHI of a scalar type.
Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
                                            PHINode *PN) {
  SmallVector<Instruction *, 2> Extracts;
  // The users we want the PHI to have are:
  // 1) The EI ExtractElement (we already know this)
  // 2) Possibly more ExtractElements with the same index.
  // 3) Another operand, which will feed back into the PHI.
  Instruction *PHIUser = nullptr;
  for (auto *U : PN->users()) {
    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
      if (EI.getIndexOperand() == EU->getIndexOperand())
        Extracts.push_back(EU);
      else
        return nullptr;
    } else if (!PHIUser) {
      PHIUser = cast<Instruction>(U);
    } else {
      return nullptr;
    }
  }

  if (!PHIUser)
    return nullptr;

  // Verify that this PHI user has one use, which is the PHI itself,
  // and that it is a binary operation which is cheap to scalarize.
  // otherwise return nullptr.
  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
      !(isa<BinaryOperator>(PHIUser)) ||
      !cheapToScalarize(PHIUser, EI.getIndexOperand()))
    return nullptr;

  // Create a scalar PHI node that will replace the vector PHI node
  // just before the current PHI node.
  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
  // Scalarize each PHI operand.
  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
    Value *PHIInVal = PN->getIncomingValue(i);
    BasicBlock *inBB = PN->getIncomingBlock(i);
    Value *Elt = EI.getIndexOperand();
    // If the operand is the PHI induction variable:
    if (PHIInVal == PHIUser) {
      // Scalarize the binary operation. Its first operand is the
      // scalar PHI, and the second operand is extracted from the other
      // vector operand.
      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
      Value *Op = InsertNewInstWith(
          ExtractElementInst::Create(B0->getOperand(opId), Elt,
                                     B0->getOperand(opId)->getName() + ".Elt"),
          *B0);
      Value *newPHIUser = InsertNewInstWith(
          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
                                                scalarPHI, Op, B0), *B0);
      scalarPHI->addIncoming(newPHIUser, inBB);
    } else {
      // Scalarize PHI input:
      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
      // Insert the new instruction into the predecessor basic block.
      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
      BasicBlock::iterator InsertPos;
      if (pos && !isa<PHINode>(pos)) {
        InsertPos = ++pos->getIterator();
      } else {
        InsertPos = inBB->getFirstInsertionPt();
      }

      InsertNewInstWith(newEI, *InsertPos);

      scalarPHI->addIncoming(newEI, inBB);
    }
  }

  for (auto *E : Extracts)
    replaceInstUsesWith(*E, scalarPHI);

  return &EI;
}

Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
  Value *X;
  uint64_t ExtIndexC;
  if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
      !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
    return nullptr;

  ElementCount NumElts =
      cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
  Type *DestTy = Ext.getType();
  unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
  bool IsBigEndian = DL.isBigEndian();

  // If we are casting an integer to vector and extracting a portion, that is
  // a shift-right and truncate.
  if (X->getType()->isIntegerTy()) {
    assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
           "Expected fixed vector type for bitcast from scalar integer");

    // Big endian requires adjusting the extract index since MSB is at index 0.
    // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
    // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
    if (IsBigEndian)
      ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
    unsigned ShiftAmountC = ExtIndexC * DestWidth;
    if (!ShiftAmountC ||
        (isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) &&
        Ext.getVectorOperand()->hasOneUse())) {
      if (ShiftAmountC)
        X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
      if (DestTy->isFloatingPointTy()) {
        Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth);
        Value *Trunc = Builder.CreateTrunc(X, DstIntTy);
        return new BitCastInst(Trunc, DestTy);
      }
      return new TruncInst(X, DestTy);
    }
  }

  if (!X->getType()->isVectorTy())
    return nullptr;

  // If this extractelement is using a bitcast from a vector of the same number
  // of elements, see if we can find the source element from the source vector:
  // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
  auto *SrcTy = cast<VectorType>(X->getType());
  ElementCount NumSrcElts = SrcTy->getElementCount();
  if (NumSrcElts == NumElts)
    if (Value *Elt = findScalarElement(X, ExtIndexC))
      return new BitCastInst(Elt, DestTy);

  assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
         "Src and Dst must be the same sort of vector type");

  // If the source elements are wider than the destination, try to shift and
  // truncate a subset of scalar bits of an insert op.
  if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
    Value *Scalar;
    Value *Vec;
    uint64_t InsIndexC;
    if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
                              m_ConstantInt(InsIndexC))))
      return nullptr;

    // The extract must be from the subset of vector elements that we inserted
    // into. Example: if we inserted element 1 of a <2 x i64> and we are
    // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
    // of elements 4-7 of the bitcasted vector.
    unsigned NarrowingRatio =
        NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();

    if (ExtIndexC / NarrowingRatio != InsIndexC) {
      // Remove insertelement, if we don't use the inserted element.
      // extractelement (bitcast (insertelement (Vec, b)), a) ->
      // extractelement (bitcast (Vec), a)
      // FIXME: this should be removed to SimplifyDemandedVectorElts,
      // once scale vectors are supported.
      if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
        Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
        return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
      }
      return nullptr;
    }

    // We are extracting part of the original scalar. How that scalar is
    // inserted into the vector depends on the endian-ness. Example:
    //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
    //                                       +--+--+--+--+--+--+--+--+
    // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
    // extelt <4 x i16> V', 3:               |                 |S2|S3|
    //                                       +--+--+--+--+--+--+--+--+
    // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
    // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
    // In this example, we must right-shift little-endian. Big-endian is just a
    // truncate.
    unsigned Chunk = ExtIndexC % NarrowingRatio;
    if (IsBigEndian)
      Chunk = NarrowingRatio - 1 - Chunk;

    // Bail out if this is an FP vector to FP vector sequence. That would take
    // more instructions than we started with unless there is no shift, and it
    // may not be handled as well in the backend.
    bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
    bool NeedDestBitcast = DestTy->isFloatingPointTy();
    if (NeedSrcBitcast && NeedDestBitcast)
      return nullptr;

    unsigned SrcWidth = SrcTy->getScalarSizeInBits();
    unsigned ShAmt = Chunk * DestWidth;

    // TODO: This limitation is more strict than necessary. We could sum the
    // number of new instructions and subtract the number eliminated to know if
    // we can proceed.
    if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
      if (NeedSrcBitcast || NeedDestBitcast)
        return nullptr;

    if (NeedSrcBitcast) {
      Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
      Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
    }

    if (ShAmt) {
      // Bail out if we could end with more instructions than we started with.
      if (!Ext.getVectorOperand()->hasOneUse())
        return nullptr;
      Scalar = Builder.CreateLShr(Scalar, ShAmt);
    }

    if (NeedDestBitcast) {
      Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
      return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
    }
    return new TruncInst(Scalar, DestTy);
  }

  return nullptr;
}

/// Find elements of V demanded by UserInstr.
static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
  unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();

  // Conservatively assume that all elements are needed.
  APInt UsedElts(APInt::getAllOnes(VWidth));

  switch (UserInstr->getOpcode()) {
  case Instruction::ExtractElement: {
    ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
    assert(EEI->getVectorOperand() == V);
    ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
    if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
      UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
    }
    break;
  }
  case Instruction::ShuffleVector: {
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
    unsigned MaskNumElts =
        cast<FixedVectorType>(UserInstr->getType())->getNumElements();

    UsedElts = APInt(VWidth, 0);
    for (unsigned i = 0; i < MaskNumElts; i++) {
      unsigned MaskVal = Shuffle->getMaskValue(i);
      if (MaskVal == -1u || MaskVal >= 2 * VWidth)
        continue;
      if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
        UsedElts.setBit(MaskVal);
      if (Shuffle->getOperand(1) == V &&
          ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
        UsedElts.setBit(MaskVal - VWidth);
    }
    break;
  }
  default:
    break;
  }
  return UsedElts;
}

/// Find union of elements of V demanded by all its users.
/// If it is known by querying findDemandedEltsBySingleUser that
/// no user demands an element of V, then the corresponding bit
/// remains unset in the returned value.
static APInt findDemandedEltsByAllUsers(Value *V) {
  unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();

  APInt UnionUsedElts(VWidth, 0);
  for (const Use &U : V->uses()) {
    if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
      UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
    } else {
      UnionUsedElts = APInt::getAllOnes(VWidth);
      break;
    }

    if (UnionUsedElts.isAllOnes())
      break;
  }

  return UnionUsedElts;
}

/// Given a constant index for a extractelement or insertelement instruction,
/// return it with the canonical type if it isn't already canonical.  We
/// arbitrarily pick 64 bit as our canonical type.  The actual bitwidth doesn't
/// matter, we just want a consistent type to simplify CSE.
ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
  const unsigned IndexBW = IndexC->getType()->getBitWidth();
  if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
    return nullptr;
  return ConstantInt::get(IndexC->getContext(),
                          IndexC->getValue().zextOrTrunc(64));
}

Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
  Value *SrcVec = EI.getVectorOperand();
  Value *Index = EI.getIndexOperand();
  if (Value *V = simplifyExtractElementInst(SrcVec, Index,
                                            SQ.getWithInstruction(&EI)))
    return replaceInstUsesWith(EI, V);

  // extractelt (select %x, %vec1, %vec2), %const ->
  // select %x, %vec1[%const], %vec2[%const]
  // TODO: Support constant folding of multiple select operands:
  // extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
  // If the extractelement will for instance try to do out of bounds accesses
  // because of the values of %c1 and/or %c2, the sequence could be optimized
  // early. This is currently not possible because constant folding will reach
  // an unreachable assertion if it doesn't find a constant operand.
  if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand()))
    if (SI->getCondition()->getType()->isIntegerTy() &&
        isa<Constant>(EI.getIndexOperand()))
      if (Instruction *R = FoldOpIntoSelect(EI, SI))
        return R;

  // If extracting a specified index from the vector, see if we can recursively
  // find a previously computed scalar that was inserted into the vector.
  auto *IndexC = dyn_cast<ConstantInt>(Index);
  if (IndexC) {
    // Canonicalize type of constant indices to i64 to simplify CSE
    if (auto *NewIdx = getPreferredVectorIndex(IndexC))
      return replaceOperand(EI, 1, NewIdx);

    ElementCount EC = EI.getVectorOperandType()->getElementCount();
    unsigned NumElts = EC.getKnownMinValue();

    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
      Intrinsic::ID IID = II->getIntrinsicID();
      // Index needs to be lower than the minimum size of the vector, because
      // for scalable vector, the vector size is known at run time.
      if (IID == Intrinsic::experimental_stepvector &&
          IndexC->getValue().ult(NumElts)) {
        Type *Ty = EI.getType();
        unsigned BitWidth = Ty->getIntegerBitWidth();
        Value *Idx;
        // Return index when its value does not exceed the allowed limit
        // for the element type of the vector, otherwise return undefined.
        if (IndexC->getValue().getActiveBits() <= BitWidth)
          Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
        else
          Idx = UndefValue::get(Ty);
        return replaceInstUsesWith(EI, Idx);
      }
    }

    // InstSimplify should handle cases where the index is invalid.
    // For fixed-length vector, it's invalid to extract out-of-range element.
    if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
      return nullptr;

    if (Instruction *I = foldBitcastExtElt(EI))
      return I;

    // If there's a vector PHI feeding a scalar use through this extractelement
    // instruction, try to scalarize the PHI.
    if (auto *Phi = dyn_cast<PHINode>(SrcVec))
      if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
        return ScalarPHI;
  }

  // TODO come up with a n-ary matcher that subsumes both unary and
  // binary matchers.
  UnaryOperator *UO;
  if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
    // extelt (unop X), Index --> unop (extelt X, Index)
    Value *X = UO->getOperand(0);
    Value *E = Builder.CreateExtractElement(X, Index);
    return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
  }

  BinaryOperator *BO;
  if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
    // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
    Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
  }

  Value *X, *Y;
  CmpInst::Predicate Pred;
  if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
      cheapToScalarize(SrcVec, Index)) {
    // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
  }

  if (auto *I = dyn_cast<Instruction>(SrcVec)) {
    if (auto *IE = dyn_cast<InsertElementInst>(I)) {
      // instsimplify already handled the case where the indices are constants
      // and equal by value, if both are constants, they must not be the same
      // value, extract from the pre-inserted value instead.
      if (isa<Constant>(IE->getOperand(2)) && IndexC)
        return replaceOperand(EI, 0, IE->getOperand(0));
    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
      auto *VecType = cast<VectorType>(GEP->getType());
      ElementCount EC = VecType->getElementCount();
      uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
      if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
        // Find out why we have a vector result - these are a few examples:
        //  1. We have a scalar pointer and a vector of indices, or
        //  2. We have a vector of pointers and a scalar index, or
        //  3. We have a vector of pointers and a vector of indices, etc.
        // Here we only consider combining when there is exactly one vector
        // operand, since the optimization is less obviously a win due to
        // needing more than one extractelements.

        unsigned VectorOps =
            llvm::count_if(GEP->operands(), [](const Value *V) {
              return isa<VectorType>(V->getType());
            });
        if (VectorOps == 1) {
          Value *NewPtr = GEP->getPointerOperand();
          if (isa<VectorType>(NewPtr->getType()))
            NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);

          SmallVector<Value *> NewOps;
          for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
            Value *Op = GEP->getOperand(I);
            if (isa<VectorType>(Op->getType()))
              NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
            else
              NewOps.push_back(Op);
          }

          GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
              GEP->getSourceElementType(), NewPtr, NewOps);
          NewGEP->setIsInBounds(GEP->isInBounds());
          return NewGEP;
        }
      }
    } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
      // If this is extracting an element from a shufflevector, figure out where
      // it came from and extract from the appropriate input element instead.
      // Restrict the following transformation to fixed-length vector.
      if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
        int SrcIdx =
            SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
        Value *Src;
        unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
                                ->getNumElements();

        if (SrcIdx < 0)
          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
        if (SrcIdx < (int)LHSWidth)
          Src = SVI->getOperand(0);
        else {
          SrcIdx -= LHSWidth;
          Src = SVI->getOperand(1);
        }
        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
        return ExtractElementInst::Create(
            Src, ConstantInt::get(Int32Ty, SrcIdx, false));
      }
    } else if (auto *CI = dyn_cast<CastInst>(I)) {
      // Canonicalize extractelement(cast) -> cast(extractelement).
      // Bitcasts can change the number of vector elements, and they cost
      // nothing.
      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
        Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
      }
    }
  }

  // Run demanded elements after other transforms as this can drop flags on
  // binops.  If there's two paths to the same final result, we prefer the
  // one which doesn't force us to drop flags.
  if (IndexC) {
    ElementCount EC = EI.getVectorOperandType()->getElementCount();
    unsigned NumElts = EC.getKnownMinValue();
    // This instruction only demands the single element from the input vector.
    // Skip for scalable type, the number of elements is unknown at
    // compile-time.
    if (!EC.isScalable() && NumElts != 1) {
      // If the input vector has a single use, simplify it based on this use
      // property.
      if (SrcVec->hasOneUse()) {
        APInt UndefElts(NumElts, 0);
        APInt DemandedElts(NumElts, 0);
        DemandedElts.setBit(IndexC->getZExtValue());
        if (Value *V =
                SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
          return replaceOperand(EI, 0, V);
      } else {
        // If the input vector has multiple uses, simplify it based on a union
        // of all elements used.
        APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
        if (!DemandedElts.isAllOnes()) {
          APInt UndefElts(NumElts, 0);
          if (Value *V = SimplifyDemandedVectorElts(
                  SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
                  true /* AllowMultipleUsers */)) {
            if (V != SrcVec) {
              SrcVec->replaceAllUsesWith(V);
              return &EI;
            }
          }
        }
      }
    }
  }
  return nullptr;
}

/// If V is a shuffle of values that ONLY returns elements from either LHS or
/// RHS, return the shuffle mask and true. Otherwise, return false.
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
                                         SmallVectorImpl<int> &Mask) {
  assert(LHS->getType() == RHS->getType() &&
         "Invalid CollectSingleShuffleElements");
  unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();

  if (match(V, m_Undef())) {
    Mask.assign(NumElts, -1);
    return true;
  }

  if (V == LHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(i);
    return true;
  }

  if (V == RHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(i + NumElts);
    return true;
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (!isa<ConstantInt>(IdxOp))
      return false;
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
      // We can handle this if the vector we are inserting into is
      // transitively ok.
      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
        // If so, update the mask to reflect the inserted undef.
        Mask[InsertedIdx] = -1;
        return true;
      }
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
      if (isa<ConstantInt>(EI->getOperand(1))) {
        unsigned ExtractedIdx =
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned NumLHSElts =
            cast<FixedVectorType>(LHS->getType())->getNumElements();

        // This must be extracting from either LHS or RHS.
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
          // We can handle this if the vector we are inserting into is
          // transitively ok.
          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
            // If so, update the mask to reflect the inserted value.
            if (EI->getOperand(0) == LHS) {
              Mask[InsertedIdx % NumElts] = ExtractedIdx;
            } else {
              assert(EI->getOperand(0) == RHS);
              Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
            }
            return true;
          }
        }
      }
    }
  }

  return false;
}

/// If we have insertion into a vector that is wider than the vector that we
/// are extracting from, try to widen the source vector to allow a single
/// shufflevector to replace one or more insert/extract pairs.
static void replaceExtractElements(InsertElementInst *InsElt,
                                   ExtractElementInst *ExtElt,
                                   InstCombinerImpl &IC) {
  auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
  auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
  unsigned NumInsElts = InsVecType->getNumElements();
  unsigned NumExtElts = ExtVecType->getNumElements();

  // The inserted-to vector must be wider than the extracted-from vector.
  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
      NumExtElts >= NumInsElts)
    return;

  // Create a shuffle mask to widen the extended-from vector using poison
  // values. The mask selects all of the values of the original vector followed
  // by as many poison values as needed to create a vector of the same length
  // as the inserted-to vector.
  SmallVector<int, 16> ExtendMask;
  for (unsigned i = 0; i < NumExtElts; ++i)
    ExtendMask.push_back(i);
  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
    ExtendMask.push_back(-1);

  Value *ExtVecOp = ExtElt->getVectorOperand();
  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
                                   ? ExtVecOpInst->getParent()
                                   : ExtElt->getParent();

  // TODO: This restriction matches the basic block check below when creating
  // new extractelement instructions. If that limitation is removed, this one
  // could also be removed. But for now, we just bail out to ensure that we
  // will replace the extractelement instruction that is feeding our
  // insertelement instruction. This allows the insertelement to then be
  // replaced by a shufflevector. If the insertelement is not replaced, we can
  // induce infinite looping because there's an optimization for extractelement
  // that will delete our widening shuffle. This would trigger another attempt
  // here to create that shuffle, and we spin forever.
  if (InsertionBlock != InsElt->getParent())
    return;

  // TODO: This restriction matches the check in visitInsertElementInst() and
  // prevents an infinite loop caused by not turning the extract/insert pair
  // into a shuffle. We really should not need either check, but we're lacking
  // folds for shufflevectors because we're afraid to generate shuffle masks
  // that the backend can't handle.
  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
    return;

  auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);

  // Insert the new shuffle after the vector operand of the extract is defined
  // (as long as it's not a PHI) or at the start of the basic block of the
  // extract, so any subsequent extracts in the same basic block can use it.
  // TODO: Insert before the earliest ExtractElementInst that is replaced.
  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
    WideVec->insertAfter(ExtVecOpInst);
  else
    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());

  // Replace extracts from the original narrow vector with extracts from the new
  // wide vector.
  for (User *U : ExtVecOp->users()) {
    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
    if (!OldExt || OldExt->getParent() != WideVec->getParent())
      continue;
    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
    NewExt->insertAfter(OldExt);
    IC.replaceInstUsesWith(*OldExt, NewExt);
  }
}

/// We are building a shuffle to create V, which is a sequence of insertelement,
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
/// not rely on the second vector source. Return a std::pair containing the
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
/// parameter as required.
///
/// Note: we intentionally don't try to fold earlier shuffles since they have
/// often been chosen carefully to be efficiently implementable on the target.
using ShuffleOps = std::pair<Value *, Value *>;

static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
                                         Value *PermittedRHS,
                                         InstCombinerImpl &IC) {
  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
  unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();

  if (match(V, m_Undef())) {
    Mask.assign(NumElts, -1);
    return std::make_pair(
        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
  }

  if (isa<ConstantAggregateZero>(V)) {
    Mask.assign(NumElts, 0);
    return std::make_pair(V, nullptr);
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
        unsigned ExtractedIdx =
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

        // Either the extracted from or inserted into vector must be RHSVec,
        // otherwise we'd end up with a shuffle of three inputs.
        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
          Value *RHS = EI->getOperand(0);
          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
          assert(LR.second == nullptr || LR.second == RHS);

          if (LR.first->getType() != RHS->getType()) {
            // Although we are giving up for now, see if we can create extracts
            // that match the inserts for another round of combining.
            replaceExtractElements(IEI, EI, IC);

            // We tried our best, but we can't find anything compatible with RHS
            // further up the chain. Return a trivial shuffle.
            for (unsigned i = 0; i < NumElts; ++i)
              Mask[i] = i;
            return std::make_pair(V, nullptr);
          }

          unsigned NumLHSElts =
              cast<FixedVectorType>(RHS->getType())->getNumElements();
          Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
          return std::make_pair(LR.first, RHS);
        }

        if (VecOp == PermittedRHS) {
          // We've gone as far as we can: anything on the other side of the
          // extractelement will already have been converted into a shuffle.
          unsigned NumLHSElts =
              cast<FixedVectorType>(EI->getOperand(0)->getType())
                  ->getNumElements();
          for (unsigned i = 0; i != NumElts; ++i)
            Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
          return std::make_pair(EI->getOperand(0), PermittedRHS);
        }

        // If this insertelement is a chain that comes from exactly these two
        // vectors, return the vector and the effective shuffle.
        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
                                         Mask))
          return std::make_pair(EI->getOperand(0), PermittedRHS);
      }
    }
  }

  // Otherwise, we can't do anything fancy. Return an identity vector.
  for (unsigned i = 0; i != NumElts; ++i)
    Mask.push_back(i);
  return std::make_pair(V, nullptr);
}

/// Look for chain of insertvalue's that fully define an aggregate, and trace
/// back the values inserted, see if they are all were extractvalue'd from
/// the same source aggregate from the exact same element indexes.
/// If they were, just reuse the source aggregate.
/// This potentially deals with PHI indirections.
Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
    InsertValueInst &OrigIVI) {
  Type *AggTy = OrigIVI.getType();
  unsigned NumAggElts;
  switch (AggTy->getTypeID()) {
  case Type::StructTyID:
    NumAggElts = AggTy->getStructNumElements();
    break;
  case Type::ArrayTyID:
    NumAggElts = AggTy->getArrayNumElements();
    break;
  default:
    llvm_unreachable("Unhandled aggregate type?");
  }

  // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
  // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
  // FIXME: any interesting patterns to be caught with larger limit?
  assert(NumAggElts > 0 && "Aggregate should have elements.");
  if (NumAggElts > 2)
    return nullptr;

  static constexpr auto NotFound = std::nullopt;
  static constexpr auto FoundMismatch = nullptr;

  // Try to find a value of each element of an aggregate.
  // FIXME: deal with more complex, not one-dimensional, aggregate types
  SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);

  // Do we know values for each element of the aggregate?
  auto KnowAllElts = [&AggElts]() {
    return !llvm::is_contained(AggElts, NotFound);
  };

  int Depth = 0;

  // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
  // every element being overwritten twice, which should never happen.
  static const int DepthLimit = 2 * NumAggElts;

  // Recurse up the chain of `insertvalue` aggregate operands until either we've
  // reconstructed full initializer or can't visit any more `insertvalue`'s.
  for (InsertValueInst *CurrIVI = &OrigIVI;
       Depth < DepthLimit && CurrIVI && !KnowAllElts();
       CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
                       ++Depth) {
    auto *InsertedValue =
        dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
    if (!InsertedValue)
      return nullptr; // Inserted value must be produced by an instruction.

    ArrayRef<unsigned int> Indices = CurrIVI->getIndices();

    // Don't bother with more than single-level aggregates.
    if (Indices.size() != 1)
      return nullptr; // FIXME: deal with more complex aggregates?

    // Now, we may have already previously recorded the value for this element
    // of an aggregate. If we did, that means the CurrIVI will later be
    // overwritten with the already-recorded value. But if not, let's record it!
    std::optional<Instruction *> &Elt = AggElts[Indices.front()];
    Elt = Elt.value_or(InsertedValue);

    // FIXME: should we handle chain-terminating undef base operand?
  }

  // Was that sufficient to deduce the full initializer for the aggregate?
  if (!KnowAllElts())
    return nullptr; // Give up then.

  // We now want to find the source[s] of the aggregate elements we've found.
  // And with "source" we mean the original aggregate[s] from which
  // the inserted elements were extracted. This may require PHI translation.

  enum class AggregateDescription {
    /// When analyzing the value that was inserted into an aggregate, we did
    /// not manage to find defining `extractvalue` instruction to analyze.
    NotFound,
    /// When analyzing the value that was inserted into an aggregate, we did
    /// manage to find defining `extractvalue` instruction[s], and everything
    /// matched perfectly - aggregate type, element insertion/extraction index.
    Found,
    /// When analyzing the value that was inserted into an aggregate, we did
    /// manage to find defining `extractvalue` instruction, but there was
    /// a mismatch: either the source type from which the extraction was didn't
    /// match the aggregate type into which the insertion was,
    /// or the extraction/insertion channels mismatched,
    /// or different elements had different source aggregates.
    FoundMismatch
  };
  auto Describe = [](std::optional<Value *> SourceAggregate) {
    if (SourceAggregate == NotFound)
      return AggregateDescription::NotFound;
    if (*SourceAggregate == FoundMismatch)
      return AggregateDescription::FoundMismatch;
    return AggregateDescription::Found;
  };

  // Given the value \p Elt that was being inserted into element \p EltIdx of an
  // aggregate AggTy, see if \p Elt was originally defined by an
  // appropriate extractvalue (same element index, same aggregate type).
  // If found, return the source aggregate from which the extraction was.
  // If \p PredBB is provided, does PHI translation of an \p Elt first.
  auto FindSourceAggregate =
      [&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB,
          std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
    // For now(?), only deal with, at most, a single level of PHI indirection.
    if (UseBB && PredBB)
      Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
    // FIXME: deal with multiple levels of PHI indirection?

    // Did we find an extraction?
    auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
    if (!EVI)
      return NotFound;

    Value *SourceAggregate = EVI->getAggregateOperand();

    // Is the extraction from the same type into which the insertion was?
    if (SourceAggregate->getType() != AggTy)
      return FoundMismatch;
    // And the element index doesn't change between extraction and insertion?
    if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
      return FoundMismatch;

    return SourceAggregate; // AggregateDescription::Found
  };

  // Given elements AggElts that were constructing an aggregate OrigIVI,
  // see if we can find appropriate source aggregate for each of the elements,
  // and see it's the same aggregate for each element. If so, return it.
  auto FindCommonSourceAggregate =
      [&](std::optional<BasicBlock *> UseBB,
          std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
    std::optional<Value *> SourceAggregate;

    for (auto I : enumerate(AggElts)) {
      assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
             "We don't store nullptr in SourceAggregate!");
      assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
                 (I.index() != 0) &&
             "SourceAggregate should be valid after the first element,");

      // For this element, is there a plausible source aggregate?
      // FIXME: we could special-case undef element, IFF we know that in the
      //        source aggregate said element isn't poison.
      std::optional<Value *> SourceAggregateForElement =
          FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);

      // Okay, what have we found? Does that correlate with previous findings?

      // Regardless of whether or not we have previously found source
      // aggregate for previous elements (if any), if we didn't find one for
      // this element, passthrough whatever we have just found.
      if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
        return SourceAggregateForElement;

      // Okay, we have found source aggregate for this element.
      // Let's see what we already know from previous elements, if any.
      switch (Describe(SourceAggregate)) {
      case AggregateDescription::NotFound:
        // This is apparently the first element that we have examined.
        SourceAggregate = SourceAggregateForElement; // Record the aggregate!
        continue; // Great, now look at next element.
      case AggregateDescription::Found:
        // We have previously already successfully examined other elements.
        // Is this the same source aggregate we've found for other elements?
        if (*SourceAggregateForElement != *SourceAggregate)
          return FoundMismatch;
        continue; // Still the same aggregate, look at next element.
      case AggregateDescription::FoundMismatch:
        llvm_unreachable("Can't happen. We would have early-exited then.");
      };
    }

    assert(Describe(SourceAggregate) == AggregateDescription::Found &&
           "Must be a valid Value");
    return *SourceAggregate;
  };

  std::optional<Value *> SourceAggregate;

  // Can we find the source aggregate without looking at predecessors?
  SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt,
                                              /*PredBB=*/std::nullopt);
  if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
    if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
      return nullptr; // Conflicting source aggregates!
    ++NumAggregateReconstructionsSimplified;
    return replaceInstUsesWith(OrigIVI, *SourceAggregate);
  }

  // Okay, apparently we need to look at predecessors.

  // We should be smart about picking the "use" basic block, which will be the
  // merge point for aggregate, where we'll insert the final PHI that will be
  // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
  // We should look in which blocks each of the AggElts is being defined,
  // they all should be defined in the same basic block.
  BasicBlock *UseBB = nullptr;

  for (const std::optional<Instruction *> &I : AggElts) {
    BasicBlock *BB = (*I)->getParent();
    // If it's the first instruction we've encountered, record the basic block.
    if (!UseBB) {
      UseBB = BB;
      continue;
    }
    // Otherwise, this must be the same basic block we've seen previously.
    if (UseBB != BB)
      return nullptr;
  }

  // If *all* of the elements are basic-block-independent, meaning they are
  // either function arguments, or constant expressions, then if we didn't
  // handle them without predecessor-aware handling, we won't handle them now.
  if (!UseBB)
    return nullptr;

  // If we didn't manage to find source aggregate without looking at
  // predecessors, and there are no predecessors to look at, then we're done.
  if (pred_empty(UseBB))
    return nullptr;

  // Arbitrary predecessor count limit.
  static const int PredCountLimit = 64;

  // Cache the (non-uniqified!) list of predecessors in a vector,
  // checking the limit at the same time for efficiency.
  SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
  for (BasicBlock *Pred : predecessors(UseBB)) {
    // Don't bother if there are too many predecessors.
    if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
      return nullptr;
    Preds.emplace_back(Pred);
  }

  // For each predecessor, what is the source aggregate,
  // from which all the elements were originally extracted from?
  // Note that we want for the map to have stable iteration order!
  SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
  for (BasicBlock *Pred : Preds) {
    std::pair<decltype(SourceAggregates)::iterator, bool> IV =
        SourceAggregates.insert({Pred, nullptr});
    // Did we already evaluate this predecessor?
    if (!IV.second)
      continue;

    // Let's hope that when coming from predecessor Pred, all elements of the
    // aggregate produced by OrigIVI must have been originally extracted from
    // the same aggregate. Is that so? Can we find said original aggregate?
    SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
    if (Describe(SourceAggregate) != AggregateDescription::Found)
      return nullptr; // Give up.
    IV.first->second = *SourceAggregate;
  }

  // All good! Now we just need to thread the source aggregates here.
  // Note that we have to insert the new PHI here, ourselves, because we can't
  // rely on InstCombinerImpl::run() inserting it into the right basic block.
  // Note that the same block can be a predecessor more than once,
  // and we need to preserve that invariant for the PHI node.
  BuilderTy::InsertPointGuard Guard(Builder);
  Builder.SetInsertPoint(UseBB->getFirstNonPHI());
  auto *PHI =
      Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
  for (BasicBlock *Pred : Preds)
    PHI->addIncoming(SourceAggregates[Pred], Pred);

  ++NumAggregateReconstructionsSimplified;
  return replaceInstUsesWith(OrigIVI, PHI);
}

/// Try to find redundant insertvalue instructions, like the following ones:
///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
/// Here the second instruction inserts values at the same indices, as the
/// first one, making the first one redundant.
/// It should be transformed to:
///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
  bool IsRedundant = false;
  ArrayRef<unsigned int> FirstIndices = I.getIndices();

  // If there is a chain of insertvalue instructions (each of them except the
  // last one has only one use and it's another insertvalue insn from this
  // chain), check if any of the 'children' uses the same indices as the first
  // instruction. In this case, the first one is redundant.
  Value *V = &I;
  unsigned Depth = 0;
  while (V->hasOneUse() && Depth < 10) {
    User *U = V->user_back();
    auto UserInsInst = dyn_cast<InsertValueInst>(U);
    if (!UserInsInst || U->getOperand(0) != V)
      break;
    if (UserInsInst->getIndices() == FirstIndices) {
      IsRedundant = true;
      break;
    }
    V = UserInsInst;
    Depth++;
  }

  if (IsRedundant)
    return replaceInstUsesWith(I, I.getOperand(0));

  if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
    return NewI;

  return nullptr;
}

static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
  // Can not analyze scalable type, the number of elements is not a compile-time
  // constant.
  if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
    return false;

  int MaskSize = Shuf.getShuffleMask().size();
  int VecSize =
      cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();

  // A vector select does not change the size of the operands.
  if (MaskSize != VecSize)
    return false;

  // Each mask element must be undefined or choose a vector element from one of
  // the source operands without crossing vector lanes.
  for (int i = 0; i != MaskSize; ++i) {
    int Elt = Shuf.getMaskValue(i);
    if (Elt != -1 && Elt != i && Elt != i + VecSize)
      return false;
  }

  return true;
}

/// Turn a chain of inserts that splats a value into an insert + shuffle:
/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
/// shufflevector(insertelt(X, %k, 0), poison, zero)
static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
  // We are interested in the last insert in a chain. So if this insert has a
  // single user and that user is an insert, bail.
  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
    return nullptr;

  VectorType *VecTy = InsElt.getType();
  // Can not handle scalable type, the number of elements is not a compile-time
  // constant.
  if (isa<ScalableVectorType>(VecTy))
    return nullptr;
  unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();

  // Do not try to do this for a one-element vector, since that's a nop,
  // and will cause an inf-loop.
  if (NumElements == 1)
    return nullptr;

  Value *SplatVal = InsElt.getOperand(1);
  InsertElementInst *CurrIE = &InsElt;
  SmallBitVector ElementPresent(NumElements, false);
  InsertElementInst *FirstIE = nullptr;

  // Walk the chain backwards, keeping track of which indices we inserted into,
  // until we hit something that isn't an insert of the splatted value.
  while (CurrIE) {
    auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
    if (!Idx || CurrIE->getOperand(1) != SplatVal)
      return nullptr;

    auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
    // Check none of the intermediate steps have any additional uses, except
    // for the root insertelement instruction, which can be re-used, if it
    // inserts at position 0.
    if (CurrIE != &InsElt &&
        (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
      return nullptr;

    ElementPresent[Idx->getZExtValue()] = true;
    FirstIE = CurrIE;
    CurrIE = NextIE;
  }

  // If this is just a single insertelement (not a sequence), we are done.
  if (FirstIE == &InsElt)
    return nullptr;

  // If we are not inserting into an undef vector, make sure we've seen an
  // insert into every element.
  // TODO: If the base vector is not undef, it might be better to create a splat
  //       and then a select-shuffle (blend) with the base vector.
  if (!match(FirstIE->getOperand(0), m_Undef()))
    if (!ElementPresent.all())
      return nullptr;

  // Create the insert + shuffle.
  Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
  PoisonValue *PoisonVec = PoisonValue::get(VecTy);
  Constant *Zero = ConstantInt::get(Int32Ty, 0);
  if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
    FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);

  // Splat from element 0, but replace absent elements with undef in the mask.
  SmallVector<int, 16> Mask(NumElements, 0);
  for (unsigned i = 0; i != NumElements; ++i)
    if (!ElementPresent[i])
      Mask[i] = -1;

  return new ShuffleVectorInst(FirstIE, Mask);
}

/// Try to fold an insert element into an existing splat shuffle by changing
/// the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
  // Check if the vector operand of this insert is a canonical splat shuffle.
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
  if (!Shuf || !Shuf->isZeroEltSplat())
    return nullptr;

  // Bail out early if shuffle is scalable type. The number of elements in
  // shuffle mask is unknown at compile-time.
  if (isa<ScalableVectorType>(Shuf->getType()))
    return nullptr;

  // Check for a constant insertion index.
  uint64_t IdxC;
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
    return nullptr;

  // Check if the splat shuffle's input is the same as this insert's scalar op.
  Value *X = InsElt.getOperand(1);
  Value *Op0 = Shuf->getOperand(0);
  if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
    return nullptr;

  // Replace the shuffle mask element at the index of this insert with a zero.
  // For example:
  // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
  //   --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
  unsigned NumMaskElts =
      cast<FixedVectorType>(Shuf->getType())->getNumElements();
  SmallVector<int, 16> NewMask(NumMaskElts);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);

  return new ShuffleVectorInst(Op0, NewMask);
}

/// Try to fold an extract+insert element into an existing identity shuffle by
/// changing the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
  // Check if the vector operand of this insert is an identity shuffle.
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
  if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
      !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
    return nullptr;

  // Bail out early if shuffle is scalable type. The number of elements in
  // shuffle mask is unknown at compile-time.
  if (isa<ScalableVectorType>(Shuf->getType()))
    return nullptr;

  // Check for a constant insertion index.
  uint64_t IdxC;
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
    return nullptr;

  // Check if this insert's scalar op is extracted from the identity shuffle's
  // input vector.
  Value *Scalar = InsElt.getOperand(1);
  Value *X = Shuf->getOperand(0);
  if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
    return nullptr;

  // Replace the shuffle mask element at the index of this extract+insert with
  // that same index value.
  // For example:
  // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
  unsigned NumMaskElts =
      cast<FixedVectorType>(Shuf->getType())->getNumElements();
  SmallVector<int, 16> NewMask(NumMaskElts);
  ArrayRef<int> OldMask = Shuf->getShuffleMask();
  for (unsigned i = 0; i != NumMaskElts; ++i) {
    if (i != IdxC) {
      // All mask elements besides the inserted element remain the same.
      NewMask[i] = OldMask[i];
    } else if (OldMask[i] == (int)IdxC) {
      // If the mask element was already set, there's nothing to do
      // (demanded elements analysis may unset it later).
      return nullptr;
    } else {
      assert(OldMask[i] == UndefMaskElem &&
             "Unexpected shuffle mask element for identity shuffle");
      NewMask[i] = IdxC;
    }
  }

  return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
}

/// If we have an insertelement instruction feeding into another insertelement
/// and the 2nd is inserting a constant into the vector, canonicalize that
/// constant insertion before the insertion of a variable:
///
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
///
/// This has the potential of eliminating the 2nd insertelement instruction
/// via constant folding of the scalar constant into a vector constant.
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
                                     InstCombiner::BuilderTy &Builder) {
  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
  if (!InsElt1 || !InsElt1->hasOneUse())
    return nullptr;

  Value *X, *Y;
  Constant *ScalarC;
  ConstantInt *IdxC1, *IdxC2;
  if (match(InsElt1->getOperand(0), m_Value(X)) &&
      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
  }

  return nullptr;
}

/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
/// --> shufflevector X, CVec', Mask'
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
  // Bail out if the parent has more than one use. In that case, we'd be
  // replacing the insertelt with a shuffle, and that's not a clear win.
  if (!Inst || !Inst->hasOneUse())
    return nullptr;
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
    // The shuffle must have a constant vector operand. The insertelt must have
    // a constant scalar being inserted at a constant position in the vector.
    Constant *ShufConstVec, *InsEltScalar;
    uint64_t InsEltIndex;
    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
      return nullptr;

    // Adding an element to an arbitrary shuffle could be expensive, but a
    // shuffle that selects elements from vectors without crossing lanes is
    // assumed cheap.
    // If we're just adding a constant into that shuffle, it will still be
    // cheap.
    if (!isShuffleEquivalentToSelect(*Shuf))
      return nullptr;

    // From the above 'select' check, we know that the mask has the same number
    // of elements as the vector input operands. We also know that each constant
    // input element is used in its lane and can not be used more than once by
    // the shuffle. Therefore, replace the constant in the shuffle's constant
    // vector with the insertelt constant. Replace the constant in the shuffle's
    // mask vector with the insertelt index plus the length of the vector
    // (because the constant vector operand of a shuffle is always the 2nd
    // operand).
    ArrayRef<int> Mask = Shuf->getShuffleMask();
    unsigned NumElts = Mask.size();
    SmallVector<Constant *, 16> NewShufElts(NumElts);
    SmallVector<int, 16> NewMaskElts(NumElts);
    for (unsigned I = 0; I != NumElts; ++I) {
      if (I == InsEltIndex) {
        NewShufElts[I] = InsEltScalar;
        NewMaskElts[I] = InsEltIndex + NumElts;
      } else {
        // Copy over the existing values.
        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
        NewMaskElts[I] = Mask[I];
      }

      // Bail if we failed to find an element.
      if (!NewShufElts[I])
        return nullptr;
    }

    // Create new operands for a shuffle that includes the constant of the
    // original insertelt. The old shuffle will be dead now.
    return new ShuffleVectorInst(Shuf->getOperand(0),
                                 ConstantVector::get(NewShufElts), NewMaskElts);
  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
    // Transform sequences of insertelements ops with constant data/indexes into
    // a single shuffle op.
    // Can not handle scalable type, the number of elements needed to create
    // shuffle mask is not a compile-time constant.
    if (isa<ScalableVectorType>(InsElt.getType()))
      return nullptr;
    unsigned NumElts =
        cast<FixedVectorType>(InsElt.getType())->getNumElements();

    uint64_t InsertIdx[2];
    Constant *Val[2];
    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
        !match(IEI->getOperand(1), m_Constant(Val[1])))
      return nullptr;
    SmallVector<Constant *, 16> Values(NumElts);
    SmallVector<int, 16> Mask(NumElts);
    auto ValI = std::begin(Val);
    // Generate new constant vector and mask.
    // We have 2 values/masks from the insertelements instructions. Insert them
    // into new value/mask vectors.
    for (uint64_t I : InsertIdx) {
      if (!Values[I]) {
        Values[I] = *ValI;
        Mask[I] = NumElts + I;
      }
      ++ValI;
    }
    // Remaining values are filled with 'undef' values.
    for (unsigned I = 0; I < NumElts; ++I) {
      if (!Values[I]) {
        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
        Mask[I] = I;
      }
    }
    // Create new operands for a shuffle that includes the constant of the
    // original insertelt.
    return new ShuffleVectorInst(IEI->getOperand(0),
                                 ConstantVector::get(Values), Mask);
  }
  return nullptr;
}

/// If both the base vector and the inserted element are extended from the same
/// type, do the insert element in the narrow source type followed by extend.
/// TODO: This can be extended to include other cast opcodes, but particularly
///       if we create a wider insertelement, make sure codegen is not harmed.
static Instruction *narrowInsElt(InsertElementInst &InsElt,
                                 InstCombiner::BuilderTy &Builder) {
  // We are creating a vector extend. If the original vector extend has another
  // use, that would mean we end up with 2 vector extends, so avoid that.
  // TODO: We could ease the use-clause to "if at least one op has one use"
  //       (assuming that the source types match - see next TODO comment).
  Value *Vec = InsElt.getOperand(0);
  if (!Vec->hasOneUse())
    return nullptr;

  Value *Scalar = InsElt.getOperand(1);
  Value *X, *Y;
  CastInst::CastOps CastOpcode;
  if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
    CastOpcode = Instruction::FPExt;
  else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
    CastOpcode = Instruction::SExt;
  else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
    CastOpcode = Instruction::ZExt;
  else
    return nullptr;

  // TODO: We can allow mismatched types by creating an intermediate cast.
  if (X->getType()->getScalarType() != Y->getType())
    return nullptr;

  // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
  Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
  return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
}

/// If we are inserting 2 halves of a value into adjacent elements of a vector,
/// try to convert to a single insert with appropriate bitcasts.
static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt,
                                        bool IsBigEndian,
                                        InstCombiner::BuilderTy &Builder) {
  Value *VecOp    = InsElt.getOperand(0);
  Value *ScalarOp = InsElt.getOperand(1);
  Value *IndexOp  = InsElt.getOperand(2);

  // Pattern depends on endian because we expect lower index is inserted first.
  // Big endian:
  // inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
  // Little endian:
  // inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
  // Note: It is not safe to do this transform with an arbitrary base vector
  //       because the bitcast of that vector to fewer/larger elements could
  //       allow poison to spill into an element that was not poison before.
  // TODO: Detect smaller fractions of the scalar.
  // TODO: One-use checks are conservative.
  auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType());
  Value *Scalar0, *BaseVec;
  uint64_t Index0, Index1;
  if (!VTy || (VTy->getNumElements() & 1) ||
      !match(IndexOp, m_ConstantInt(Index1)) ||
      !match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0),
                                m_ConstantInt(Index0))) ||
      !match(BaseVec, m_Undef()))
    return nullptr;

  // The first insert must be to the index one less than this one, and
  // the first insert must be to an even index.
  if (Index0 + 1 != Index1 || Index0 & 1)
    return nullptr;

  // For big endian, the high half of the value should be inserted first.
  // For little endian, the low half of the value should be inserted first.
  Value *X;
  uint64_t ShAmt;
  if (IsBigEndian) {
    if (!match(ScalarOp, m_Trunc(m_Value(X))) ||
        !match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
      return nullptr;
  } else {
    if (!match(Scalar0, m_Trunc(m_Value(X))) ||
        !match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
      return nullptr;
  }

  Type *SrcTy = X->getType();
  unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
  unsigned VecEltWidth = VTy->getScalarSizeInBits();
  if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
    return nullptr;

  // Bitcast the base vector to a vector type with the source element type.
  Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2);
  Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);

  // Scale the insert index for a vector with half as many elements.
  // bitcast (inselt (bitcast BaseVec), X, NewIndex)
  uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
  Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex);
  return new BitCastInst(NewInsert, VTy);
}

Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
  Value *VecOp    = IE.getOperand(0);
  Value *ScalarOp = IE.getOperand(1);
  Value *IdxOp    = IE.getOperand(2);

  if (auto *V = simplifyInsertElementInst(
          VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
    return replaceInstUsesWith(IE, V);

  // Canonicalize type of constant indices to i64 to simplify CSE
  if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) {
    if (auto *NewIdx = getPreferredVectorIndex(IndexC))
      return replaceOperand(IE, 2, NewIdx);

    Value *BaseVec, *OtherScalar;
    uint64_t OtherIndexVal;
    if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec),
                                          m_Value(OtherScalar),
                                          m_ConstantInt(OtherIndexVal)))) &&
        !isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
      Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
      return InsertElementInst::Create(NewIns, OtherScalar,
                                       Builder.getInt64(OtherIndexVal));
    }
  }

  // If the scalar is bitcast and inserted into undef, do the insert in the
  // source type followed by bitcast.
  // TODO: Generalize for insert into any constant, not just undef?
  Value *ScalarSrc;
  if (match(VecOp, m_Undef()) &&
      match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
      (ScalarSrc->getType()->isIntegerTy() ||
       ScalarSrc->getType()->isFloatingPointTy())) {
    // inselt undef, (bitcast ScalarSrc), IdxOp -->
    //   bitcast (inselt undef, ScalarSrc, IdxOp)
    Type *ScalarTy = ScalarSrc->getType();
    Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
    UndefValue *NewUndef = UndefValue::get(VecTy);
    Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
    return new BitCastInst(NewInsElt, IE.getType());
  }

  // If the vector and scalar are both bitcast from the same element type, do
  // the insert in that source type followed by bitcast.
  Value *VecSrc;
  if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
      match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
      (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
      VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
      cast<VectorType>(VecSrc->getType())->getElementType() ==
          ScalarSrc->getType()) {
    // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
    //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
    Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
    return new BitCastInst(NewInsElt, IE.getType());
  }

  // If the inserted element was extracted from some other fixed-length vector
  // and both indexes are valid constants, try to turn this into a shuffle.
  // Can not handle scalable vector type, the number of elements needed to
  // create shuffle mask is not a compile-time constant.
  uint64_t InsertedIdx, ExtractedIdx;
  Value *ExtVecOp;
  if (isa<FixedVectorType>(IE.getType()) &&
      match(IdxOp, m_ConstantInt(InsertedIdx)) &&
      match(ScalarOp,
            m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
      isa<FixedVectorType>(ExtVecOp->getType()) &&
      ExtractedIdx <
          cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
    // TODO: Looking at the user(s) to determine if this insert is a
    // fold-to-shuffle opportunity does not match the usual instcombine
    // constraints. We should decide if the transform is worthy based only
    // on this instruction and its operands, but that may not work currently.
    //
    // Here, we are trying to avoid creating shuffles before reaching
    // the end of a chain of extract-insert pairs. This is complicated because
    // we do not generally form arbitrary shuffle masks in instcombine
    // (because those may codegen poorly), but collectShuffleElements() does
    // exactly that.
    //
    // The rules for determining what is an acceptable target-independent
    // shuffle mask are fuzzy because they evolve based on the backend's
    // capabilities and real-world impact.
    auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
      if (!Insert.hasOneUse())
        return true;
      auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
      if (!InsertUser)
        return true;
      return false;
    };

    // Try to form a shuffle from a chain of extract-insert ops.
    if (isShuffleRootCandidate(IE)) {
      SmallVector<int, 16> Mask;
      ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);

      // The proposed shuffle may be trivial, in which case we shouldn't
      // perform the combine.
      if (LR.first != &IE && LR.second != &IE) {
        // We now have a shuffle of LHS, RHS, Mask.
        if (LR.second == nullptr)
          LR.second = UndefValue::get(LR.first->getType());
        return new ShuffleVectorInst(LR.first, LR.second, Mask);
      }
    }
  }

  if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
    unsigned VWidth = VecTy->getNumElements();
    APInt UndefElts(VWidth, 0);
    APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
    if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
      if (V != &IE)
        return replaceInstUsesWith(IE, V);
      return &IE;
    }
  }

  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
    return Shuf;

  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
    return NewInsElt;

  if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
    return Broadcast;

  if (Instruction *Splat = foldInsEltIntoSplat(IE))
    return Splat;

  if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
    return IdentityShuf;

  if (Instruction *Ext = narrowInsElt(IE, Builder))
    return Ext;

  if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder))
    return Ext;

  return nullptr;
}

/// Return true if we can evaluate the specified expression tree if the vector
/// elements were shuffled in a different order.
static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
                                unsigned Depth = 5) {
  // We can always reorder the elements of a constant.
  if (isa<Constant>(V))
    return true;

  // We won't reorder vector arguments. No IPO here.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // Two users may expect different orders of the elements. Don't try it.
  if (!I->hasOneUse())
    return false;

  if (Depth == 0) return false;

  switch (I->getOpcode()) {
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
      // Propagating an undefined shuffle mask element to integer div/rem is not
      // allowed because those opcodes can create immediate undefined behavior
      // from an undefined element in an operand.
      if (llvm::is_contained(Mask, -1))
        return false;
      [[fallthrough]];
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::FDiv:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::GetElementPtr: {
      // Bail out if we would create longer vector ops. We could allow creating
      // longer vector ops, but that may result in more expensive codegen.
      Type *ITy = I->getType();
      if (ITy->isVectorTy() &&
          Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
        return false;
      for (Value *Operand : I->operands()) {
        if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
          return false;
      }
      return true;
    }
    case Instruction::InsertElement: {
      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
      if (!CI) return false;
      int ElementNumber = CI->getLimitedValue();

      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
      // can't put an element into multiple indices.
      bool SeenOnce = false;
      for (int I : Mask) {
        if (I == ElementNumber) {
          if (SeenOnce)
            return false;
          SeenOnce = true;
        }
      }
      return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
    }
  }
  return false;
}

/// Rebuild a new instruction just like 'I' but with the new operands given.
/// In the event of type mismatch, the type of the operands is correct.
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
  // We don't want to use the IRBuilder here because we want the replacement
  // instructions to appear next to 'I', not the builder's insertion point.
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      BinaryOperator *BO = cast<BinaryOperator>(I);
      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
      BinaryOperator *New =
          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
                                 NewOps[0], NewOps[1], "", BO);
      if (isa<OverflowingBinaryOperator>(BO)) {
        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
      }
      if (isa<PossiblyExactOperator>(BO)) {
        New->setIsExact(BO->isExact());
      }
      if (isa<FPMathOperator>(BO))
        New->copyFastMathFlags(I);
      return New;
    }
    case Instruction::ICmp:
      assert(NewOps.size() == 2 && "icmp with #ops != 2");
      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::FCmp:
      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt: {
      // It's possible that the mask has a different number of elements from
      // the original cast. We recompute the destination type to match the mask.
      Type *DestTy = VectorType::get(
          I->getType()->getScalarType(),
          cast<VectorType>(NewOps[0]->getType())->getElementCount());
      assert(NewOps.size() == 1 && "cast with #ops != 1");
      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
                              "", I);
    }
    case Instruction::GetElementPtr: {
      Value *Ptr = NewOps[0];
      ArrayRef<Value*> Idx = NewOps.slice(1);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
      return GEP;
    }
  }
  llvm_unreachable("failed to rebuild vector instructions");
}

static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
  // Mask.size() does not need to be equal to the number of vector elements.

  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
  Type *EltTy = V->getType()->getScalarType();
  Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
  if (match(V, m_Undef()))
    return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));

  if (isa<ConstantAggregateZero>(V))
    return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));

  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
                                          Mask);

  Instruction *I = cast<Instruction>(V);
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::Select:
    case Instruction::GetElementPtr: {
      SmallVector<Value*, 8> NewOps;
      bool NeedsRebuild =
          (Mask.size() !=
           cast<FixedVectorType>(I->getType())->getNumElements());
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
        Value *V;
        // Recursively call evaluateInDifferentElementOrder on vector arguments
        // as well. E.g. GetElementPtr may have scalar operands even if the
        // return value is a vector, so we need to examine the operand type.
        if (I->getOperand(i)->getType()->isVectorTy())
          V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
        else
          V = I->getOperand(i);
        NewOps.push_back(V);
        NeedsRebuild |= (V != I->getOperand(i));
      }
      if (NeedsRebuild) {
        return buildNew(I, NewOps);
      }
      return I;
    }
    case Instruction::InsertElement: {
      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();

      // The insertelement was inserting at Element. Figure out which element
      // that becomes after shuffling. The answer is guaranteed to be unique
      // by CanEvaluateShuffled.
      bool Found = false;
      int Index = 0;
      for (int e = Mask.size(); Index != e; ++Index) {
        if (Mask[Index] == Element) {
          Found = true;
          break;
        }
      }

      // If element is not in Mask, no need to handle the operand 1 (element to
      // be inserted). Just evaluate values in operand 0 according to Mask.
      if (!Found)
        return evaluateInDifferentElementOrder(I->getOperand(0), Mask);

      Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
      return InsertElementInst::Create(V, I->getOperand(1),
                                       ConstantInt::get(I32Ty, Index), "", I);
    }
  }
  llvm_unreachable("failed to reorder elements of vector instruction!");
}

// Returns true if the shuffle is extracting a contiguous range of values from
// LHS, for example:
//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
//   Shuffles to:  |EE|FF|GG|HH|
//                 +--+--+--+--+
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
                                       ArrayRef<int> Mask) {
  unsigned LHSElems =
      cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
  unsigned MaskElems = Mask.size();
  unsigned BegIdx = Mask.front();
  unsigned EndIdx = Mask.back();
  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
    return false;
  for (unsigned I = 0; I != MaskElems; ++I)
    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
      return false;
  return true;
}

/// These are the ingredients in an alternate form binary operator as described
/// below.
struct BinopElts {
  BinaryOperator::BinaryOps Opcode;
  Value *Op0;
  Value *Op1;
  BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
            Value *V0 = nullptr, Value *V1 = nullptr) :
      Opcode(Opc), Op0(V0), Op1(V1) {}
  operator bool() const { return Opcode != 0; }
};

/// Binops may be transformed into binops with different opcodes and operands.
/// Reverse the usual canonicalization to enable folds with the non-canonical
/// form of the binop. If a transform is possible, return the elements of the
/// new binop. If not, return invalid elements.
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
  Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
  Type *Ty = BO->getType();
  switch (BO->getOpcode()) {
  case Instruction::Shl: {
    // shl X, C --> mul X, (1 << C)
    Constant *C;
    if (match(BO1, m_Constant(C))) {
      Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
      return {Instruction::Mul, BO0, ShlOne};
    }
    break;
  }
  case Instruction::Or: {
    // or X, C --> add X, C (when X and C have no common bits set)
    const APInt *C;
    if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
      return {Instruction::Add, BO0, BO1};
    break;
  }
  case Instruction::Sub:
    // sub 0, X --> mul X, -1
    if (match(BO0, m_ZeroInt()))
      return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
    break;
  default:
    break;
  }
  return {};
}

/// A select shuffle of a select shuffle with a shared operand can be reduced
/// to a single select shuffle. This is an obvious improvement in IR, and the
/// backend is expected to lower select shuffles efficiently.
static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) {
  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");

  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  SmallVector<int, 16> Mask;
  Shuf.getShuffleMask(Mask);
  unsigned NumElts = Mask.size();

  // Canonicalize a select shuffle with common operand as Op1.
  auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0);
  if (ShufOp && ShufOp->isSelect() &&
      (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
    std::swap(Op0, Op1);
    ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
  }

  ShufOp = dyn_cast<ShuffleVectorInst>(Op1);
  if (!ShufOp || !ShufOp->isSelect() ||
      (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
    return nullptr;

  Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1);
  SmallVector<int, 16> Mask1;
  ShufOp->getShuffleMask(Mask1);
  assert(Mask1.size() == NumElts && "Vector size changed with select shuffle");

  // Canonicalize common operand (Op0) as X (first operand of first shuffle).
  if (Y == Op0) {
    std::swap(X, Y);
    ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts);
  }

  // If the mask chooses from X (operand 0), it stays the same.
  // If the mask chooses from the earlier shuffle, the other mask value is
  // transferred to the combined select shuffle:
  // shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
  SmallVector<int, 16> NewMask(NumElts);
  for (unsigned i = 0; i != NumElts; ++i)
    NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i];

  // A select mask with undef elements might look like an identity mask.
  assert((ShuffleVectorInst::isSelectMask(NewMask) ||
          ShuffleVectorInst::isIdentityMask(NewMask)) &&
         "Unexpected shuffle mask");
  return new ShuffleVectorInst(X, Y, NewMask);
}

static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");

  // Are we shuffling together some value and that same value after it has been
  // modified by a binop with a constant?
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  Constant *C;
  bool Op0IsBinop;
  if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
    Op0IsBinop = true;
  else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
    Op0IsBinop = false;
  else
    return nullptr;

  // The identity constant for a binop leaves a variable operand unchanged. For
  // a vector, this is a splat of something like 0, -1, or 1.
  // If there's no identity constant for this binop, we're done.
  auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
  BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
  Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
  if (!IdC)
    return nullptr;

  // Shuffle identity constants into the lanes that return the original value.
  // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
  // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
  // The existing binop constant vector remains in the same operand position.
  ArrayRef<int> Mask = Shuf.getShuffleMask();
  Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
                                ConstantExpr::getShuffleVector(IdC, C, Mask);

  bool MightCreatePoisonOrUB =
      is_contained(Mask, UndefMaskElem) &&
      (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
  if (MightCreatePoisonOrUB)
    NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);

  // shuf (bop X, C), X, M --> bop X, C'
  // shuf X, (bop X, C), M --> bop X, C'
  Value *X = Op0IsBinop ? Op1 : Op0;
  Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
  NewBO->copyIRFlags(BO);

  // An undef shuffle mask element may propagate as an undef constant element in
  // the new binop. That would produce poison where the original code might not.
  // If we already made a safe constant, then there's no danger.
  if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
    NewBO->dropPoisonGeneratingFlags();
  return NewBO;
}

/// If we have an insert of a scalar to a non-zero element of an undefined
/// vector and then shuffle that value, that's the same as inserting to the zero
/// element and shuffling. Splatting from the zero element is recognized as the
/// canonical form of splat.
static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
                                            InstCombiner::BuilderTy &Builder) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  ArrayRef<int> Mask = Shuf.getShuffleMask();
  Value *X;
  uint64_t IndexC;

  // Match a shuffle that is a splat to a non-zero element.
  if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
                                       m_ConstantInt(IndexC)))) ||
      !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
    return nullptr;

  // Insert into element 0 of an undef vector.
  UndefValue *UndefVec = UndefValue::get(Shuf.getType());
  Constant *Zero = Builder.getInt32(0);
  Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);

  // Splat from element 0. Any mask element that is undefined remains undefined.
  // For example:
  // shuf (inselt undef, X, 2), _, <2,2,undef>
  //   --> shuf (inselt undef, X, 0), poison, <0,0,undef>
  unsigned NumMaskElts =
      cast<FixedVectorType>(Shuf.getType())->getNumElements();
  SmallVector<int, 16> NewMask(NumMaskElts, 0);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    if (Mask[i] == UndefMaskElem)
      NewMask[i] = Mask[i];

  return new ShuffleVectorInst(NewIns, NewMask);
}

/// Try to fold shuffles that are the equivalent of a vector select.
Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
  if (!Shuf.isSelect())
    return nullptr;

  // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
  // Commuting undef to operand 0 conflicts with another canonicalization.
  unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
  if (!match(Shuf.getOperand(1), m_Undef()) &&
      Shuf.getMaskValue(0) >= (int)NumElts) {
    // TODO: Can we assert that both operands of a shuffle-select are not undef
    // (otherwise, it would have been folded by instsimplify?
    Shuf.commute();
    return &Shuf;
  }

  if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf))
    return I;

  if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
    return I;

  BinaryOperator *B0, *B1;
  if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
      !match(Shuf.getOperand(1), m_BinOp(B1)))
    return nullptr;

  // If one operand is "0 - X", allow that to be viewed as "X * -1"
  // (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
  // with a multiply, we will exit because C0/C1 will not be set.
  Value *X, *Y;
  Constant *C0 = nullptr, *C1 = nullptr;
  bool ConstantsAreOp1;
  if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
      match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
    ConstantsAreOp1 = false;
  else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
                                 m_Neg(m_Value(X)))) &&
           match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
                                 m_Neg(m_Value(Y)))))
    ConstantsAreOp1 = true;
  else
    return nullptr;

  // We need matching binops to fold the lanes together.
  BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
  BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
  bool DropNSW = false;
  if (ConstantsAreOp1 && Opc0 != Opc1) {
    // TODO: We drop "nsw" if shift is converted into multiply because it may
    // not be correct when the shift amount is BitWidth - 1. We could examine
    // each vector element to determine if it is safe to keep that flag.
    if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
      DropNSW = true;
    if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
      assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
      Opc0 = AltB0.Opcode;
      C0 = cast<Constant>(AltB0.Op1);
    } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
      assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
      Opc1 = AltB1.Opcode;
      C1 = cast<Constant>(AltB1.Op1);
    }
  }

  if (Opc0 != Opc1 || !C0 || !C1)
    return nullptr;

  // The opcodes must be the same. Use a new name to make that clear.
  BinaryOperator::BinaryOps BOpc = Opc0;

  // Select the constant elements needed for the single binop.
  ArrayRef<int> Mask = Shuf.getShuffleMask();
  Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);

  // We are moving a binop after a shuffle. When a shuffle has an undefined
  // mask element, the result is undefined, but it is not poison or undefined
  // behavior. That is not necessarily true for div/rem/shift.
  bool MightCreatePoisonOrUB =
      is_contained(Mask, UndefMaskElem) &&
      (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
  if (MightCreatePoisonOrUB)
    NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
                                                       ConstantsAreOp1);

  Value *V;
  if (X == Y) {
    // Remove a binop and the shuffle by rearranging the constant:
    // shuffle (op V, C0), (op V, C1), M --> op V, C'
    // shuffle (op C0, V), (op C1, V), M --> op C', V
    V = X;
  } else {
    // If there are 2 different variable operands, we must create a new shuffle
    // (select) first, so check uses to ensure that we don't end up with more
    // instructions than we started with.
    if (!B0->hasOneUse() && !B1->hasOneUse())
      return nullptr;

    // If we use the original shuffle mask and op1 is *variable*, we would be
    // putting an undef into operand 1 of div/rem/shift. This is either UB or
    // poison. We do not have to guard against UB when *constants* are op1
    // because safe constants guarantee that we do not overflow sdiv/srem (and
    // there's no danger for other opcodes).
    // TODO: To allow this case, create a new shuffle mask with no undefs.
    if (MightCreatePoisonOrUB && !ConstantsAreOp1)
      return nullptr;

    // Note: In general, we do not create new shuffles in InstCombine because we
    // do not know if a target can lower an arbitrary shuffle optimally. In this
    // case, the shuffle uses the existing mask, so there is no additional risk.

    // Select the variable vectors first, then perform the binop:
    // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
    // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
    V = Builder.CreateShuffleVector(X, Y, Mask);
  }

  Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
                                   Builder.CreateBinOp(BOpc, NewC, V);

  // Flags are intersected from the 2 source binops. But there are 2 exceptions:
  // 1. If we changed an opcode, poison conditions might have changed.
  // 2. If the shuffle had undef mask elements, the new binop might have undefs
  //    where the original code did not. But if we already made a safe constant,
  //    then there's no danger.
  if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
    NewI->copyIRFlags(B0);
    NewI->andIRFlags(B1);
    if (DropNSW)
      NewI->setHasNoSignedWrap(false);
    if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
      NewI->dropPoisonGeneratingFlags();
  }
  return replaceInstUsesWith(Shuf, NewBO);
}

/// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
/// Example (little endian):
/// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
                                     bool IsBigEndian) {
  // This must be a bitcasted shuffle of 1 vector integer operand.
  Type *DestType = Shuf.getType();
  Value *X;
  if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
      !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
    return nullptr;

  // The source type must have the same number of elements as the shuffle,
  // and the source element type must be larger than the shuffle element type.
  Type *SrcType = X->getType();
  if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
      cast<FixedVectorType>(SrcType)->getNumElements() !=
          cast<FixedVectorType>(DestType)->getNumElements() ||
      SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
    return nullptr;

  assert(Shuf.changesLength() && !Shuf.increasesLength() &&
         "Expected a shuffle that decreases length");

  // Last, check that the mask chooses the correct low bits for each narrow
  // element in the result.
  uint64_t TruncRatio =
      SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
  ArrayRef<int> Mask = Shuf.getShuffleMask();
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] == UndefMaskElem)
      continue;
    uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
    assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
    if (Mask[i] != (int)LSBIndex)
      return nullptr;
  }

  return new TruncInst(X, DestType);
}

/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
/// narrowing (concatenating with undef and extracting back to the original
/// length). This allows replacing the wide select with a narrow select.
static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
                                       InstCombiner::BuilderTy &Builder) {
  // This must be a narrowing identity shuffle. It extracts the 1st N elements
  // of the 1st vector operand of a shuffle.
  if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
    return nullptr;

  // The vector being shuffled must be a vector select that we can eliminate.
  // TODO: The one-use requirement could be eased if X and/or Y are constants.
  Value *Cond, *X, *Y;
  if (!match(Shuf.getOperand(0),
             m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
    return nullptr;

  // We need a narrow condition value. It must be extended with undef elements
  // and have the same number of elements as this shuffle.
  unsigned NarrowNumElts =
      cast<FixedVectorType>(Shuf.getType())->getNumElements();
  Value *NarrowCond;
  if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
      cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
          NarrowNumElts ||
      !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
    return nullptr;

  // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
  // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
  Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
  Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
  return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
}

/// Canonicalize FP negate after shuffle.
static Instruction *foldFNegShuffle(ShuffleVectorInst &Shuf,
                                    InstCombiner::BuilderTy &Builder) {
  Instruction *FNeg0;
  Value *X;
  if (!match(Shuf.getOperand(0), m_CombineAnd(m_Instruction(FNeg0),
                                              m_FNeg(m_Value(X)))))
    return nullptr;

  // shuffle (fneg X), Mask --> fneg (shuffle X, Mask)
  if (FNeg0->hasOneUse() && match(Shuf.getOperand(1), m_Undef())) {
    Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
    return UnaryOperator::CreateFNegFMF(NewShuf, FNeg0);
  }

  Instruction *FNeg1;
  Value *Y;
  if (!match(Shuf.getOperand(1), m_CombineAnd(m_Instruction(FNeg1),
                                              m_FNeg(m_Value(Y)))))
    return nullptr;

  // shuffle (fneg X), (fneg Y), Mask --> fneg (shuffle X, Y, Mask)
  if (FNeg0->hasOneUse() || FNeg1->hasOneUse()) {
    Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
    Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewShuf);
    NewFNeg->copyIRFlags(FNeg0);
    NewFNeg->andIRFlags(FNeg1);
    return NewFNeg;
  }

  return nullptr;
}

/// Canonicalize casts after shuffle.
static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
                                    InstCombiner::BuilderTy &Builder) {
  // Do we have 2 matching cast operands?
  auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
  auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
  if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
      Cast0->getSrcTy() != Cast1->getSrcTy())
    return nullptr;

  // TODO: Allow other opcodes? That would require easing the type restrictions
  //       below here.
  CastInst::CastOps CastOpcode = Cast0->getOpcode();
  switch (CastOpcode) {
  case Instruction::FPToSI:
  case Instruction::FPToUI:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
    break;
  default:
    return nullptr;
  }

  VectorType *ShufTy = Shuf.getType();
  VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
  VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());

  // TODO: Allow length-increasing shuffles?
  if (ShufTy->getElementCount().getKnownMinValue() >
      ShufOpTy->getElementCount().getKnownMinValue())
    return nullptr;

  // TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
  assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
         "Expected fixed vector operands for casts and binary shuffle");
  if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
    return nullptr;

  // At least one of the operands must have only one use (the shuffle).
  if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
    return nullptr;

  // shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
  Value *X = Cast0->getOperand(0);
  Value *Y = Cast1->getOperand(0);
  Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
  return CastInst::Create(CastOpcode, NewShuf, ShufTy);
}

/// Try to fold an extract subvector operation.
static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
    return nullptr;

  // Check if we are extracting all bits of an inserted scalar:
  // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
  Value *X;
  if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
      X->getType()->getPrimitiveSizeInBits() ==
          Shuf.getType()->getPrimitiveSizeInBits())
    return new BitCastInst(X, Shuf.getType());

  // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
  Value *Y;
  ArrayRef<int> Mask;
  if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
    return nullptr;

  // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
  // then combining may result in worse codegen.
  if (!Op0->hasOneUse())
    return nullptr;

  // We are extracting a subvector from a shuffle. Remove excess elements from
  // the 1st shuffle mask to eliminate the extract.
  //
  // This transform is conservatively limited to identity extracts because we do
  // not allow arbitrary shuffle mask creation as a target-independent transform
  // (because we can't guarantee that will lower efficiently).
  //
  // If the extracting shuffle has an undef mask element, it transfers to the
  // new shuffle mask. Otherwise, copy the original mask element. Example:
  //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
  //   shuf X, Y, <C0, undef, C2, undef>
  unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
  SmallVector<int, 16> NewMask(NumElts);
  assert(NumElts < Mask.size() &&
         "Identity with extract must have less elements than its inputs");

  for (unsigned i = 0; i != NumElts; ++i) {
    int ExtractMaskElt = Shuf.getMaskValue(i);
    int MaskElt = Mask[i];
    NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
  }
  return new ShuffleVectorInst(X, Y, NewMask);
}

/// Try to replace a shuffle with an insertelement or try to replace a shuffle
/// operand with the operand of an insertelement.
static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
                                          InstCombinerImpl &IC) {
  Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
  SmallVector<int, 16> Mask;
  Shuf.getShuffleMask(Mask);

  int NumElts = Mask.size();
  int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();

  // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
  // not be able to handle it there if the insertelement has >1 use.
  // If the shuffle has an insertelement operand but does not choose the
  // inserted scalar element from that value, then we can replace that shuffle
  // operand with the source vector of the insertelement.
  Value *X;
  uint64_t IdxC;
  if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
    // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
    if (!is_contained(Mask, (int)IdxC))
      return IC.replaceOperand(Shuf, 0, X);
  }
  if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
    // Offset the index constant by the vector width because we are checking for
    // accesses to the 2nd vector input of the shuffle.
    IdxC += InpNumElts;
    // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
    if (!is_contained(Mask, (int)IdxC))
      return IC.replaceOperand(Shuf, 1, X);
  }
  // For the rest of the transform, the shuffle must not change vector sizes.
  // TODO: This restriction could be removed if the insert has only one use
  //       (because the transform would require a new length-changing shuffle).
  if (NumElts != InpNumElts)
    return nullptr;

  // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
  auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
    // We need an insertelement with a constant index.
    if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
                               m_ConstantInt(IndexC))))
      return false;

    // Test the shuffle mask to see if it splices the inserted scalar into the
    // operand 1 vector of the shuffle.
    int NewInsIndex = -1;
    for (int i = 0; i != NumElts; ++i) {
      // Ignore undef mask elements.
      if (Mask[i] == -1)
        continue;

      // The shuffle takes elements of operand 1 without lane changes.
      if (Mask[i] == NumElts + i)
        continue;

      // The shuffle must choose the inserted scalar exactly once.
      if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
        return false;

      // The shuffle is placing the inserted scalar into element i.
      NewInsIndex = i;
    }

    assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");

    // Index is updated to the potentially translated insertion lane.
    IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
    return true;
  };

  // If the shuffle is unnecessary, insert the scalar operand directly into
  // operand 1 of the shuffle. Example:
  // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
  Value *Scalar;
  ConstantInt *IndexC;
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  // Try again after commuting shuffle. Example:
  // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
  // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
  std::swap(V0, V1);
  ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  return nullptr;
}

static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
  // Match the operands as identity with padding (also known as concatenation
  // with undef) shuffles of the same source type. The backend is expected to
  // recreate these concatenations from a shuffle of narrow operands.
  auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
  auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
  if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
      !Shuffle1 || !Shuffle1->isIdentityWithPadding())
    return nullptr;

  // We limit this transform to power-of-2 types because we expect that the
  // backend can convert the simplified IR patterns to identical nodes as the
  // original IR.
  // TODO: If we can verify the same behavior for arbitrary types, the
  //       power-of-2 checks can be removed.
  Value *X = Shuffle0->getOperand(0);
  Value *Y = Shuffle1->getOperand(0);
  if (X->getType() != Y->getType() ||
      !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
      !isPowerOf2_32(
          cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
      !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
      match(X, m_Undef()) || match(Y, m_Undef()))
    return nullptr;
  assert(match(Shuffle0->getOperand(1), m_Undef()) &&
         match(Shuffle1->getOperand(1), m_Undef()) &&
         "Unexpected operand for identity shuffle");

  // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
  // operands directly by adjusting the shuffle mask to account for the narrower
  // types:
  // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
  int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
  int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
  assert(WideElts > NarrowElts && "Unexpected types for identity with padding");

  ArrayRef<int> Mask = Shuf.getShuffleMask();
  SmallVector<int, 16> NewMask(Mask.size(), -1);
  for (int i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] == -1)
      continue;

    // If this shuffle is choosing an undef element from 1 of the sources, that
    // element is undef.
    if (Mask[i] < WideElts) {
      if (Shuffle0->getMaskValue(Mask[i]) == -1)
        continue;
    } else {
      if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
        continue;
    }

    // If this shuffle is choosing from the 1st narrow op, the mask element is
    // the same. If this shuffle is choosing from the 2nd narrow op, the mask
    // element is offset down to adjust for the narrow vector widths.
    if (Mask[i] < WideElts) {
      assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
      NewMask[i] = Mask[i];
    } else {
      assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
      NewMask[i] = Mask[i] - (WideElts - NarrowElts);
    }
  }
  return new ShuffleVectorInst(X, Y, NewMask);
}

// Splatting the first element of the result of a BinOp, where any of the
// BinOp's operands are the result of a first element splat can be simplified to
// splatting the first element of the result of the BinOp
Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) {
  if (!match(SVI.getOperand(1), m_Undef()) ||
      !match(SVI.getShuffleMask(), m_ZeroMask()))
    return nullptr;

  Value *Op0 = SVI.getOperand(0);
  Value *X, *Y;
  if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Undef(), m_ZeroMask()),
                          m_Value(Y))) &&
      !match(Op0, m_BinOp(m_Value(X),
                          m_Shuffle(m_Value(Y), m_Undef(), m_ZeroMask()))))
    return nullptr;
  if (X->getType() != Y->getType())
    return nullptr;

  auto *BinOp = cast<BinaryOperator>(Op0);
  if (!isSafeToSpeculativelyExecute(BinOp))
    return nullptr;

  Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y);
  if (auto NewBOI = dyn_cast<Instruction>(NewBO))
    NewBOI->copyIRFlags(BinOp);

  return new ShuffleVectorInst(NewBO, SVI.getShuffleMask());
}

Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
  Value *LHS = SVI.getOperand(0);
  Value *RHS = SVI.getOperand(1);
  SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
  if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
                                          SVI.getType(), ShufQuery))
    return replaceInstUsesWith(SVI, V);

  if (Instruction *I = simplifyBinOpSplats(SVI))
    return I;

  if (isa<ScalableVectorType>(LHS->getType()))
    return nullptr;

  unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
  unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();

  // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
  //
  // if X and Y are of the same (vector) type, and the element size is not
  // changed by the bitcasts, we can distribute the bitcasts through the
  // shuffle, hopefully reducing the number of instructions. We make sure that
  // at least one bitcast only has one use, so we don't *increase* the number of
  // instructions here.
  Value *X, *Y;
  if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
      X->getType()->isVectorTy() && X->getType() == Y->getType() &&
      X->getType()->getScalarSizeInBits() ==
          SVI.getType()->getScalarSizeInBits() &&
      (LHS->hasOneUse() || RHS->hasOneUse())) {
    Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
                                           SVI.getName() + ".uncasted");
    return new BitCastInst(V, SVI.getType());
  }

  ArrayRef<int> Mask = SVI.getShuffleMask();
  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());

  // Peek through a bitcasted shuffle operand by scaling the mask. If the
  // simulated shuffle can simplify, then this shuffle is unnecessary:
  // shuf (bitcast X), undef, Mask --> bitcast X'
  // TODO: This could be extended to allow length-changing shuffles.
  //       The transform might also be obsoleted if we allowed canonicalization
  //       of bitcasted shuffles.
  if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
      X->getType()->isVectorTy() && VWidth == LHSWidth) {
    // Try to create a scaled mask constant.
    auto *XType = cast<FixedVectorType>(X->getType());
    unsigned XNumElts = XType->getNumElements();
    SmallVector<int, 16> ScaledMask;
    if (XNumElts >= VWidth) {
      assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
      narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
    } else {
      assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
      if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
        ScaledMask.clear();
    }
    if (!ScaledMask.empty()) {
      // If the shuffled source vector simplifies, cast that value to this
      // shuffle's type.
      if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
                                              ScaledMask, XType, ShufQuery))
        return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
    }
  }

  // shuffle x, x, mask --> shuffle x, undef, mask'
  if (LHS == RHS) {
    assert(!match(RHS, m_Undef()) &&
           "Shuffle with 2 undef ops not simplified?");
    return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
  }

  // shuffle undef, x, mask --> shuffle x, undef, mask'
  if (match(LHS, m_Undef())) {
    SVI.commute();
    return &SVI;
  }

  if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
    return I;

  if (Instruction *I = foldSelectShuffle(SVI))
    return I;

  if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
    return I;

  if (Instruction *I = narrowVectorSelect(SVI, Builder))
    return I;

  if (Instruction *I = foldFNegShuffle(SVI, Builder))
    return I;

  if (Instruction *I = foldCastShuffle(SVI, Builder))
    return I;

  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
    if (V != &SVI)
      return replaceInstUsesWith(SVI, V);
    return &SVI;
  }

  if (Instruction *I = foldIdentityExtractShuffle(SVI))
    return I;

  // These transforms have the potential to lose undef knowledge, so they are
  // intentionally placed after SimplifyDemandedVectorElts().
  if (Instruction *I = foldShuffleWithInsert(SVI, *this))
    return I;
  if (Instruction *I = foldIdentityPaddedShuffles(SVI))
    return I;

  if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
    Value *V = evaluateInDifferentElementOrder(LHS, Mask);
    return replaceInstUsesWith(SVI, V);
  }

  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
  // a non-vector type. We can instead bitcast the original vector followed by
  // an extract of the desired element:
  //
  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
  //   %1 = bitcast <4 x i8> %sroa to i32
  // Becomes:
  //   %bc = bitcast <16 x i8> %in to <4 x i32>
  //   %ext = extractelement <4 x i32> %bc, i32 0
  //
  // If the shuffle is extracting a contiguous range of values from the input
  // vector then each use which is a bitcast of the extracted size can be
  // replaced. This will work if the vector types are compatible, and the begin
  // index is aligned to a value in the casted vector type. If the begin index
  // isn't aligned then we can shuffle the original vector (keeping the same
  // vector type) before extracting.
  //
  // This code will bail out if the target type is fundamentally incompatible
  // with vectors of the source type.
  //
  // Example of <16 x i8>, target type i32:
  // Index range [4,8):         v-----------v Will work.
  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
  //     <4 x i32>: |           |           |           |           |
  //                +-----------+-----------+-----------+-----------+
  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
  // Target type i40:           ^--------------^ Won't work, bail.
  bool MadeChange = false;
  if (isShuffleExtractingFromLHS(SVI, Mask)) {
    Value *V = LHS;
    unsigned MaskElems = Mask.size();
    auto *SrcTy = cast<FixedVectorType>(V->getType());
    unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue();
    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
    unsigned SrcNumElems = SrcTy->getNumElements();
    SmallVector<BitCastInst *, 8> BCs;
    DenseMap<Type *, Value *> NewBCs;
    for (User *U : SVI.users())
      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
        if (!BC->use_empty())
          // Only visit bitcasts that weren't previously handled.
          BCs.push_back(BC);
    for (BitCastInst *BC : BCs) {
      unsigned BegIdx = Mask.front();
      Type *TgtTy = BC->getDestTy();
      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
      if (!TgtElemBitWidth)
        continue;
      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
      if (!VecBitWidthsEqual)
        continue;
      if (!VectorType::isValidElementType(TgtTy))
        continue;
      auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
      if (!BegIsAligned) {
        // Shuffle the input so [0,NumElements) contains the output, and
        // [NumElems,SrcNumElems) is undef.
        SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
          ShuffleMask[I] = Idx;
        V = Builder.CreateShuffleVector(V, ShuffleMask,
                                        SVI.getName() + ".extract");
        BegIdx = 0;
      }
      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
      assert(SrcElemsPerTgtElem);
      BegIdx /= SrcElemsPerTgtElem;
      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
      auto *NewBC =
          BCAlreadyExists
              ? NewBCs[CastSrcTy]
              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
      if (!BCAlreadyExists)
        NewBCs[CastSrcTy] = NewBC;
      auto *Ext = Builder.CreateExtractElement(
          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
      // The shufflevector isn't being replaced: the bitcast that used it
      // is. InstCombine will visit the newly-created instructions.
      replaceInstUsesWith(*BC, Ext);
      MadeChange = true;
    }
  }

  // If the LHS is a shufflevector itself, see if we can combine it with this
  // one without producing an unusual shuffle.
  // Cases that might be simplified:
  // 1.
  // x1=shuffle(v1,v2,mask1)
  //  x=shuffle(x1,undef,mask)
  //        ==>
  //  x=shuffle(v1,undef,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
  // 2.
  // x1=shuffle(v1,undef,mask1)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == mask1.size()
  //        ==>
  //  x=shuffle(v1,x2,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
  // 3.
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v2.size() == mask2.size()
  //        ==>
  //  x=shuffle(x1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
  // 4.
  // x1=shuffle(v1,undef,mask1)
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == v2.size()
  //        ==>
  //  x=shuffle(v1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
  //
  // Here we are really conservative:
  // we are absolutely afraid of producing a shuffle mask not in the input
  // program, because the code gen may not be smart enough to turn a merged
  // shuffle into two specific shuffles: it may produce worse code.  As such,
  // we only merge two shuffles if the result is either a splat or one of the
  // input shuffle masks.  In this case, merging the shuffles just removes
  // one instruction, which we know is safe.  This is good for things like
  // turning: (splat(splat)) -> splat, or
  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
  if (LHSShuffle)
    if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
      LHSShuffle = nullptr;
  if (RHSShuffle)
    if (!match(RHSShuffle->getOperand(1), m_Undef()))
      RHSShuffle = nullptr;
  if (!LHSShuffle && !RHSShuffle)
    return MadeChange ? &SVI : nullptr;

  Value* LHSOp0 = nullptr;
  Value* LHSOp1 = nullptr;
  Value* RHSOp0 = nullptr;
  unsigned LHSOp0Width = 0;
  unsigned RHSOp0Width = 0;
  if (LHSShuffle) {
    LHSOp0 = LHSShuffle->getOperand(0);
    LHSOp1 = LHSShuffle->getOperand(1);
    LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
  }
  if (RHSShuffle) {
    RHSOp0 = RHSShuffle->getOperand(0);
    RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
  }
  Value* newLHS = LHS;
  Value* newRHS = RHS;
  if (LHSShuffle) {
    // case 1
    if (match(RHS, m_Undef())) {
      newLHS = LHSOp0;
      newRHS = LHSOp1;
    }
    // case 2 or 4
    else if (LHSOp0Width == LHSWidth) {
      newLHS = LHSOp0;
    }
  }
  // case 3 or 4
  if (RHSShuffle && RHSOp0Width == LHSWidth) {
    newRHS = RHSOp0;
  }
  // case 4
  if (LHSOp0 == RHSOp0) {
    newLHS = LHSOp0;
    newRHS = nullptr;
  }

  if (newLHS == LHS && newRHS == RHS)
    return MadeChange ? &SVI : nullptr;

  ArrayRef<int> LHSMask;
  ArrayRef<int> RHSMask;
  if (newLHS != LHS)
    LHSMask = LHSShuffle->getShuffleMask();
  if (RHSShuffle && newRHS != RHS)
    RHSMask = RHSShuffle->getShuffleMask();

  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
  SmallVector<int, 16> newMask;
  bool isSplat = true;
  int SplatElt = -1;
  // Create a new mask for the new ShuffleVectorInst so that the new
  // ShuffleVectorInst is equivalent to the original one.
  for (unsigned i = 0; i < VWidth; ++i) {
    int eltMask;
    if (Mask[i] < 0) {
      // This element is an undef value.
      eltMask = -1;
    } else if (Mask[i] < (int)LHSWidth) {
      // This element is from left hand side vector operand.
      //
      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
      // new mask value for the element.
      if (newLHS != LHS) {
        eltMask = LHSMask[Mask[i]];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
          eltMask = -1;
      } else
        eltMask = Mask[i];
    } else {
      // This element is from right hand side vector operand
      //
      // If the value selected is an undef value, explicitly specify it
      // with a -1 mask value. (case 1)
      if (match(RHS, m_Undef()))
        eltMask = -1;
      // If RHS is going to be replaced (case 3 or 4), calculate the
      // new mask value for the element.
      else if (newRHS != RHS) {
        eltMask = RHSMask[Mask[i]-LHSWidth];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)RHSOp0Width) {
          assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
                 "should have been check above");
          eltMask = -1;
        }
      } else
        eltMask = Mask[i]-LHSWidth;

      // If LHS's width is changed, shift the mask value accordingly.
      // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
      // If newRHS == newLHS, we want to remap any references from newRHS to
      // newLHS so that we can properly identify splats that may occur due to
      // obfuscation across the two vectors.
      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
        eltMask += newLHSWidth;
    }

    // Check if this could still be a splat.
    if (eltMask >= 0) {
      if (SplatElt >= 0 && SplatElt != eltMask)
        isSplat = false;
      SplatElt = eltMask;
    }

    newMask.push_back(eltMask);
  }

  // If the result mask is equal to one of the original shuffle masks,
  // or is a splat, do the replacement.
  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
    if (!newRHS)
      newRHS = UndefValue::get(newLHS->getType());
    return new ShuffleVectorInst(newLHS, newRHS, newMask);
  }

  return MadeChange ? &SVI : nullptr;
}