aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/IPO/PassManagerBuilder.cpp
blob: 6b91c8494f396142a75a1a2743f93bd2729e4ede (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Vectorize.h"

using namespace llvm;

PassManagerBuilder::PassManagerBuilder() {
    OptLevel = 2;
    SizeLevel = 0;
    LibraryInfo = nullptr;
    Inliner = nullptr;
    DisableUnrollLoops = false;
    SLPVectorize = false;
    LoopVectorize = true;
    LoopsInterleaved = true;
    LicmMssaOptCap = SetLicmMssaOptCap;
    LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
    DisableGVNLoadPRE = false;
    ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
    VerifyInput = false;
    VerifyOutput = false;
    MergeFunctions = false;
    DivergentTarget = false;
    CallGraphProfile = true;
}

PassManagerBuilder::~PassManagerBuilder() {
  delete LibraryInfo;
  delete Inliner;
}

void PassManagerBuilder::addInitialAliasAnalysisPasses(
    legacy::PassManagerBase &PM) const {
  // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
  // BasicAliasAnalysis wins if they disagree. This is intended to help
  // support "obvious" type-punning idioms.
  PM.add(createTypeBasedAAWrapperPass());
  PM.add(createScopedNoAliasAAWrapperPass());
}

void PassManagerBuilder::populateFunctionPassManager(
    legacy::FunctionPassManager &FPM) {
  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  if (OptLevel == 0) return;

  addInitialAliasAnalysisPasses(FPM);

  // Lower llvm.expect to metadata before attempting transforms.
  // Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
  FPM.add(createLowerExpectIntrinsicPass());
  FPM.add(createCFGSimplificationPass());
  FPM.add(createSROAPass());
  FPM.add(createEarlyCSEPass());
}

void PassManagerBuilder::addFunctionSimplificationPasses(
    legacy::PassManagerBase &MPM) {
  // Start of function pass.
  // Break up aggregate allocas, using SSAUpdater.
  assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
  MPM.add(createSROAPass());
  MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies

  if (OptLevel > 1) {
    // Speculative execution if the target has divergent branches; otherwise nop.
    MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());

    MPM.add(createJumpThreadingPass());         // Thread jumps.
    MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
  }
  MPM.add(
      createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
          true))); // Merge & remove BBs
  // Combine silly seq's
  MPM.add(createInstructionCombiningPass());
  if (SizeLevel == 0)
    MPM.add(createLibCallsShrinkWrapPass());

  // TODO: Investigate the cost/benefit of tail call elimination on debugging.
  if (OptLevel > 1)
    MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
  MPM.add(
      createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
          true)));                            // Merge & remove BBs
  MPM.add(createReassociatePass());           // Reassociate expressions

  // Begin the loop pass pipeline.

  // The simple loop unswitch pass relies on separate cleanup passes. Schedule
  // them first so when we re-process a loop they run before other loop
  // passes.
  MPM.add(createLoopInstSimplifyPass());
  MPM.add(createLoopSimplifyCFGPass());

  // Try to remove as much code from the loop header as possible,
  // to reduce amount of IR that will have to be duplicated. However,
  // do not perform speculative hoisting the first time as LICM
  // will destroy metadata that may not need to be destroyed if run
  // after loop rotation.
  // TODO: Investigate promotion cap for O1.
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                         /*AllowSpeculation=*/false));
  // Rotate Loop - disable header duplication at -Oz
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));
  // TODO: Investigate promotion cap for O1.
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                         /*AllowSpeculation=*/true));
  MPM.add(createSimpleLoopUnswitchLegacyPass(OptLevel == 3));
  // FIXME: We break the loop pass pipeline here in order to do full
  // simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
  // need for this.
  MPM.add(createCFGSimplificationPass(
      SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
  MPM.add(createInstructionCombiningPass());
  // We resume loop passes creating a second loop pipeline here.
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
  MPM.add(createLoopDeletionPass());          // Delete dead loops

  // Unroll small loops and perform peeling.
  MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                     ForgetAllSCEVInLoopUnroll));
  // This ends the loop pass pipelines.

  // Break up allocas that may now be splittable after loop unrolling.
  MPM.add(createSROAPass());

  if (OptLevel > 1) {
    MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
    MPM.add(createGVNPass(DisableGVNLoadPRE));  // Remove redundancies
  }
  MPM.add(createSCCPPass());                  // Constant prop with SCCP

  // Delete dead bit computations (instcombine runs after to fold away the dead
  // computations, and then ADCE will run later to exploit any new DCE
  // opportunities that creates).
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations

  // Run instcombine after redundancy elimination to exploit opportunities
  // opened up by them.
  MPM.add(createInstructionCombiningPass());
  if (OptLevel > 1) {
    MPM.add(createJumpThreadingPass());         // Thread jumps
    MPM.add(createCorrelatedValuePropagationPass());
  }
  MPM.add(createAggressiveDCEPass()); // Delete dead instructions

  MPM.add(createMemCpyOptPass());               // Remove memcpy / form memset
  // TODO: Investigate if this is too expensive at O1.
  if (OptLevel > 1) {
    MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                           /*AllowSpeculation=*/true));
  }

  // Merge & remove BBs and sink & hoist common instructions.
  MPM.add(createCFGSimplificationPass(
      SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
  // Clean up after everything.
  MPM.add(createInstructionCombiningPass());
}

/// FIXME: Should LTO cause any differences to this set of passes?
void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
                                         bool IsFullLTO) {
  PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));

  if (IsFullLTO) {
    // The vectorizer may have significantly shortened a loop body; unroll
    // again. Unroll small loops to hide loop backedge latency and saturate any
    // parallel execution resources of an out-of-order processor. We also then
    // need to clean up redundancies and loop invariant code.
    // FIXME: It would be really good to use a loop-integrated instruction
    // combiner for cleanup here so that the unrolling and LICM can be pipelined
    // across the loop nests.
    PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                ForgetAllSCEVInLoopUnroll));
    PM.add(createWarnMissedTransformationsPass());
  }

  if (!IsFullLTO) {
    // Eliminate loads by forwarding stores from the previous iteration to loads
    // of the current iteration.
    PM.add(createLoopLoadEliminationPass());
  }
  // Cleanup after the loop optimization passes.
  PM.add(createInstructionCombiningPass());

  // Now that we've formed fast to execute loop structures, we do further
  // optimizations. These are run afterward as they might block doing complex
  // analyses and transforms such as what are needed for loop vectorization.

  // Cleanup after loop vectorization, etc. Simplification passes like CVP and
  // GVN, loop transforms, and others have already run, so it's now better to
  // convert to more optimized IR using more aggressive simplify CFG options.
  // The extra sinking transform can create larger basic blocks, so do this
  // before SLP vectorization.
  PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
                                         .forwardSwitchCondToPhi(true)
                                         .convertSwitchRangeToICmp(true)
                                         .convertSwitchToLookupTable(true)
                                         .needCanonicalLoops(false)
                                         .hoistCommonInsts(true)
                                         .sinkCommonInsts(true)));

  if (IsFullLTO) {
    PM.add(createSCCPPass());                 // Propagate exposed constants
    PM.add(createInstructionCombiningPass()); // Clean up again
    PM.add(createBitTrackingDCEPass());
  }

  // Optimize parallel scalar instruction chains into SIMD instructions.
  if (SLPVectorize) {
    PM.add(createSLPVectorizerPass());
  }

  // Enhance/cleanup vector code.
  PM.add(createVectorCombinePass());

  if (!IsFullLTO) {
    PM.add(createInstructionCombiningPass());

    // Unroll small loops
    PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
                                ForgetAllSCEVInLoopUnroll));

    if (!DisableUnrollLoops) {
      // LoopUnroll may generate some redundency to cleanup.
      PM.add(createInstructionCombiningPass());

      // Runtime unrolling will introduce runtime check in loop prologue. If the
      // unrolled loop is a inner loop, then the prologue will be inside the
      // outer loop. LICM pass can help to promote the runtime check out if the
      // checked value is loop invariant.
      PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
                            /*AllowSpeculation=*/true));
    }

    PM.add(createWarnMissedTransformationsPass());
  }

  // After vectorization and unrolling, assume intrinsics may tell us more
  // about pointer alignments.
  PM.add(createAlignmentFromAssumptionsPass());

  if (IsFullLTO)
    PM.add(createInstructionCombiningPass());
}

void PassManagerBuilder::populateModulePassManager(
    legacy::PassManagerBase &MPM) {
  MPM.add(createAnnotation2MetadataLegacyPass());

  // Allow forcing function attributes as a debugging and tuning aid.
  MPM.add(createForceFunctionAttrsLegacyPass());

  // If all optimizations are disabled, just run the always-inline pass and,
  // if enabled, the function merging pass.
  if (OptLevel == 0) {
    if (Inliner) {
      MPM.add(Inliner);
      Inliner = nullptr;
    }

    // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
    // creates a CGSCC pass manager, but we don't want to add extensions into
    // that pass manager. To prevent this we insert a no-op module pass to reset
    // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
    // builds. The function merging pass is
    if (MergeFunctions)
      MPM.add(createMergeFunctionsPass());
    return;
  }

  // Add LibraryInfo if we have some.
  if (LibraryInfo)
    MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));

  addInitialAliasAnalysisPasses(MPM);

  // Infer attributes about declarations if possible.
  MPM.add(createInferFunctionAttrsLegacyPass());

  if (OptLevel > 2)
    MPM.add(createCallSiteSplittingPass());

  MPM.add(createIPSCCPPass());          // IP SCCP
  MPM.add(createCalledValuePropagationPass());

  MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
  // Promote any localized global vars.
  MPM.add(createPromoteMemoryToRegisterPass());

  MPM.add(createDeadArgEliminationPass()); // Dead argument elimination

  MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
  MPM.add(
      createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
          true))); // Clean up after IPCP & DAE

  // We add a module alias analysis pass here. In part due to bugs in the
  // analysis infrastructure this "works" in that the analysis stays alive
  // for the entire SCC pass run below.
  MPM.add(createGlobalsAAWrapperPass());

  // Start of CallGraph SCC passes.
  bool RunInliner = false;
  if (Inliner) {
    MPM.add(Inliner);
    Inliner = nullptr;
    RunInliner = true;
  }

  MPM.add(createPostOrderFunctionAttrsLegacyPass());

  addFunctionSimplificationPasses(MPM);

  // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
  // pass manager that we are specifically trying to avoid. To prevent this
  // we must insert a no-op module pass to reset the pass manager.
  MPM.add(createBarrierNoopPass());

  if (OptLevel > 1)
    // Remove avail extern fns and globals definitions if we aren't
    // compiling an object file for later LTO. For LTO we want to preserve
    // these so they are eligible for inlining at link-time. Note if they
    // are unreferenced they will be removed by GlobalDCE later, so
    // this only impacts referenced available externally globals.
    // Eventually they will be suppressed during codegen, but eliminating
    // here enables more opportunity for GlobalDCE as it may make
    // globals referenced by available external functions dead
    // and saves running remaining passes on the eliminated functions.
    MPM.add(createEliminateAvailableExternallyPass());

  MPM.add(createReversePostOrderFunctionAttrsPass());

  // The inliner performs some kind of dead code elimination as it goes,
  // but there are cases that are not really caught by it. We might
  // at some point consider teaching the inliner about them, but it
  // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
  // benefits generally outweight the cost, making the whole pipeline
  // faster.
  if (RunInliner) {
    MPM.add(createGlobalOptimizerPass());
    MPM.add(createGlobalDCEPass());
  }

  // We add a fresh GlobalsModRef run at this point. This is particularly
  // useful as the above will have inlined, DCE'ed, and function-attr
  // propagated everything. We should at this point have a reasonably minimal
  // and richly annotated call graph. By computing aliasing and mod/ref
  // information for all local globals here, the late loop passes and notably
  // the vectorizer will be able to use them to help recognize vectorizable
  // memory operations.
  //
  // Note that this relies on a bug in the pass manager which preserves
  // a module analysis into a function pass pipeline (and throughout it) so
  // long as the first function pass doesn't invalidate the module analysis.
  // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
  // this to work. Fortunately, it is trivial to preserve AliasAnalysis
  // (doing nothing preserves it as it is required to be conservatively
  // correct in the face of IR changes).
  MPM.add(createGlobalsAAWrapperPass());

  MPM.add(createFloat2IntPass());
  MPM.add(createLowerConstantIntrinsicsPass());

  // Re-rotate loops in all our loop nests. These may have fallout out of
  // rotated form due to GVN or other transformations, and the vectorizer relies
  // on the rotated form. Disable header duplication at -Oz.
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));

  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
  // into separate loop that would otherwise inhibit vectorization.  This is
  // currently only performed for loops marked with the metadata
  // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
  MPM.add(createLoopDistributePass());

  addVectorPasses(MPM, /* IsFullLTO */ false);

  // FIXME: We shouldn't bother with this anymore.
  MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes

  // GlobalOpt already deletes dead functions and globals, at -O2 try a
  // late pass of GlobalDCE.  It is capable of deleting dead cycles.
  if (OptLevel > 1) {
    MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
    MPM.add(createConstantMergePass());     // Merge dup global constants
  }

  if (MergeFunctions)
    MPM.add(createMergeFunctionsPass());

  // LoopSink pass sinks instructions hoisted by LICM, which serves as a
  // canonicalization pass that enables other optimizations. As a result,
  // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
  // result too early.
  MPM.add(createLoopSinkPass());
  // Get rid of LCSSA nodes.
  MPM.add(createInstSimplifyLegacyPass());

  // This hoists/decomposes div/rem ops. It should run after other sink/hoist
  // passes to avoid re-sinking, but before SimplifyCFG because it can allow
  // flattening of blocks.
  MPM.add(createDivRemPairsPass());

  // LoopSink (and other loop passes since the last simplifyCFG) might have
  // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
  MPM.add(createCFGSimplificationPass(
      SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
}

LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
  PassManagerBuilder *PMB = new PassManagerBuilder();
  return wrap(PMB);
}

void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
  PassManagerBuilder *Builder = unwrap(PMB);
  delete Builder;
}

void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
                                  unsigned OptLevel) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->OptLevel = OptLevel;
}

void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
                                   unsigned SizeLevel) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->SizeLevel = SizeLevel;
}

void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
                                            LLVMBool Value) {
  // NOTE: The DisableUnitAtATime switch has been removed.
}

void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
                                            LLVMBool Value) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->DisableUnrollLoops = Value;
}

void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
                                                 LLVMBool Value) {
  // NOTE: The simplify-libcalls pass has been removed.
}

void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
                                              unsigned Threshold) {
  PassManagerBuilder *Builder = unwrap(PMB);
  Builder->Inliner = createFunctionInliningPass(Threshold);
}

void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
                                                  LLVMPassManagerRef PM) {
  PassManagerBuilder *Builder = unwrap(PMB);
  legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
  Builder->populateFunctionPassManager(*FPM);
}

void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
                                                LLVMPassManagerRef PM) {
  PassManagerBuilder *Builder = unwrap(PMB);
  legacy::PassManagerBase *MPM = unwrap(PM);
  Builder->populateModulePassManager(*MPM);
}