1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
|
//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for add, fadd, sub, and fsub.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <cassert>
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
namespace {
/// Class representing coefficient of floating-point addend.
/// This class needs to be highly efficient, which is especially true for
/// the constructor. As of I write this comment, the cost of the default
/// constructor is merely 4-byte-store-zero (Assuming compiler is able to
/// perform write-merging).
///
class FAddendCoef {
public:
// The constructor has to initialize a APFloat, which is unnecessary for
// most addends which have coefficient either 1 or -1. So, the constructor
// is expensive. In order to avoid the cost of the constructor, we should
// reuse some instances whenever possible. The pre-created instances
// FAddCombine::Add[0-5] embodies this idea.
FAddendCoef() = default;
~FAddendCoef();
// If possible, don't define operator+/operator- etc because these
// operators inevitably call FAddendCoef's constructor which is not cheap.
void operator=(const FAddendCoef &A);
void operator+=(const FAddendCoef &A);
void operator*=(const FAddendCoef &S);
void set(short C) {
assert(!insaneIntVal(C) && "Insane coefficient");
IsFp = false; IntVal = C;
}
void set(const APFloat& C);
void negate();
bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
Value *getValue(Type *) const;
bool isOne() const { return isInt() && IntVal == 1; }
bool isTwo() const { return isInt() && IntVal == 2; }
bool isMinusOne() const { return isInt() && IntVal == -1; }
bool isMinusTwo() const { return isInt() && IntVal == -2; }
private:
bool insaneIntVal(int V) { return V > 4 || V < -4; }
APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
const APFloat *getFpValPtr() const {
return reinterpret_cast<const APFloat *>(&FpValBuf);
}
const APFloat &getFpVal() const {
assert(IsFp && BufHasFpVal && "Incorret state");
return *getFpValPtr();
}
APFloat &getFpVal() {
assert(IsFp && BufHasFpVal && "Incorret state");
return *getFpValPtr();
}
bool isInt() const { return !IsFp; }
// If the coefficient is represented by an integer, promote it to a
// floating point.
void convertToFpType(const fltSemantics &Sem);
// Construct an APFloat from a signed integer.
// TODO: We should get rid of this function when APFloat can be constructed
// from an *SIGNED* integer.
APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
bool IsFp = false;
// True iff FpValBuf contains an instance of APFloat.
bool BufHasFpVal = false;
// The integer coefficient of an individual addend is either 1 or -1,
// and we try to simplify at most 4 addends from neighboring at most
// two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
// is overkill of this end.
short IntVal = 0;
AlignedCharArrayUnion<APFloat> FpValBuf;
};
/// FAddend is used to represent floating-point addend. An addend is
/// represented as <C, V>, where the V is a symbolic value, and C is a
/// constant coefficient. A constant addend is represented as <C, 0>.
class FAddend {
public:
FAddend() = default;
void operator+=(const FAddend &T) {
assert((Val == T.Val) && "Symbolic-values disagree");
Coeff += T.Coeff;
}
Value *getSymVal() const { return Val; }
const FAddendCoef &getCoef() const { return Coeff; }
bool isConstant() const { return Val == nullptr; }
bool isZero() const { return Coeff.isZero(); }
void set(short Coefficient, Value *V) {
Coeff.set(Coefficient);
Val = V;
}
void set(const APFloat &Coefficient, Value *V) {
Coeff.set(Coefficient);
Val = V;
}
void set(const ConstantFP *Coefficient, Value *V) {
Coeff.set(Coefficient->getValueAPF());
Val = V;
}
void negate() { Coeff.negate(); }
/// Drill down the U-D chain one step to find the definition of V, and
/// try to break the definition into one or two addends.
static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
/// Similar to FAddend::drillDownOneStep() except that the value being
/// splitted is the addend itself.
unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
private:
void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
// This addend has the value of "Coeff * Val".
Value *Val = nullptr;
FAddendCoef Coeff;
};
/// FAddCombine is the class for optimizing an unsafe fadd/fsub along
/// with its neighboring at most two instructions.
///
class FAddCombine {
public:
FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
Value *simplify(Instruction *FAdd);
private:
using AddendVect = SmallVector<const FAddend *, 4>;
Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
/// Convert given addend to a Value
Value *createAddendVal(const FAddend &A, bool& NeedNeg);
/// Return the number of instructions needed to emit the N-ary addition.
unsigned calcInstrNumber(const AddendVect& Vect);
Value *createFSub(Value *Opnd0, Value *Opnd1);
Value *createFAdd(Value *Opnd0, Value *Opnd1);
Value *createFMul(Value *Opnd0, Value *Opnd1);
Value *createFNeg(Value *V);
Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
// Debugging stuff are clustered here.
#ifndef NDEBUG
unsigned CreateInstrNum;
void initCreateInstNum() { CreateInstrNum = 0; }
void incCreateInstNum() { CreateInstrNum++; }
#else
void initCreateInstNum() {}
void incCreateInstNum() {}
#endif
InstCombiner::BuilderTy &Builder;
Instruction *Instr = nullptr;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
//
// Implementation of
// {FAddendCoef, FAddend, FAddition, FAddCombine}.
//
//===----------------------------------------------------------------------===//
FAddendCoef::~FAddendCoef() {
if (BufHasFpVal)
getFpValPtr()->~APFloat();
}
void FAddendCoef::set(const APFloat& C) {
APFloat *P = getFpValPtr();
if (isInt()) {
// As the buffer is meanless byte stream, we cannot call
// APFloat::operator=().
new(P) APFloat(C);
} else
*P = C;
IsFp = BufHasFpVal = true;
}
void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
if (!isInt())
return;
APFloat *P = getFpValPtr();
if (IntVal > 0)
new(P) APFloat(Sem, IntVal);
else {
new(P) APFloat(Sem, 0 - IntVal);
P->changeSign();
}
IsFp = BufHasFpVal = true;
}
APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
if (Val >= 0)
return APFloat(Sem, Val);
APFloat T(Sem, 0 - Val);
T.changeSign();
return T;
}
void FAddendCoef::operator=(const FAddendCoef &That) {
if (That.isInt())
set(That.IntVal);
else
set(That.getFpVal());
}
void FAddendCoef::operator+=(const FAddendCoef &That) {
RoundingMode RndMode = RoundingMode::NearestTiesToEven;
if (isInt() == That.isInt()) {
if (isInt())
IntVal += That.IntVal;
else
getFpVal().add(That.getFpVal(), RndMode);
return;
}
if (isInt()) {
const APFloat &T = That.getFpVal();
convertToFpType(T.getSemantics());
getFpVal().add(T, RndMode);
return;
}
APFloat &T = getFpVal();
T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
}
void FAddendCoef::operator*=(const FAddendCoef &That) {
if (That.isOne())
return;
if (That.isMinusOne()) {
negate();
return;
}
if (isInt() && That.isInt()) {
int Res = IntVal * (int)That.IntVal;
assert(!insaneIntVal(Res) && "Insane int value");
IntVal = Res;
return;
}
const fltSemantics &Semantic =
isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
if (isInt())
convertToFpType(Semantic);
APFloat &F0 = getFpVal();
if (That.isInt())
F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
APFloat::rmNearestTiesToEven);
else
F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
}
void FAddendCoef::negate() {
if (isInt())
IntVal = 0 - IntVal;
else
getFpVal().changeSign();
}
Value *FAddendCoef::getValue(Type *Ty) const {
return isInt() ?
ConstantFP::get(Ty, float(IntVal)) :
ConstantFP::get(Ty->getContext(), getFpVal());
}
// The definition of <Val> Addends
// =========================================
// A + B <1, A>, <1,B>
// A - B <1, A>, <1,B>
// 0 - B <-1, B>
// C * A, <C, A>
// A + C <1, A> <C, NULL>
// 0 +/- 0 <0, NULL> (corner case)
//
// Legend: A and B are not constant, C is constant
unsigned FAddend::drillValueDownOneStep
(Value *Val, FAddend &Addend0, FAddend &Addend1) {
Instruction *I = nullptr;
if (!Val || !(I = dyn_cast<Instruction>(Val)))
return 0;
unsigned Opcode = I->getOpcode();
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
ConstantFP *C0, *C1;
Value *Opnd0 = I->getOperand(0);
Value *Opnd1 = I->getOperand(1);
if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
Opnd0 = nullptr;
if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
Opnd1 = nullptr;
if (Opnd0) {
if (!C0)
Addend0.set(1, Opnd0);
else
Addend0.set(C0, nullptr);
}
if (Opnd1) {
FAddend &Addend = Opnd0 ? Addend1 : Addend0;
if (!C1)
Addend.set(1, Opnd1);
else
Addend.set(C1, nullptr);
if (Opcode == Instruction::FSub)
Addend.negate();
}
if (Opnd0 || Opnd1)
return Opnd0 && Opnd1 ? 2 : 1;
// Both operands are zero. Weird!
Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
return 1;
}
if (I->getOpcode() == Instruction::FMul) {
Value *V0 = I->getOperand(0);
Value *V1 = I->getOperand(1);
if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
Addend0.set(C, V1);
return 1;
}
if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
Addend0.set(C, V0);
return 1;
}
}
return 0;
}
// Try to break *this* addend into two addends. e.g. Suppose this addend is
// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
// i.e. <2.3, X> and <2.3, Y>.
unsigned FAddend::drillAddendDownOneStep
(FAddend &Addend0, FAddend &Addend1) const {
if (isConstant())
return 0;
unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
if (!BreakNum || Coeff.isOne())
return BreakNum;
Addend0.Scale(Coeff);
if (BreakNum == 2)
Addend1.Scale(Coeff);
return BreakNum;
}
Value *FAddCombine::simplify(Instruction *I) {
assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
"Expected 'reassoc'+'nsz' instruction");
// Currently we are not able to handle vector type.
if (I->getType()->isVectorTy())
return nullptr;
assert((I->getOpcode() == Instruction::FAdd ||
I->getOpcode() == Instruction::FSub) && "Expect add/sub");
// Save the instruction before calling other member-functions.
Instr = I;
FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
// Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
unsigned Opnd0_ExpNum = 0;
unsigned Opnd1_ExpNum = 0;
if (!Opnd0.isConstant())
Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
// Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
if (OpndNum == 2 && !Opnd1.isConstant())
Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
// Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
if (Opnd0_ExpNum && Opnd1_ExpNum) {
AddendVect AllOpnds;
AllOpnds.push_back(&Opnd0_0);
AllOpnds.push_back(&Opnd1_0);
if (Opnd0_ExpNum == 2)
AllOpnds.push_back(&Opnd0_1);
if (Opnd1_ExpNum == 2)
AllOpnds.push_back(&Opnd1_1);
// Compute instruction quota. We should save at least one instruction.
unsigned InstQuota = 0;
Value *V0 = I->getOperand(0);
Value *V1 = I->getOperand(1);
InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
(!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
return R;
}
if (OpndNum != 2) {
// The input instruction is : "I=0.0 +/- V". If the "V" were able to be
// splitted into two addends, say "V = X - Y", the instruction would have
// been optimized into "I = Y - X" in the previous steps.
//
const FAddendCoef &CE = Opnd0.getCoef();
return CE.isOne() ? Opnd0.getSymVal() : nullptr;
}
// step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
if (Opnd1_ExpNum) {
AddendVect AllOpnds;
AllOpnds.push_back(&Opnd0);
AllOpnds.push_back(&Opnd1_0);
if (Opnd1_ExpNum == 2)
AllOpnds.push_back(&Opnd1_1);
if (Value *R = simplifyFAdd(AllOpnds, 1))
return R;
}
// step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
if (Opnd0_ExpNum) {
AddendVect AllOpnds;
AllOpnds.push_back(&Opnd1);
AllOpnds.push_back(&Opnd0_0);
if (Opnd0_ExpNum == 2)
AllOpnds.push_back(&Opnd0_1);
if (Value *R = simplifyFAdd(AllOpnds, 1))
return R;
}
return nullptr;
}
Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
unsigned AddendNum = Addends.size();
assert(AddendNum <= 4 && "Too many addends");
// For saving intermediate results;
unsigned NextTmpIdx = 0;
FAddend TmpResult[3];
// Simplified addends are placed <SimpVect>.
AddendVect SimpVect;
// The outer loop works on one symbolic-value at a time. Suppose the input
// addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
// The symbolic-values will be processed in this order: x, y, z.
for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
const FAddend *ThisAddend = Addends[SymIdx];
if (!ThisAddend) {
// This addend was processed before.
continue;
}
Value *Val = ThisAddend->getSymVal();
// If the resulting expr has constant-addend, this constant-addend is
// desirable to reside at the top of the resulting expression tree. Placing
// constant close to super-expr(s) will potentially reveal some
// optimization opportunities in super-expr(s). Here we do not implement
// this logic intentionally and rely on SimplifyAssociativeOrCommutative
// call later.
unsigned StartIdx = SimpVect.size();
SimpVect.push_back(ThisAddend);
// The inner loop collects addends sharing same symbolic-value, and these
// addends will be later on folded into a single addend. Following above
// example, if the symbolic value "y" is being processed, the inner loop
// will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
// be later on folded into "<b1+b2, y>".
for (unsigned SameSymIdx = SymIdx + 1;
SameSymIdx < AddendNum; SameSymIdx++) {
const FAddend *T = Addends[SameSymIdx];
if (T && T->getSymVal() == Val) {
// Set null such that next iteration of the outer loop will not process
// this addend again.
Addends[SameSymIdx] = nullptr;
SimpVect.push_back(T);
}
}
// If multiple addends share same symbolic value, fold them together.
if (StartIdx + 1 != SimpVect.size()) {
FAddend &R = TmpResult[NextTmpIdx ++];
R = *SimpVect[StartIdx];
for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
R += *SimpVect[Idx];
// Pop all addends being folded and push the resulting folded addend.
SimpVect.resize(StartIdx);
if (!R.isZero()) {
SimpVect.push_back(&R);
}
}
}
assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
Value *Result;
if (!SimpVect.empty())
Result = createNaryFAdd(SimpVect, InstrQuota);
else {
// The addition is folded to 0.0.
Result = ConstantFP::get(Instr->getType(), 0.0);
}
return Result;
}
Value *FAddCombine::createNaryFAdd
(const AddendVect &Opnds, unsigned InstrQuota) {
assert(!Opnds.empty() && "Expect at least one addend");
// Step 1: Check if the # of instructions needed exceeds the quota.
unsigned InstrNeeded = calcInstrNumber(Opnds);
if (InstrNeeded > InstrQuota)
return nullptr;
initCreateInstNum();
// step 2: Emit the N-ary addition.
// Note that at most three instructions are involved in Fadd-InstCombine: the
// addition in question, and at most two neighboring instructions.
// The resulting optimized addition should have at least one less instruction
// than the original addition expression tree. This implies that the resulting
// N-ary addition has at most two instructions, and we don't need to worry
// about tree-height when constructing the N-ary addition.
Value *LastVal = nullptr;
bool LastValNeedNeg = false;
// Iterate the addends, creating fadd/fsub using adjacent two addends.
for (const FAddend *Opnd : Opnds) {
bool NeedNeg;
Value *V = createAddendVal(*Opnd, NeedNeg);
if (!LastVal) {
LastVal = V;
LastValNeedNeg = NeedNeg;
continue;
}
if (LastValNeedNeg == NeedNeg) {
LastVal = createFAdd(LastVal, V);
continue;
}
if (LastValNeedNeg)
LastVal = createFSub(V, LastVal);
else
LastVal = createFSub(LastVal, V);
LastValNeedNeg = false;
}
if (LastValNeedNeg) {
LastVal = createFNeg(LastVal);
}
#ifndef NDEBUG
assert(CreateInstrNum == InstrNeeded &&
"Inconsistent in instruction numbers");
#endif
return LastVal;
}
Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
Value *V = Builder.CreateFSub(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
Value *FAddCombine::createFNeg(Value *V) {
Value *NewV = Builder.CreateFNeg(V);
if (Instruction *I = dyn_cast<Instruction>(NewV))
createInstPostProc(I, true); // fneg's don't receive instruction numbers.
return NewV;
}
Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
Value *V = Builder.CreateFMul(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
NewInstr->setDebugLoc(Instr->getDebugLoc());
// Keep track of the number of instruction created.
if (!NoNumber)
incCreateInstNum();
// Propagate fast-math flags
NewInstr->setFastMathFlags(Instr->getFastMathFlags());
}
// Return the number of instruction needed to emit the N-ary addition.
// NOTE: Keep this function in sync with createAddendVal().
unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
unsigned OpndNum = Opnds.size();
unsigned InstrNeeded = OpndNum - 1;
// Adjust the number of instructions needed to emit the N-ary add.
for (const FAddend *Opnd : Opnds) {
if (Opnd->isConstant())
continue;
// The constant check above is really for a few special constant
// coefficients.
if (isa<UndefValue>(Opnd->getSymVal()))
continue;
const FAddendCoef &CE = Opnd->getCoef();
// Let the addend be "c * x". If "c == +/-1", the value of the addend
// is immediately available; otherwise, it needs exactly one instruction
// to evaluate the value.
if (!CE.isMinusOne() && !CE.isOne())
InstrNeeded++;
}
return InstrNeeded;
}
// Input Addend Value NeedNeg(output)
// ================================================================
// Constant C C false
// <+/-1, V> V coefficient is -1
// <2/-2, V> "fadd V, V" coefficient is -2
// <C, V> "fmul V, C" false
//
// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
const FAddendCoef &Coeff = Opnd.getCoef();
if (Opnd.isConstant()) {
NeedNeg = false;
return Coeff.getValue(Instr->getType());
}
Value *OpndVal = Opnd.getSymVal();
if (Coeff.isMinusOne() || Coeff.isOne()) {
NeedNeg = Coeff.isMinusOne();
return OpndVal;
}
if (Coeff.isTwo() || Coeff.isMinusTwo()) {
NeedNeg = Coeff.isMinusTwo();
return createFAdd(OpndVal, OpndVal);
}
NeedNeg = false;
return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
}
// Checks if any operand is negative and we can convert add to sub.
// This function checks for following negative patterns
// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
static Value *checkForNegativeOperand(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
// This function creates 2 instructions to replace ADD, we need at least one
// of LHS or RHS to have one use to ensure benefit in transform.
if (!LHS->hasOneUse() && !RHS->hasOneUse())
return nullptr;
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
const APInt *C1 = nullptr, *C2 = nullptr;
// if ONE is on other side, swap
if (match(RHS, m_Add(m_Value(X), m_One())))
std::swap(LHS, RHS);
if (match(LHS, m_Add(m_Value(X), m_One()))) {
// if XOR on other side, swap
if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
std::swap(X, RHS);
if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
// X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
Value *NewAnd = Builder.CreateAnd(Z, *C1);
return Builder.CreateSub(RHS, NewAnd, "sub");
} else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
// X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
Value *NewOr = Builder.CreateOr(Z, ~(*C1));
return Builder.CreateSub(RHS, NewOr, "sub");
}
}
}
// Restore LHS and RHS
LHS = I.getOperand(0);
RHS = I.getOperand(1);
// if XOR is on other side, swap
if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
std::swap(LHS, RHS);
// C2 is ODD
// LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
// ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
if (C1->countTrailingZeros() == 0)
if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
Value *NewOr = Builder.CreateOr(Z, ~(*C2));
return Builder.CreateSub(RHS, NewOr, "sub");
}
return nullptr;
}
/// Wrapping flags may allow combining constants separated by an extend.
static Instruction *foldNoWrapAdd(BinaryOperator &Add,
InstCombiner::BuilderTy &Builder) {
Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
Type *Ty = Add.getType();
Constant *Op1C;
if (!match(Op1, m_Constant(Op1C)))
return nullptr;
// Try this match first because it results in an add in the narrow type.
// (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
Value *X;
const APInt *C1, *C2;
if (match(Op1, m_APInt(C1)) &&
match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
Constant *NewC =
ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
}
// More general combining of constants in the wide type.
// (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
Constant *NarrowC;
if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
Value *WideX = Builder.CreateSExt(X, Ty);
return BinaryOperator::CreateAdd(WideX, NewC);
}
// (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
Value *WideX = Builder.CreateZExt(X, Ty);
return BinaryOperator::CreateAdd(WideX, NewC);
}
return nullptr;
}
Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
Type *Ty = Add.getType();
Constant *Op1C;
if (!match(Op1, m_ImmConstant(Op1C)))
return nullptr;
if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
return NV;
Value *X;
Constant *Op00C;
// add (sub C1, X), C2 --> sub (add C1, C2), X
if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
Value *Y;
// add (sub X, Y), -1 --> add (not Y), X
if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
match(Op1, m_AllOnes()))
return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
// zext(bool) + C -> bool ? C + 1 : C
if (match(Op0, m_ZExt(m_Value(X))) &&
X->getType()->getScalarSizeInBits() == 1)
return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
// sext(bool) + C -> bool ? C - 1 : C
if (match(Op0, m_SExt(m_Value(X))) &&
X->getType()->getScalarSizeInBits() == 1)
return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
// ~X + C --> (C-1) - X
if (match(Op0, m_Not(m_Value(X))))
return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
// (iN X s>> (N - 1)) + 1 --> zext (X > -1)
const APInt *C;
unsigned BitWidth = Ty->getScalarSizeInBits();
if (match(Op0, m_OneUse(m_AShr(m_Value(X),
m_SpecificIntAllowUndef(BitWidth - 1)))) &&
match(Op1, m_One()))
return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
if (!match(Op1, m_APInt(C)))
return nullptr;
// (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
Constant *Op01C;
if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
// (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
const APInt *C2;
if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
if (C->isSignMask()) {
// If wrapping is not allowed, then the addition must set the sign bit:
// X + (signmask) --> X | signmask
if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
return BinaryOperator::CreateOr(Op0, Op1);
// If wrapping is allowed, then the addition flips the sign bit of LHS:
// X + (signmask) --> X ^ signmask
return BinaryOperator::CreateXor(Op0, Op1);
}
// Is this add the last step in a convoluted sext?
// add(zext(xor i16 X, -32768), -32768) --> sext X
if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
return CastInst::Create(Instruction::SExt, X, Ty);
if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
// (X ^ signmask) + C --> (X + (signmask ^ C))
if (C2->isSignMask())
return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
// If X has no high-bits set above an xor mask:
// add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
if (C2->isMask()) {
KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
if ((*C2 | LHSKnown.Zero).isAllOnes())
return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
}
// Look for a math+logic pattern that corresponds to sext-in-register of a
// value with cleared high bits. Convert that into a pair of shifts:
// add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
// add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
if (Op0->hasOneUse() && *C2 == -(*C)) {
unsigned BitWidth = Ty->getScalarSizeInBits();
unsigned ShAmt = 0;
if (C->isPowerOf2())
ShAmt = BitWidth - C->logBase2() - 1;
else if (C2->isPowerOf2())
ShAmt = BitWidth - C2->logBase2() - 1;
if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
0, &Add)) {
Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
return BinaryOperator::CreateAShr(NewShl, ShAmtC);
}
}
}
if (C->isOne() && Op0->hasOneUse()) {
// add (sext i1 X), 1 --> zext (not X)
// TODO: The smallest IR representation is (select X, 0, 1), and that would
// not require the one-use check. But we need to remove a transform in
// visitSelect and make sure that IR value tracking for select is equal or
// better than for these ops.
if (match(Op0, m_SExt(m_Value(X))) &&
X->getType()->getScalarSizeInBits() == 1)
return new ZExtInst(Builder.CreateNot(X), Ty);
// Shifts and add used to flip and mask off the low bit:
// add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
const APInt *C3;
if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
Value *NotX = Builder.CreateNot(X);
return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
}
}
return nullptr;
}
// Matches multiplication expression Op * C where C is a constant. Returns the
// constant value in C and the other operand in Op. Returns true if such a
// match is found.
static bool MatchMul(Value *E, Value *&Op, APInt &C) {
const APInt *AI;
if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
C = *AI;
return true;
}
if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
C = APInt(AI->getBitWidth(), 1);
C <<= *AI;
return true;
}
return false;
}
// Matches remainder expression Op % C where C is a constant. Returns the
// constant value in C and the other operand in Op. Returns the signedness of
// the remainder operation in IsSigned. Returns true if such a match is
// found.
static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
const APInt *AI;
IsSigned = false;
if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
IsSigned = true;
C = *AI;
return true;
}
if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
C = *AI;
return true;
}
if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
C = *AI + 1;
return true;
}
return false;
}
// Matches division expression Op / C with the given signedness as indicated
// by IsSigned, where C is a constant. Returns the constant value in C and the
// other operand in Op. Returns true if such a match is found.
static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
const APInt *AI;
if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
C = *AI;
return true;
}
if (!IsSigned) {
if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
C = *AI;
return true;
}
if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
C = APInt(AI->getBitWidth(), 1);
C <<= *AI;
return true;
}
}
return false;
}
// Returns whether C0 * C1 with the given signedness overflows.
static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
bool overflow;
if (IsSigned)
(void)C0.smul_ov(C1, overflow);
else
(void)C0.umul_ov(C1, overflow);
return overflow;
}
// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
// does not overflow.
Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Value *X, *MulOpV;
APInt C0, MulOpC;
bool IsSigned;
// Match I = X % C0 + MulOpV * C0
if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
(MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
C0 == MulOpC) {
Value *RemOpV;
APInt C1;
bool Rem2IsSigned;
// Match MulOpC = RemOpV % C1
if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
IsSigned == Rem2IsSigned) {
Value *DivOpV;
APInt DivOpC;
// Match RemOpV = X / C0
if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
: Builder.CreateURem(X, NewDivisor, "urem");
}
}
}
return nullptr;
}
/// Fold
/// (1 << NBits) - 1
/// Into:
/// ~(-(1 << NBits))
/// Because a 'not' is better for bit-tracking analysis and other transforms
/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *NBits;
if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
return nullptr;
Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
// Be wary of constant folding.
if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
// Always NSW. But NUW propagates from `add`.
BOp->setHasNoSignedWrap();
BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
}
return BinaryOperator::CreateNot(NotMask, I.getName());
}
static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
Type *Ty = I.getType();
auto getUAddSat = [&]() {
return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
};
// add (umin X, ~Y), Y --> uaddsat X, Y
Value *X, *Y;
if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
m_Deferred(Y))))
return CallInst::Create(getUAddSat(), { X, Y });
// add (umin X, ~C), C --> uaddsat X, C
const APInt *C, *NotC;
if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
*C == ~*NotC)
return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
return nullptr;
}
/// Try to reduce signed division by power-of-2 to an arithmetic shift right.
static Instruction *foldAddToAshr(BinaryOperator &Add) {
// Division must be by power-of-2, but not the minimum signed value.
Value *X;
const APInt *DivC;
if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
DivC->isNegative())
return nullptr;
// Rounding is done by adding -1 if the dividend (X) is negative and has any
// low bits set. The canonical pattern for that is an "ugt" compare with SMIN:
// sext (icmp ugt (X & (DivC - 1)), SMIN)
const APInt *MaskC;
ICmpInst::Predicate Pred;
if (!match(Add.getOperand(1),
m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
m_SignMask()))) ||
Pred != ICmpInst::ICMP_UGT)
return nullptr;
APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
if (*MaskC != (SMin | (*DivC - 1)))
return nullptr;
// (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
return BinaryOperator::CreateAShr(
X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
}
Instruction *InstCombinerImpl::
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
BinaryOperator &I) {
assert((I.getOpcode() == Instruction::Add ||
I.getOpcode() == Instruction::Or ||
I.getOpcode() == Instruction::Sub) &&
"Expecting add/or/sub instruction");
// We have a subtraction/addition between a (potentially truncated) *logical*
// right-shift of X and a "select".
Value *X, *Select;
Instruction *LowBitsToSkip, *Extract;
if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
m_Instruction(Extract))),
m_Value(Select))))
return nullptr;
// `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
return nullptr;
Type *XTy = X->getType();
bool HadTrunc = I.getType() != XTy;
// If there was a truncation of extracted value, then we'll need to produce
// one extra instruction, so we need to ensure one instruction will go away.
if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
return nullptr;
// Extraction should extract high NBits bits, with shift amount calculated as:
// low bits to skip = shift bitwidth - high bits to extract
// The shift amount itself may be extended, and we need to look past zero-ext
// when matching NBits, that will matter for matching later.
Constant *C;
Value *NBits;
if (!match(
LowBitsToSkip,
m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
APInt(C->getType()->getScalarSizeInBits(),
X->getType()->getScalarSizeInBits()))))
return nullptr;
// Sign-extending value can be zero-extended if we `sub`tract it,
// or sign-extended otherwise.
auto SkipExtInMagic = [&I](Value *&V) {
if (I.getOpcode() == Instruction::Sub)
match(V, m_ZExtOrSelf(m_Value(V)));
else
match(V, m_SExtOrSelf(m_Value(V)));
};
// Now, finally validate the sign-extending magic.
// `select` itself may be appropriately extended, look past that.
SkipExtInMagic(Select);
ICmpInst::Predicate Pred;
const APInt *Thr;
Value *SignExtendingValue, *Zero;
bool ShouldSignext;
// It must be a select between two values we will later establish to be a
// sign-extending value and a zero constant. The condition guarding the
// sign-extension must be based on a sign bit of the same X we had in `lshr`.
if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
m_Value(SignExtendingValue), m_Value(Zero))) ||
!isSignBitCheck(Pred, *Thr, ShouldSignext))
return nullptr;
// icmp-select pair is commutative.
if (!ShouldSignext)
std::swap(SignExtendingValue, Zero);
// If we should not perform sign-extension then we must add/or/subtract zero.
if (!match(Zero, m_Zero()))
return nullptr;
// Otherwise, it should be some constant, left-shifted by the same NBits we
// had in `lshr`. Said left-shift can also be appropriately extended.
// Again, we must look past zero-ext when looking for NBits.
SkipExtInMagic(SignExtendingValue);
Constant *SignExtendingValueBaseConstant;
if (!match(SignExtendingValue,
m_Shl(m_Constant(SignExtendingValueBaseConstant),
m_ZExtOrSelf(m_Specific(NBits)))))
return nullptr;
// If we `sub`, then the constant should be one, else it should be all-ones.
if (I.getOpcode() == Instruction::Sub
? !match(SignExtendingValueBaseConstant, m_One())
: !match(SignExtendingValueBaseConstant, m_AllOnes()))
return nullptr;
auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
Extract->getName() + ".sext");
NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
if (!HadTrunc)
return NewAShr;
Builder.Insert(NewAShr);
return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
}
/// This is a specialization of a more general transform from
/// foldUsingDistributiveLaws. If that code can be made to work optimally
/// for multi-use cases or propagating nsw/nuw, then we would not need this.
static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
// TODO: Also handle mul by doubling the shift amount?
assert((I.getOpcode() == Instruction::Add ||
I.getOpcode() == Instruction::Sub) &&
"Expected add/sub");
auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
return nullptr;
Value *X, *Y, *ShAmt;
if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
!match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
return nullptr;
// No-wrap propagates only when all ops have no-wrap.
bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
Op1->hasNoSignedWrap();
bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
Op1->hasNoUnsignedWrap();
// add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
NewI->setHasNoSignedWrap(HasNSW);
NewI->setHasNoUnsignedWrap(HasNUW);
}
auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
NewShl->setHasNoSignedWrap(HasNSW);
NewShl->setHasNoUnsignedWrap(HasNUW);
return NewShl;
}
/// Reduce a sequence of masked half-width multiplies to a single multiply.
/// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
static Instruction *foldBoxMultiply(BinaryOperator &I) {
unsigned BitWidth = I.getType()->getScalarSizeInBits();
// Skip the odd bitwidth types.
if ((BitWidth & 0x1))
return nullptr;
unsigned HalfBits = BitWidth >> 1;
APInt HalfMask = APInt::getMaxValue(HalfBits);
// ResLo = (CrossSum << HalfBits) + (YLo * XLo)
Value *XLo, *YLo;
Value *CrossSum;
if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
m_Mul(m_Value(YLo), m_Value(XLo)))))
return nullptr;
// XLo = X & HalfMask
// YLo = Y & HalfMask
// TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
// to enhance robustness
Value *X, *Y;
if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
!match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
return nullptr;
// CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
// X' can be either X or XLo in the pattern (and the same for Y')
if (match(CrossSum,
m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
m_CombineOr(m_Specific(X), m_Specific(XLo))),
m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
return BinaryOperator::CreateMul(X, Y);
return nullptr;
}
Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
// (A*B)+(A*C) -> A*(B+C) etc
if (Value *V = foldUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
if (Instruction *R = foldBoxMultiply(I))
return R;
if (Instruction *R = factorizeMathWithShlOps(I, Builder))
return R;
if (Instruction *X = foldAddWithConstant(I))
return X;
if (Instruction *X = foldNoWrapAdd(I, Builder))
return X;
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Type *Ty = I.getType();
if (Ty->isIntOrIntVectorTy(1))
return BinaryOperator::CreateXor(LHS, RHS);
// X + X --> X << 1
if (LHS == RHS) {
auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
return Shl;
}
Value *A, *B;
if (match(LHS, m_Neg(m_Value(A)))) {
// -A + -B --> -(A + B)
if (match(RHS, m_Neg(m_Value(B))))
return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
// -A + B --> B - A
return BinaryOperator::CreateSub(RHS, A);
}
// A + -B --> A - B
if (match(RHS, m_Neg(m_Value(B))))
return BinaryOperator::CreateSub(LHS, B);
if (Value *V = checkForNegativeOperand(I, Builder))
return replaceInstUsesWith(I, V);
// (A + 1) + ~B --> A - B
// ~B + (A + 1) --> A - B
// (~B + A) + 1 --> A - B
// (A + ~B) + 1 --> A - B
if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
return BinaryOperator::CreateSub(A, B);
// (A + RHS) + RHS --> A + (RHS << 1)
if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
// LHS + (A + LHS) --> A + (LHS << 1)
if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
{
// (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
Constant *C1, *C2;
if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
(LHS->hasOneUse() || RHS->hasOneUse())) {
Value *Sub = Builder.CreateSub(A, B);
return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
}
}
// X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
// ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
const APInt *C1, *C2;
if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
APInt one(C2->getBitWidth(), 1);
APInt minusC1 = -(*C1);
if (minusC1 == (one << *C2)) {
Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
return BinaryOperator::CreateSRem(RHS, NewRHS);
}
}
// (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) {
Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
return BinaryOperator::CreateAnd(A, NewMask);
}
// ZExt (B - A) + ZExt(A) --> ZExt(B)
if ((match(RHS, m_ZExt(m_Value(A))) &&
match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
(match(LHS, m_ZExt(m_Value(A))) &&
match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
return new ZExtInst(B, LHS->getType());
// A+B --> A|B iff A and B have no bits set in common.
if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
return BinaryOperator::CreateOr(LHS, RHS);
if (Instruction *Ext = narrowMathIfNoOverflow(I))
return Ext;
// (add (xor A, B) (and A, B)) --> (or A, B)
// (add (and A, B) (xor A, B)) --> (or A, B)
if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
m_c_And(m_Deferred(A), m_Deferred(B)))))
return BinaryOperator::CreateOr(A, B);
// (add (or A, B) (and A, B)) --> (add A, B)
// (add (and A, B) (or A, B)) --> (add A, B)
if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
m_c_And(m_Deferred(A), m_Deferred(B))))) {
// Replacing operands in-place to preserve nuw/nsw flags.
replaceOperand(I, 0, A);
replaceOperand(I, 1, B);
return &I;
}
// (add A (or A, -A)) --> (and (add A, -1) A)
// (add A (or -A, A)) --> (and (add A, -1) A)
// (add (or A, -A) A) --> (and (add A, -1) A)
// (add (or -A, A) A) --> (and (add A, -1) A)
if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
m_Deferred(A)))))) {
Value *Add =
Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
return BinaryOperator::CreateAnd(Add, A);
}
// Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
// Forms all commutable operations, and simplifies ctpop -> cttz folds.
if (match(&I,
m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
m_AllOnes()))) {
Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
Value *Dec = Builder.CreateAdd(A, AllOnes);
Value *Not = Builder.CreateXor(A, AllOnes);
return BinaryOperator::CreateAnd(Dec, Not);
}
// Disguised reassociation/factorization:
// ~(A * C1) + A
// ((A * -C1) - 1) + A
// ((A * -C1) + A) - 1
// (A * (1 - C1)) - 1
if (match(&I,
m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
m_Deferred(A)))) {
Type *Ty = I.getType();
Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
Value *NewMul = Builder.CreateMul(A, NewMulC);
return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
}
// (A * -2**C) + B --> B - (A << C)
const APInt *NegPow2C;
if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
m_Value(B)))) {
Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countTrailingZeros());
Value *Shl = Builder.CreateShl(A, ShiftAmtC);
return BinaryOperator::CreateSub(B, Shl);
}
// Canonicalize signum variant that ends in add:
// (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
ICmpInst::Predicate Pred;
uint64_t BitWidth = Ty->getScalarSizeInBits();
if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) &&
match(RHS, m_OneUse(m_ZExt(
m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) &&
Pred == CmpInst::ICMP_SGT) {
Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
return BinaryOperator::CreateOr(LHS, Zext);
}
if (Instruction *Ashr = foldAddToAshr(I))
return Ashr;
// TODO(jingyue): Consider willNotOverflowSignedAdd and
// willNotOverflowUnsignedAdd to reduce the number of invocations of
// computeKnownBits.
bool Changed = false;
if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
if (Instruction *V = canonicalizeLowbitMask(I, Builder))
return V;
if (Instruction *V =
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
return V;
if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
return SatAdd;
// usub.sat(A, B) + B => umax(A, B)
if (match(&I, m_c_BinOp(
m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
m_Deferred(B)))) {
return replaceInstUsesWith(I,
Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
}
// ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
return replaceInstUsesWith(
I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
{Builder.CreateOr(A, B)}));
return Changed ? &I : nullptr;
}
/// Eliminate an op from a linear interpolation (lerp) pattern.
static Instruction *factorizeLerp(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *X, *Y, *Z;
if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
m_OneUse(m_FSub(m_FPOne(),
m_Value(Z))))),
m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
return nullptr;
// (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
Value *XY = Builder.CreateFSubFMF(X, Y, &I);
Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
}
/// Factor a common operand out of fadd/fsub of fmul/fdiv.
static Instruction *factorizeFAddFSub(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
assert((I.getOpcode() == Instruction::FAdd ||
I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
"FP factorization requires FMF");
if (Instruction *Lerp = factorizeLerp(I, Builder))
return Lerp;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (!Op0->hasOneUse() || !Op1->hasOneUse())
return nullptr;
Value *X, *Y, *Z;
bool IsFMul;
if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
(match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
IsFMul = true;
else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
IsFMul = false;
else
return nullptr;
// (X * Z) + (Y * Z) --> (X + Y) * Z
// (X * Z) - (Y * Z) --> (X - Y) * Z
// (X / Z) + (Y / Z) --> (X + Y) / Z
// (X / Z) - (Y / Z) --> (X - Y) / Z
bool IsFAdd = I.getOpcode() == Instruction::FAdd;
Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
: Builder.CreateFSubFMF(X, Y, &I);
// Bail out if we just created a denormal constant.
// TODO: This is copied from a previous implementation. Is it necessary?
const APFloat *C;
if (match(XY, m_APFloat(C)) && !C->isNormal())
return nullptr;
return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
: BinaryOperator::CreateFDivFMF(XY, Z, &I);
}
Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
return FoldedFAdd;
// (-X) + Y --> Y - X
Value *X, *Y;
if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
return BinaryOperator::CreateFSubFMF(Y, X, &I);
// Similar to above, but look through fmul/fdiv for the negated term.
// (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
Value *Z;
if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
m_Value(Z)))) {
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
return BinaryOperator::CreateFSubFMF(Z, XY, &I);
}
// (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
// (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
m_Value(Z))) ||
match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
m_Value(Z)))) {
Value *XY = Builder.CreateFDivFMF(X, Y, &I);
return BinaryOperator::CreateFSubFMF(Z, XY, &I);
}
// Check for (fadd double (sitofp x), y), see if we can merge this into an
// integer add followed by a promotion.
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
Value *LHSIntVal = LHSConv->getOperand(0);
Type *FPType = LHSConv->getType();
// TODO: This check is overly conservative. In many cases known bits
// analysis can tell us that the result of the addition has less significant
// bits than the integer type can hold.
auto IsValidPromotion = [](Type *FTy, Type *ITy) {
Type *FScalarTy = FTy->getScalarType();
Type *IScalarTy = ITy->getScalarType();
// Do we have enough bits in the significand to represent the result of
// the integer addition?
unsigned MaxRepresentableBits =
APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
};
// (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
// ... if the constant fits in the integer value. This is useful for things
// like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
// requires a constant pool load, and generally allows the add to be better
// instcombined.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
if (IsValidPromotion(FPType, LHSIntVal->getType())) {
Constant *CI =
ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
// Insert the new integer add.
Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
// (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
Value *RHSIntVal = RHSConv->getOperand(0);
// It's enough to check LHS types only because we require int types to
// be the same for this transform.
if (IsValidPromotion(FPType, LHSIntVal->getType())) {
// Only do this if x/y have the same type, if at least one of them has a
// single use (so we don't increase the number of int->fp conversions),
// and if the integer add will not overflow.
if (LHSIntVal->getType() == RHSIntVal->getType() &&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
// Insert the new integer add.
Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
}
}
// Handle specials cases for FAdd with selects feeding the operation
if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
return replaceInstUsesWith(I, V);
if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
if (Instruction *F = factorizeFAddFSub(I, Builder))
return F;
// Try to fold fadd into start value of reduction intrinsic.
if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
m_AnyZeroFP(), m_Value(X))),
m_Value(Y)))) {
// fadd (rdx 0.0, X), Y --> rdx Y, X
return replaceInstUsesWith(
I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
{X->getType()}, {Y, X}, &I));
}
const APFloat *StartC, *C;
if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
m_APFloat(StartC), m_Value(X)))) &&
match(RHS, m_APFloat(C))) {
// fadd (rdx StartC, X), C --> rdx (C + StartC), X
Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
return replaceInstUsesWith(
I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
{X->getType()}, {NewStartC, X}, &I));
}
// (X * MulC) + X --> X * (MulC + 1.0)
Constant *MulC;
if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
m_Deferred(X)))) {
if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
}
// (-X - Y) + (X + Z) --> Z - Y
if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
m_c_FAdd(m_Deferred(X), m_Value(Z)))))
return BinaryOperator::CreateFSubFMF(Z, Y, &I);
if (Value *V = FAddCombine(Builder).simplify(&I))
return replaceInstUsesWith(I, V);
}
return nullptr;
}
/// Optimize pointer differences into the same array into a size. Consider:
/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
Type *Ty, bool IsNUW) {
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
// this.
bool Swapped = false;
GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
std::swap(LHS, RHS);
Swapped = true;
}
// Require at least one GEP with a common base pointer on both sides.
if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
// (gep X, ...) - X
if (LHSGEP->getOperand(0)->stripPointerCasts() ==
RHS->stripPointerCasts()) {
GEP1 = LHSGEP;
} else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
// (gep X, ...) - (gep X, ...)
if (LHSGEP->getOperand(0)->stripPointerCasts() ==
RHSGEP->getOperand(0)->stripPointerCasts()) {
GEP1 = LHSGEP;
GEP2 = RHSGEP;
}
}
}
if (!GEP1)
return nullptr;
if (GEP2) {
// (gep X, ...) - (gep X, ...)
//
// Avoid duplicating the arithmetic if there are more than one non-constant
// indices between the two GEPs and either GEP has a non-constant index and
// multiple users. If zero non-constant index, the result is a constant and
// there is no duplication. If one non-constant index, the result is an add
// or sub with a constant, which is no larger than the original code, and
// there's no duplicated arithmetic, even if either GEP has multiple
// users. If more than one non-constant indices combined, as long as the GEP
// with at least one non-constant index doesn't have multiple users, there
// is no duplication.
unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
(NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
return nullptr;
}
}
// Emit the offset of the GEP and an intptr_t.
Value *Result = EmitGEPOffset(GEP1);
// If this is a single inbounds GEP and the original sub was nuw,
// then the final multiplication is also nuw.
if (auto *I = dyn_cast<Instruction>(Result))
if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
I->getOpcode() == Instruction::Mul)
I->setHasNoUnsignedWrap();
// If we have a 2nd GEP of the same base pointer, subtract the offsets.
// If both GEPs are inbounds, then the subtract does not have signed overflow.
if (GEP2) {
Value *Offset = EmitGEPOffset(GEP2);
Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
GEP1->isInBounds() && GEP2->isInBounds());
}
// If we have p - gep(p, ...) then we have to negate the result.
if (Swapped)
Result = Builder.CreateNeg(Result, "diff.neg");
return Builder.CreateIntCast(Result, Ty, true);
}
static Instruction *foldSubOfMinMax(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *Op0 = I.getOperand(0);
Value *Op1 = I.getOperand(1);
Type *Ty = I.getType();
auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
if (!MinMax)
return nullptr;
// sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
// sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
Value *X = MinMax->getLHS();
Value *Y = MinMax->getRHS();
if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
return CallInst::Create(F, {X, Y});
}
// sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
// sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
Value *Z;
if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
return BinaryOperator::CreateAdd(X, USub);
}
if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
return BinaryOperator::CreateAdd(X, USub);
}
}
// sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
// sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
return CallInst::Create(F, {Op0, Z});
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// If this is a 'B = x-(-A)', change to B = x+A.
// We deal with this without involving Negator to preserve NSW flag.
if (Value *V = dyn_castNegVal(Op1)) {
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
assert(BO->getOpcode() == Instruction::Sub &&
"Expected a subtraction operator!");
if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
Res->setHasNoSignedWrap(true);
} else {
if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
Res->setHasNoSignedWrap(true);
}
return Res;
}
// Try this before Negator to preserve NSW flag.
if (Instruction *R = factorizeMathWithShlOps(I, Builder))
return R;
Constant *C;
if (match(Op0, m_ImmConstant(C))) {
Value *X;
Constant *C2;
// C-(X+C2) --> (C-C2)-X
if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
}
auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
if (Instruction *Ext = narrowMathIfNoOverflow(I))
return Ext;
bool Changed = false;
if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
return Changed ? &I : nullptr;
};
// First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
// and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
// a pure negation used by a select that looks like abs/nabs.
bool IsNegation = match(Op0, m_ZeroInt());
if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
const Instruction *UI = dyn_cast<Instruction>(U);
if (!UI)
return false;
return match(UI,
m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
})) {
if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
return BinaryOperator::CreateAdd(NegOp1, Op0);
}
if (IsNegation)
return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
// (A*B)-(A*C) -> A*(B-C) etc
if (Value *V = foldUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
if (I.getType()->isIntOrIntVectorTy(1))
return BinaryOperator::CreateXor(Op0, Op1);
// Replace (-1 - A) with (~A).
if (match(Op0, m_AllOnes()))
return BinaryOperator::CreateNot(Op1);
// (X + -1) - Y --> ~Y + X
Value *X, *Y;
if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
// Reassociate sub/add sequences to create more add instructions and
// reduce dependency chains:
// ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
Value *Z;
if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
m_Value(Z))))) {
Value *XZ = Builder.CreateAdd(X, Z);
Value *YW = Builder.CreateAdd(Y, Op1);
return BinaryOperator::CreateSub(XZ, YW);
}
// ((X - Y) - Op1) --> X - (Y + Op1)
if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
Value *Add = Builder.CreateAdd(Y, Op1);
return BinaryOperator::CreateSub(X, Add);
}
// (~X) - (~Y) --> Y - X
// This is placed after the other reassociations and explicitly excludes a
// sub-of-sub pattern to avoid infinite looping.
if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
isFreeToInvert(Op1, Op1->hasOneUse()) &&
!match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
Value *NotOp0 = Builder.CreateNot(Op0);
Value *NotOp1 = Builder.CreateNot(Op1);
return BinaryOperator::CreateSub(NotOp1, NotOp0);
}
auto m_AddRdx = [](Value *&Vec) {
return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
};
Value *V0, *V1;
if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
V0->getType() == V1->getType()) {
// Difference of sums is sum of differences:
// add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
Value *Sub = Builder.CreateSub(V0, V1);
Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
{Sub->getType()}, {Sub});
return replaceInstUsesWith(I, Rdx);
}
if (Constant *C = dyn_cast<Constant>(Op0)) {
Value *X;
if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
// C - (zext bool) --> bool ? C - 1 : C
return SelectInst::Create(X, InstCombiner::SubOne(C), C);
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
// C - (sext bool) --> bool ? C + 1 : C
return SelectInst::Create(X, InstCombiner::AddOne(C), C);
// C - ~X == X + (1+C)
if (match(Op1, m_Not(m_Value(X))))
return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
// Try to fold constant sub into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
// Try to fold constant sub into PHI values.
if (PHINode *PN = dyn_cast<PHINode>(Op1))
if (Instruction *R = foldOpIntoPhi(I, PN))
return R;
Constant *C2;
// C-(C2-X) --> X+(C-C2)
if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
}
const APInt *Op0C;
if (match(Op0, m_APInt(Op0C))) {
if (Op0C->isMask()) {
// Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
// zero.
KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
if ((*Op0C | RHSKnown.Zero).isAllOnes())
return BinaryOperator::CreateXor(Op1, Op0);
}
// C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
// (C3 - ((C2 & C3) - 1)) is pow2
// ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
// C2 is negative pow2 || sub nuw
const APInt *C2, *C3;
BinaryOperator *InnerSub;
if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
(InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
APInt C2AndC3 = *C2 & *C3;
APInt C2AndC3Minus1 = C2AndC3 - 1;
APInt C2AddC3 = *C2 + *C3;
if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
C2AndC3Minus1.isSubsetOf(C2AddC3)) {
Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
return BinaryOperator::CreateAdd(
And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
}
}
}
{
Value *Y;
// X-(X+Y) == -Y X-(Y+X) == -Y
if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
return BinaryOperator::CreateNeg(Y);
// (X-Y)-X == -Y
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNeg(Y);
}
// (sub (or A, B) (and A, B)) --> (xor A, B)
{
Value *A, *B;
if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateXor(A, B);
}
// (sub (add A, B) (or A, B)) --> (and A, B)
{
Value *A, *B;
if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateAnd(A, B);
}
// (sub (add A, B) (and A, B)) --> (or A, B)
{
Value *A, *B;
if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateOr(A, B);
}
// (sub (and A, B) (or A, B)) --> neg (xor A, B)
{
Value *A, *B;
if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
(Op0->hasOneUse() || Op1->hasOneUse()))
return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
}
// (sub (or A, B), (xor A, B)) --> (and A, B)
{
Value *A, *B;
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
return BinaryOperator::CreateAnd(A, B);
}
// (sub (xor A, B) (or A, B)) --> neg (and A, B)
{
Value *A, *B;
if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
(Op0->hasOneUse() || Op1->hasOneUse()))
return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
}
{
Value *Y;
// ((X | Y) - X) --> (~X & Y)
if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
return BinaryOperator::CreateAnd(
Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
}
{
// (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
Value *X;
if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
m_OneUse(m_Neg(m_Value(X))))))) {
return BinaryOperator::CreateNeg(Builder.CreateAnd(
Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
}
}
{
// (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
Constant *C;
if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
return BinaryOperator::CreateNeg(
Builder.CreateAnd(Op1, Builder.CreateNot(C)));
}
}
if (Instruction *R = foldSubOfMinMax(I, Builder))
return R;
{
// If we have a subtraction between some value and a select between
// said value and something else, sink subtraction into select hands, i.e.:
// sub (select %Cond, %TrueVal, %FalseVal), %Op1
// ->
// select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
// or
// sub %Op0, (select %Cond, %TrueVal, %FalseVal)
// ->
// select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
// This will result in select between new subtraction and 0.
auto SinkSubIntoSelect =
[Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
auto SubBuilder) -> Instruction * {
Value *Cond, *TrueVal, *FalseVal;
if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
m_Value(FalseVal)))))
return nullptr;
if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
return nullptr;
// While it is really tempting to just create two subtractions and let
// InstCombine fold one of those to 0, it isn't possible to do so
// because of worklist visitation order. So ugly it is.
bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
Constant *Zero = Constant::getNullValue(Ty);
SelectInst *NewSel =
SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
OtherHandOfSubIsTrueVal ? NewSub : Zero);
// Preserve prof metadata if any.
NewSel->copyMetadata(cast<Instruction>(*Select));
return NewSel;
};
if (Instruction *NewSel = SinkSubIntoSelect(
/*Select=*/Op0, /*OtherHandOfSub=*/Op1,
[Builder = &Builder, Op1](Value *OtherHandOfSelect) {
return Builder->CreateSub(OtherHandOfSelect,
/*OtherHandOfSub=*/Op1);
}))
return NewSel;
if (Instruction *NewSel = SinkSubIntoSelect(
/*Select=*/Op1, /*OtherHandOfSub=*/Op0,
[Builder = &Builder, Op0](Value *OtherHandOfSelect) {
return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
OtherHandOfSelect);
}))
return NewSel;
}
// (X - (X & Y)) --> (X & ~Y)
if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
(Op1->hasOneUse() || isa<Constant>(Y)))
return BinaryOperator::CreateAnd(
Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
// ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
// ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
// Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
// Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
// As long as Y is freely invertible, this will be neutral or a win.
// Note: We don't generate the inverse max/min, just create the 'not' of
// it and let other folds do the rest.
if (match(Op0, m_Not(m_Value(X))) &&
match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
!Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
Value *Not = Builder.CreateNot(Op1);
return BinaryOperator::CreateSub(Not, X);
}
if (match(Op1, m_Not(m_Value(X))) &&
match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
!Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
Value *Not = Builder.CreateNot(Op0);
return BinaryOperator::CreateSub(X, Not);
}
// Optimize pointer differences into the same array into a size. Consider:
// &A[10] - &A[0]: we should compile this to "10".
Value *LHSOp, *RHSOp;
if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
match(Op1, m_PtrToInt(m_Value(RHSOp))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
I.hasNoUnsignedWrap()))
return replaceInstUsesWith(I, Res);
// trunc(p)-trunc(q) -> trunc(p-q)
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
/* IsNUW */ false))
return replaceInstUsesWith(I, Res);
// Canonicalize a shifty way to code absolute value to the common pattern.
// There are 2 potential commuted variants.
// We're relying on the fact that we only do this transform when the shift has
// exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
// instructions).
Value *A;
const APInt *ShAmt;
Type *Ty = I.getType();
unsigned BitWidth = Ty->getScalarSizeInBits();
if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
// B = ashr i32 A, 31 ; smear the sign bit
// sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
// --> (A < 0) ? -A : A
Value *IsNeg = Builder.CreateIsNeg(A);
// Copy the nuw/nsw flags from the sub to the negate.
Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
I.hasNoSignedWrap());
return SelectInst::Create(IsNeg, NegA, A);
}
// If we are subtracting a low-bit masked subset of some value from an add
// of that same value with no low bits changed, that is clearing some low bits
// of the sum:
// sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
const APInt *AddC, *AndC;
if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
unsigned Cttz = AddC->countTrailingZeros();
APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
if ((HighMask & *AndC).isZero())
return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
}
if (Instruction *V =
canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
return V;
// X - usub.sat(X, Y) => umin(X, Y)
if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
m_Value(Y)))))
return replaceInstUsesWith(
I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
// umax(X, Op1) - Op1 --> usub.sat(X, Op1)
// TODO: The one-use restriction is not strictly necessary, but it may
// require improving other pattern matching and/or codegen.
if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
return replaceInstUsesWith(
I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
// Op0 - umin(X, Op0) --> usub.sat(Op0, X)
if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
return replaceInstUsesWith(
I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
// Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
return BinaryOperator::CreateNeg(USub);
}
// umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
return BinaryOperator::CreateNeg(USub);
}
// C - ctpop(X) => ctpop(~X) if C is bitwidth
if (match(Op0, m_SpecificInt(BitWidth)) &&
match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
return replaceInstUsesWith(
I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
{Builder.CreateNot(X)}));
// Reduce multiplies for difference-of-squares by factoring:
// (X * X) - (Y * Y) --> (X + Y) * (X - Y)
if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
OBO1->hasNoSignedWrap() && BitWidth > 2;
bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
OBO1->hasNoUnsignedWrap() && BitWidth > 1;
Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
return replaceInstUsesWith(I, Mul);
}
return TryToNarrowDeduceFlags();
}
/// This eliminates floating-point negation in either 'fneg(X)' or
/// 'fsub(-0.0, X)' form by combining into a constant operand.
static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
// This is limited with one-use because fneg is assumed better for
// reassociation and cheaper in codegen than fmul/fdiv.
// TODO: Should the m_OneUse restriction be removed?
Instruction *FNegOp;
if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
return nullptr;
Value *X;
Constant *C;
// Fold negation into constant operand.
// -(X * C) --> X * (-C)
if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFMulFMF(X, NegC, &I);
// -(X / C) --> X / (-C)
if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFDivFMF(X, NegC, &I);
// -(C / X) --> (-C) / X
if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
// Intersect 'nsz' and 'ninf' because those special value exceptions may
// not apply to the fdiv. Everything else propagates from the fneg.
// TODO: We could propagate nsz/ninf from fdiv alone?
FastMathFlags FMF = I.getFastMathFlags();
FastMathFlags OpFMF = FNegOp->getFastMathFlags();
FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
return FDiv;
}
// With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
// -(X + C) --> -X + -C --> -C - X
if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFSubFMF(NegC, X, &I);
return nullptr;
}
static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
InstCombiner::BuilderTy &Builder) {
Value *FNeg;
if (!match(&I, m_FNeg(m_Value(FNeg))))
return nullptr;
Value *X, *Y;
if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
return nullptr;
}
Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
Value *Op = I.getOperand(0);
if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
getSimplifyQuery().getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldFNegIntoConstant(I, DL))
return X;
Value *X, *Y;
// If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
if (I.hasNoSignedZeros() &&
match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
return BinaryOperator::CreateFSubFMF(Y, X, &I);
if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
return R;
Value *OneUse;
if (!match(Op, m_OneUse(m_Value(OneUse))))
return nullptr;
// Try to eliminate fneg if at least 1 arm of the select is negated.
Value *Cond;
if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
// Unlike most transforms, this one is not safe to propagate nsz unless
// it is present on the original select. We union the flags from the select
// and fneg and then remove nsz if needed.
auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
S->copyFastMathFlags(&I);
if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
FastMathFlags FMF = I.getFastMathFlags();
FMF |= OldSel->getFastMathFlags();
S->setFastMathFlags(FMF);
if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
!isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
S->setHasNoSignedZeros(false);
}
};
// -(Cond ? -P : Y) --> Cond ? P : -Y
Value *P;
if (match(X, m_FNeg(m_Value(P)))) {
Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
propagateSelectFMF(NewSel, P == Y);
return NewSel;
}
// -(Cond ? X : -P) --> Cond ? -X : P
if (match(Y, m_FNeg(m_Value(P)))) {
Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
propagateSelectFMF(NewSel, P == X);
return NewSel;
}
}
// fneg (copysign x, y) -> copysign x, (fneg y)
if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
// The source copysign has an additional value input, so we can't propagate
// flags the copysign doesn't also have.
FastMathFlags FMF = I.getFastMathFlags();
FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(FMF);
Value *NegY = Builder.CreateFNeg(Y);
Value *NewCopySign = Builder.CreateCopySign(X, NegY);
return replaceInstUsesWith(I, NewCopySign);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
getSimplifyQuery().getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
// Subtraction from -0.0 is the canonical form of fneg.
// fsub -0.0, X ==> fneg X
// fsub nsz 0.0, X ==> fneg nsz X
//
// FIXME This matcher does not respect FTZ or DAZ yet:
// fsub -0.0, Denorm ==> +-0
// fneg Denorm ==> -Denorm
Value *Op;
if (match(&I, m_FNeg(m_Value(Op))))
return UnaryOperator::CreateFNegFMF(Op, &I);
if (Instruction *X = foldFNegIntoConstant(I, DL))
return X;
if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
return R;
Value *X, *Y;
Constant *C;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
// Canonicalize to fadd to make analysis easier.
// This can also help codegen because fadd is commutative.
// Note that if this fsub was really an fneg, the fadd with -0.0 will get
// killed later. We still limit that particular transform with 'hasOneUse'
// because an fneg is assumed better/cheaper than a generic fsub.
if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
}
}
// (-X) - Op1 --> -(X + Op1)
if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
return UnaryOperator::CreateFNegFMF(FAdd, &I);
}
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *NV = FoldOpIntoSelect(I, SI))
return NV;
// X - C --> X + (-C)
// But don't transform constant expressions because there's an inverse fold
// for X + (-Y) --> X - Y.
if (match(Op1, m_ImmConstant(C)))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
// X - (-Y) --> X + Y
if (match(Op1, m_FNeg(m_Value(Y))))
return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
// Similar to above, but look through a cast of the negated value:
// X - (fptrunc(-Y)) --> X + fptrunc(Y)
Type *Ty = I.getType();
if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
// X - (fpext(-Y)) --> X + fpext(Y)
if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
// Similar to above, but look through fmul/fdiv of the negated value:
// Op0 - (-X * Y) --> Op0 + (X * Y)
// Op0 - (Y * -X) --> Op0 + (X * Y)
if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
}
// Op0 - (-X / Y) --> Op0 + (X / Y)
// Op0 - (X / -Y) --> Op0 + (X / Y)
if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
}
// Handle special cases for FSub with selects feeding the operation
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);
if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
// (Y - X) - Y --> -X
if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
return UnaryOperator::CreateFNegFMF(X, &I);
// Y - (X + Y) --> -X
// Y - (Y + X) --> -X
if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
return UnaryOperator::CreateFNegFMF(X, &I);
// (X * C) - X --> X * (C - 1.0)
if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
}
// X - (X * C) --> X * (1.0 - C)
if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
}
// Reassociate fsub/fadd sequences to create more fadd instructions and
// reduce dependency chains:
// ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
Value *Z;
if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
m_Value(Z))))) {
Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
}
auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
m_Value(Vec)));
};
Value *A0, *A1, *V0, *V1;
if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
V0->getType() == V1->getType()) {
// Difference of sums is sum of differences:
// add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
{Sub->getType()}, {A0, Sub}, &I);
return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
}
if (Instruction *F = factorizeFAddFSub(I, Builder))
return F;
// TODO: This performs reassociative folds for FP ops. Some fraction of the
// functionality has been subsumed by simple pattern matching here and in
// InstSimplify. We should let a dedicated reassociation pass handle more
// complex pattern matching and remove this from InstCombine.
if (Value *V = FAddCombine(Builder).simplify(&I))
return replaceInstUsesWith(I, V);
// (X - Y) - Op1 --> X - (Y + Op1)
if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
}
}
return nullptr;
}
|