1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
|
//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This specialises functions with constant parameters. Constant parameters
// like function pointers and constant globals are propagated to the callee by
// specializing the function. The main benefit of this pass at the moment is
// that indirect calls are transformed into direct calls, which provides inline
// opportunities that the inliner would not have been able to achieve. That's
// why function specialisation is run before the inliner in the optimisation
// pipeline; that is by design. Otherwise, we would only benefit from constant
// passing, which is a valid use-case too, but hasn't been explored much in
// terms of performance uplifts, cost-model and compile-time impact.
//
// Current limitations:
// - It does not yet handle integer ranges. We do support "literal constants",
// but that's off by default under an option.
// - The cost-model could be further looked into (it mainly focuses on inlining
// benefits),
//
// Ideas:
// - With a function specialization attribute for arguments, we could have
// a direct way to steer function specialization, avoiding the cost-model,
// and thus control compile-times / code-size.
//
// Todos:
// - Specializing recursive functions relies on running the transformation a
// number of times, which is controlled by option
// `func-specialization-max-iters`. Thus, increasing this value and the
// number of iterations, will linearly increase the number of times recursive
// functions get specialized, see also the discussion in
// https://reviews.llvm.org/D106426 for details. Perhaps there is a
// compile-time friendlier way to control/limit the number of specialisations
// for recursive functions.
// - Don't transform the function if function specialization does not trigger;
// the SCCPSolver may make IR changes.
//
// References:
// - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
// it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/FunctionSpecialization.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SCCPSolver.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "function-specialization"
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
static cl::opt<bool> ForceFunctionSpecialization(
"force-function-specialization", cl::init(false), cl::Hidden,
cl::desc("Force function specialization for every call site with a "
"constant argument"));
static cl::opt<unsigned> MaxClonesThreshold(
"func-specialization-max-clones", cl::Hidden,
cl::desc("The maximum number of clones allowed for a single function "
"specialization"),
cl::init(3));
static cl::opt<unsigned> SmallFunctionThreshold(
"func-specialization-size-threshold", cl::Hidden,
cl::desc("Don't specialize functions that have less than this theshold "
"number of instructions"),
cl::init(100));
static cl::opt<unsigned>
AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
cl::desc("Average loop iteration count cost"),
cl::init(10));
static cl::opt<bool> SpecializeOnAddresses(
"func-specialization-on-address", cl::init(false), cl::Hidden,
cl::desc("Enable function specialization on the address of global values"));
// Disabled by default as it can significantly increase compilation times.
//
// https://llvm-compile-time-tracker.com
// https://github.com/nikic/llvm-compile-time-tracker
static cl::opt<bool> EnableSpecializationForLiteralConstant(
"function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
cl::desc("Enable specialization of functions that take a literal constant "
"as an argument."));
Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
CallInst *Call) {
Value *StoreValue = nullptr;
for (auto *User : Alloca->users()) {
// We can't use llvm::isAllocaPromotable() as that would fail because of
// the usage in the CallInst, which is what we check here.
if (User == Call)
continue;
if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
return nullptr;
continue;
}
if (auto *Store = dyn_cast<StoreInst>(User)) {
// This is a duplicate store, bail out.
if (StoreValue || Store->isVolatile())
return nullptr;
StoreValue = Store->getValueOperand();
continue;
}
// Bail if there is any other unknown usage.
return nullptr;
}
return getCandidateConstant(StoreValue);
}
// A constant stack value is an AllocaInst that has a single constant
// value stored to it. Return this constant if such an alloca stack value
// is a function argument.
Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
Value *Val) {
if (!Val)
return nullptr;
Val = Val->stripPointerCasts();
if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
return ConstVal;
auto *Alloca = dyn_cast<AllocaInst>(Val);
if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
return nullptr;
return getPromotableAlloca(Alloca, Call);
}
// To support specializing recursive functions, it is important to propagate
// constant arguments because after a first iteration of specialisation, a
// reduced example may look like this:
//
// define internal void @RecursiveFn(i32* arg1) {
// %temp = alloca i32, align 4
// store i32 2 i32* %temp, align 4
// call void @RecursiveFn.1(i32* nonnull %temp)
// ret void
// }
//
// Before a next iteration, we need to propagate the constant like so
// which allows further specialization in next iterations.
//
// @funcspec.arg = internal constant i32 2
//
// define internal void @someFunc(i32* arg1) {
// call void @otherFunc(i32* nonnull @funcspec.arg)
// ret void
// }
//
void FunctionSpecializer::promoteConstantStackValues() {
// Iterate over the argument tracked functions see if there
// are any new constant values for the call instruction via
// stack variables.
for (Function &F : M) {
if (!Solver.isArgumentTrackedFunction(&F))
continue;
for (auto *User : F.users()) {
auto *Call = dyn_cast<CallInst>(User);
if (!Call)
continue;
if (!Solver.isBlockExecutable(Call->getParent()))
continue;
bool Changed = false;
for (const Use &U : Call->args()) {
unsigned Idx = Call->getArgOperandNo(&U);
Value *ArgOp = Call->getArgOperand(Idx);
Type *ArgOpType = ArgOp->getType();
if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
continue;
auto *ConstVal = getConstantStackValue(Call, ArgOp);
if (!ConstVal)
continue;
Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
GlobalValue::InternalLinkage, ConstVal,
"funcspec.arg");
if (ArgOpType != ConstVal->getType())
GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
Call->setArgOperand(Idx, GV);
Changed = true;
}
// Add the changed CallInst to Solver Worklist
if (Changed)
Solver.visitCall(*Call);
}
}
}
// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
// interfere with the promoteConstantStackValues() optimization.
static void removeSSACopy(Function &F) {
for (BasicBlock &BB : F) {
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
auto *II = dyn_cast<IntrinsicInst>(&Inst);
if (!II)
continue;
if (II->getIntrinsicID() != Intrinsic::ssa_copy)
continue;
Inst.replaceAllUsesWith(II->getOperand(0));
Inst.eraseFromParent();
}
}
}
/// Remove any ssa_copy intrinsics that may have been introduced.
void FunctionSpecializer::cleanUpSSA() {
for (Function *F : SpecializedFuncs)
removeSSACopy(*F);
}
template <> struct llvm::DenseMapInfo<SpecSig> {
static inline SpecSig getEmptyKey() { return {~0U, {}}; }
static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
static unsigned getHashValue(const SpecSig &S) {
return static_cast<unsigned>(hash_value(S));
}
static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
return LHS == RHS;
}
};
/// Attempt to specialize functions in the module to enable constant
/// propagation across function boundaries.
///
/// \returns true if at least one function is specialized.
bool FunctionSpecializer::run() {
// Find possible specializations for each function.
SpecMap SM;
SmallVector<Spec, 32> AllSpecs;
unsigned NumCandidates = 0;
for (Function &F : M) {
if (!isCandidateFunction(&F))
continue;
auto Cost = getSpecializationCost(&F);
if (!Cost.isValid()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialization cost for "
<< F.getName() << "\n");
continue;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
<< F.getName() << " is " << Cost << "\n");
if (!findSpecializations(&F, Cost, AllSpecs, SM)) {
LLVM_DEBUG(
dbgs() << "FnSpecialization: No possible specializations found for "
<< F.getName() << "\n");
continue;
}
++NumCandidates;
}
if (!NumCandidates) {
LLVM_DEBUG(
dbgs()
<< "FnSpecialization: No possible specializations found in module\n");
return false;
}
// Choose the most profitable specialisations, which fit in the module
// specialization budget, which is derived from maximum number of
// specializations per specialization candidate function.
auto CompareGain = [&AllSpecs](unsigned I, unsigned J) {
return AllSpecs[I].Gain > AllSpecs[J].Gain;
};
const unsigned NSpecs =
std::min(NumCandidates * MaxClonesThreshold, unsigned(AllSpecs.size()));
SmallVector<unsigned> BestSpecs(NSpecs + 1);
std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
if (AllSpecs.size() > NSpecs) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
<< "the maximum number of clones threshold.\n"
<< "FnSpecialization: Specializing the "
<< NSpecs
<< " most profitable candidates.\n");
std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareGain);
for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
BestSpecs[NSpecs] = I;
std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
}
}
LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
for (unsigned I = 0; I < NSpecs; ++I) {
const Spec &S = AllSpecs[BestSpecs[I]];
dbgs() << "FnSpecialization: Function " << S.F->getName()
<< " , gain " << S.Gain << "\n";
for (const ArgInfo &Arg : S.Sig.Args)
dbgs() << "FnSpecialization: FormalArg = "
<< Arg.Formal->getNameOrAsOperand()
<< ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
<< "\n";
});
// Create the chosen specializations.
SmallPtrSet<Function *, 8> OriginalFuncs;
SmallVector<Function *> Clones;
for (unsigned I = 0; I < NSpecs; ++I) {
Spec &S = AllSpecs[BestSpecs[I]];
S.Clone = createSpecialization(S.F, S.Sig);
// Update the known call sites to call the clone.
for (CallBase *Call : S.CallSites) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
<< " to call " << S.Clone->getName() << "\n");
Call->setCalledFunction(S.Clone);
}
Clones.push_back(S.Clone);
OriginalFuncs.insert(S.F);
}
Solver.solveWhileResolvedUndefsIn(Clones);
// Update the rest of the call sites - these are the recursive calls, calls
// to discarded specialisations and calls that may match a specialisation
// after the solver runs.
for (Function *F : OriginalFuncs) {
auto [Begin, End] = SM[F];
updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
}
promoteConstantStackValues();
LLVM_DEBUG(if (NbFunctionsSpecialized) dbgs()
<< "FnSpecialization: Specialized " << NbFunctionsSpecialized
<< " functions in module " << M.getName() << "\n");
NumFuncSpecialized += NbFunctionsSpecialized;
return true;
}
void FunctionSpecializer::removeDeadFunctions() {
for (Function *F : FullySpecialized) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
<< F->getName() << "\n");
if (FAM)
FAM->clear(*F, F->getName());
F->eraseFromParent();
}
FullySpecialized.clear();
}
// Compute the code metrics for function \p F.
CodeMetrics &FunctionSpecializer::analyzeFunction(Function *F) {
auto I = FunctionMetrics.insert({F, CodeMetrics()});
CodeMetrics &Metrics = I.first->second;
if (I.second) {
// The code metrics were not cached.
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
for (BasicBlock &BB : *F)
Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
<< F->getName() << " is " << Metrics.NumInsts
<< " instructions\n");
}
return Metrics;
}
/// Clone the function \p F and remove the ssa_copy intrinsics added by
/// the SCCPSolver in the cloned version.
static Function *cloneCandidateFunction(Function *F) {
ValueToValueMapTy Mappings;
Function *Clone = CloneFunction(F, Mappings);
removeSSACopy(*Clone);
return Clone;
}
bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
SmallVectorImpl<Spec> &AllSpecs,
SpecMap &SM) {
// A mapping from a specialisation signature to the index of the respective
// entry in the all specialisation array. Used to ensure uniqueness of
// specialisations.
DenseMap<SpecSig, unsigned> UM;
// Get a list of interesting arguments.
SmallVector<Argument *> Args;
for (Argument &Arg : F->args())
if (isArgumentInteresting(&Arg))
Args.push_back(&Arg);
if (Args.empty())
return false;
bool Found = false;
for (User *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
// The user instruction does not call our function.
if (CS.getCalledFunction() != F)
continue;
// If the call site has attribute minsize set, that callsite won't be
// specialized.
if (CS.hasFnAttr(Attribute::MinSize))
continue;
// If the parent of the call site will never be executed, we don't need
// to worry about the passed value.
if (!Solver.isBlockExecutable(CS.getParent()))
continue;
// Examine arguments and create a specialisation candidate from the
// constant operands of this call site.
SpecSig S;
for (Argument *A : Args) {
Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
if (!C)
continue;
LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
<< A->getName() << " : " << C->getNameOrAsOperand()
<< "\n");
S.Args.push_back({A, C});
}
if (S.Args.empty())
continue;
// Check if we have encountered the same specialisation already.
if (auto It = UM.find(S); It != UM.end()) {
// Existing specialisation. Add the call to the list to rewrite, unless
// it's a recursive call. A specialisation, generated because of a
// recursive call may end up as not the best specialisation for all
// the cloned instances of this call, which result from specialising
// functions. Hence we don't rewrite the call directly, but match it with
// the best specialisation once all specialisations are known.
if (CS.getFunction() == F)
continue;
const unsigned Index = It->second;
AllSpecs[Index].CallSites.push_back(&CS);
} else {
// Calculate the specialisation gain.
InstructionCost Gain = 0 - Cost;
for (ArgInfo &A : S.Args)
Gain +=
getSpecializationBonus(A.Formal, A.Actual, Solver.getLoopInfo(*F));
// Discard unprofitable specialisations.
if (!ForceFunctionSpecialization && Gain <= 0)
continue;
// Create a new specialisation entry.
auto &Spec = AllSpecs.emplace_back(F, S, Gain);
if (CS.getFunction() != F)
Spec.CallSites.push_back(&CS);
const unsigned Index = AllSpecs.size() - 1;
UM[S] = Index;
if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
It->second.second = Index + 1;
Found = true;
}
}
return Found;
}
bool FunctionSpecializer::isCandidateFunction(Function *F) {
if (F->isDeclaration())
return false;
if (F->hasFnAttribute(Attribute::NoDuplicate))
return false;
if (!Solver.isArgumentTrackedFunction(F))
return false;
// Do not specialize the cloned function again.
if (SpecializedFuncs.contains(F))
return false;
// If we're optimizing the function for size, we shouldn't specialize it.
if (F->hasOptSize() ||
shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
return false;
// Exit if the function is not executable. There's no point in specializing
// a dead function.
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
return false;
// It wastes time to specialize a function which would get inlined finally.
if (F->hasFnAttribute(Attribute::AlwaysInline))
return false;
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
<< "\n");
return true;
}
Function *FunctionSpecializer::createSpecialization(Function *F, const SpecSig &S) {
Function *Clone = cloneCandidateFunction(F);
// Initialize the lattice state of the arguments of the function clone,
// marking the argument on which we specialized the function constant
// with the given value.
Solver.markArgInFuncSpecialization(Clone, S.Args);
Solver.addArgumentTrackedFunction(Clone);
Solver.markBlockExecutable(&Clone->front());
// Mark all the specialized functions
SpecializedFuncs.insert(Clone);
NbFunctionsSpecialized++;
return Clone;
}
/// Compute and return the cost of specializing function \p F.
InstructionCost FunctionSpecializer::getSpecializationCost(Function *F) {
CodeMetrics &Metrics = analyzeFunction(F);
// If the code metrics reveal that we shouldn't duplicate the function, we
// shouldn't specialize it. Set the specialization cost to Invalid.
// Or if the lines of codes implies that this function is easy to get
// inlined so that we shouldn't specialize it.
if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
(!ForceFunctionSpecialization &&
!F->hasFnAttribute(Attribute::NoInline) &&
Metrics.NumInsts < SmallFunctionThreshold))
return InstructionCost::getInvalid();
// Otherwise, set the specialization cost to be the cost of all the
// instructions in the function.
return Metrics.NumInsts * InlineConstants::getInstrCost();
}
static InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
const LoopInfo &LI) {
auto *I = dyn_cast_or_null<Instruction>(U);
// If not an instruction we do not know how to evaluate.
// Keep minimum possible cost for now so that it doesnt affect
// specialization.
if (!I)
return std::numeric_limits<unsigned>::min();
InstructionCost Cost =
TTI.getInstructionCost(U, TargetTransformInfo::TCK_SizeAndLatency);
// Increase the cost if it is inside the loop.
unsigned LoopDepth = LI.getLoopDepth(I->getParent());
Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
// Traverse recursively if there are more uses.
// TODO: Any other instructions to be added here?
if (I->mayReadFromMemory() || I->isCast())
for (auto *User : I->users())
Cost += getUserBonus(User, TTI, LI);
return Cost;
}
/// Compute a bonus for replacing argument \p A with constant \p C.
InstructionCost
FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
const LoopInfo &LI) {
Function *F = A->getParent();
auto &TTI = (GetTTI)(*F);
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
<< C->getNameOrAsOperand() << "\n");
InstructionCost TotalCost = 0;
for (auto *U : A->users()) {
TotalCost += getUserBonus(U, TTI, LI);
LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
}
// The below heuristic is only concerned with exposing inlining
// opportunities via indirect call promotion. If the argument is not a
// (potentially casted) function pointer, give up.
Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
if (!CalledFunction)
return TotalCost;
// Get TTI for the called function (used for the inline cost).
auto &CalleeTTI = (GetTTI)(*CalledFunction);
// Look at all the call sites whose called value is the argument.
// Specializing the function on the argument would allow these indirect
// calls to be promoted to direct calls. If the indirect call promotion
// would likely enable the called function to be inlined, specializing is a
// good idea.
int Bonus = 0;
for (User *U : A->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto *CS = cast<CallBase>(U);
if (CS->getCalledOperand() != A)
continue;
if (CS->getFunctionType() != CalledFunction->getFunctionType())
continue;
// Get the cost of inlining the called function at this call site. Note
// that this is only an estimate. The called function may eventually
// change in a way that leads to it not being inlined here, even though
// inlining looks profitable now. For example, one of its called
// functions may be inlined into it, making the called function too large
// to be inlined into this call site.
//
// We apply a boost for performing indirect call promotion by increasing
// the default threshold by the threshold for indirect calls.
auto Params = getInlineParams();
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
InlineCost IC =
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
// We clamp the bonus for this call to be between zero and the default
// threshold.
if (IC.isAlways())
Bonus += Params.DefaultThreshold;
else if (IC.isVariable() && IC.getCostDelta() > 0)
Bonus += IC.getCostDelta();
LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus
<< " for user " << *U << "\n");
}
return TotalCost + Bonus;
}
/// Determine if it is possible to specialise the function for constant values
/// of the formal parameter \p A.
bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
// No point in specialization if the argument is unused.
if (A->user_empty())
return false;
// For now, don't attempt to specialize functions based on the values of
// composite types.
Type *ArgTy = A->getType();
if (!ArgTy->isSingleValueType())
return false;
// Specialization of integer and floating point types needs to be explicitly
// enabled.
if (!EnableSpecializationForLiteralConstant &&
(ArgTy->isIntegerTy() || ArgTy->isFloatingPointTy()))
return false;
// SCCP solver does not record an argument that will be constructed on
// stack.
if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
return false;
// Check the lattice value and decide if we should attemt to specialize,
// based on this argument. No point in specialization, if the lattice value
// is already a constant.
const ValueLatticeElement &LV = Solver.getLatticeValueFor(A);
if (LV.isUnknownOrUndef() || LV.isConstant() ||
(LV.isConstantRange() && LV.getConstantRange().isSingleElement())) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, parameter "
<< A->getNameOrAsOperand() << " is already constant\n");
return false;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting parameter "
<< A->getNameOrAsOperand() << "\n");
return true;
}
/// Check if the valuy \p V (an actual argument) is a constant or can only
/// have a constant value. Return that constant.
Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
if (isa<PoisonValue>(V))
return nullptr;
// TrackValueOfGlobalVariable only tracks scalar global variables.
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
// Check if we want to specialize on the address of non-constant
// global values.
if (!GV->isConstant() && !SpecializeOnAddresses)
return nullptr;
if (!GV->getValueType()->isSingleValueType())
return nullptr;
}
// Select for possible specialisation values that are constants or
// are deduced to be constants or constant ranges with a single element.
Constant *C = dyn_cast<Constant>(V);
if (!C) {
const ValueLatticeElement &LV = Solver.getLatticeValueFor(V);
if (LV.isConstant())
C = LV.getConstant();
else if (LV.isConstantRange() && LV.getConstantRange().isSingleElement()) {
assert(V->getType()->isIntegerTy() && "Non-integral constant range");
C = Constant::getIntegerValue(V->getType(),
*LV.getConstantRange().getSingleElement());
} else
return nullptr;
}
return C;
}
void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
const Spec *End) {
// Collect the call sites that need updating.
SmallVector<CallBase *> ToUpdate;
for (User *U : F->users())
if (auto *CS = dyn_cast<CallBase>(U);
CS && CS->getCalledFunction() == F &&
Solver.isBlockExecutable(CS->getParent()))
ToUpdate.push_back(CS);
unsigned NCallsLeft = ToUpdate.size();
for (CallBase *CS : ToUpdate) {
bool ShouldDecrementCount = CS->getFunction() == F;
// Find the best matching specialisation.
const Spec *BestSpec = nullptr;
for (const Spec &S : make_range(Begin, End)) {
if (!S.Clone || (BestSpec && S.Gain <= BestSpec->Gain))
continue;
if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
unsigned ArgNo = Arg.Formal->getArgNo();
return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
}))
continue;
BestSpec = &S;
}
if (BestSpec) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
<< " to call " << BestSpec->Clone->getName() << "\n");
CS->setCalledFunction(BestSpec->Clone);
ShouldDecrementCount = true;
}
if (ShouldDecrementCount)
--NCallsLeft;
}
// If the function has been completely specialized, the original function
// is no longer needed. Mark it unreachable.
if (NCallsLeft == 0) {
Solver.markFunctionUnreachable(F);
FullySpecialized.insert(F);
}
}
|