aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/X86/X86Subtarget.cpp
blob: e991cde5ffbfaebb91bba72fe86f0a894212bb80 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//

#include "X86Subtarget.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86.h"
#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86MacroFusion.h"
#include "X86RegisterBankInfo.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#if defined(_MSC_VER)
#include <intrin.h>
#endif

using namespace llvm;

#define DEBUG_TYPE "subtarget"

#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"

// Temporary option to control early if-conversion for x86 while adding machine
// models.
static cl::opt<bool>
X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
               cl::desc("Enable early if-conversion on X86"));


/// Classify a blockaddress reference for the current subtarget according to how
/// we should reference it in a non-pcrel context.
unsigned char X86Subtarget::classifyBlockAddressReference() const {
  return classifyLocalReference(nullptr);
}

/// Classify a global variable reference for the current subtarget according to
/// how we should reference it in a non-pcrel context.
unsigned char
X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
  return classifyGlobalReference(GV, *GV->getParent());
}

unsigned char
X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
  // Tagged globals have non-zero upper bits, which makes direct references
  // require a 64-bit immediate.  On the small code model this causes relocation
  // errors, so we go through the GOT instead.
  if (AllowTaggedGlobals && TM.getCodeModel() == CodeModel::Small && GV &&
      !isa<Function>(GV))
    return X86II::MO_GOTPCREL_NORELAX;

  // If we're not PIC, it's not very interesting.
  if (!isPositionIndependent())
    return X86II::MO_NO_FLAG;

  if (is64Bit()) {
    // 64-bit ELF PIC local references may use GOTOFF relocations.
    if (isTargetELF()) {
      switch (TM.getCodeModel()) {
      // 64-bit small code model is simple: All rip-relative.
      case CodeModel::Tiny:
        llvm_unreachable("Tiny codesize model not supported on X86");
      case CodeModel::Small:
      case CodeModel::Kernel:
        return X86II::MO_NO_FLAG;

      // The large PIC code model uses GOTOFF.
      case CodeModel::Large:
        return X86II::MO_GOTOFF;

      // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
      case CodeModel::Medium:
        // Constant pool and jump table handling pass a nullptr to this
        // function so we need to use isa_and_nonnull.
        if (isa_and_nonnull<Function>(GV))
          return X86II::MO_NO_FLAG; // All code is RIP-relative
        return X86II::MO_GOTOFF;    // Local symbols use GOTOFF.
      }
      llvm_unreachable("invalid code model");
    }

    // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
    // both of which use MO_NO_FLAG.
    return X86II::MO_NO_FLAG;
  }

  // The COFF dynamic linker just patches the executable sections.
  if (isTargetCOFF())
    return X86II::MO_NO_FLAG;

  if (isTargetDarwin()) {
    // 32 bit macho has no relocation for a-b if a is undefined, even if
    // b is in the section that is being relocated.
    // This means we have to use o load even for GVs that are known to be
    // local to the dso.
    if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;

    return X86II::MO_PIC_BASE_OFFSET;
  }

  return X86II::MO_GOTOFF;
}

unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
                                                    const Module &M) const {
  // The static large model never uses stubs.
  if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
    return X86II::MO_NO_FLAG;

  // Absolute symbols can be referenced directly.
  if (GV) {
    if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
      // See if we can use the 8-bit immediate form. Note that some instructions
      // will sign extend the immediate operand, so to be conservative we only
      // accept the range [0,128).
      if (CR->getUnsignedMax().ult(128))
        return X86II::MO_ABS8;
      else
        return X86II::MO_NO_FLAG;
    }
  }

  if (TM.shouldAssumeDSOLocal(M, GV))
    return classifyLocalReference(GV);

  if (isTargetCOFF()) {
    // ExternalSymbolSDNode like _tls_index.
    if (!GV)
      return X86II::MO_NO_FLAG;
    if (GV->hasDLLImportStorageClass())
      return X86II::MO_DLLIMPORT;
    return X86II::MO_COFFSTUB;
  }
  // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
  if (isOSWindows())
    return X86II::MO_NO_FLAG;

  if (is64Bit()) {
    // ELF supports a large, truly PIC code model with non-PC relative GOT
    // references. Other object file formats do not. Use the no-flag, 64-bit
    // reference for them.
    if (TM.getCodeModel() == CodeModel::Large)
      return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
    // Tagged globals have non-zero upper bits, which makes direct references
    // require a 64-bit immediate. So we can't let the linker relax the
    // relocation to a 32-bit RIP-relative direct reference.
    if (AllowTaggedGlobals && GV && !isa<Function>(GV))
      return X86II::MO_GOTPCREL_NORELAX;
    return X86II::MO_GOTPCREL;
  }

  if (isTargetDarwin()) {
    if (!isPositionIndependent())
      return X86II::MO_DARWIN_NONLAZY;
    return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
  }

  // 32-bit ELF references GlobalAddress directly in static relocation model.
  // We cannot use MO_GOT because EBX may not be set up.
  if (TM.getRelocationModel() == Reloc::Static)
    return X86II::MO_NO_FLAG;
  return X86II::MO_GOT;
}

unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
  return classifyGlobalFunctionReference(GV, *GV->getParent());
}

unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
                                              const Module &M) const {
  if (TM.shouldAssumeDSOLocal(M, GV))
    return X86II::MO_NO_FLAG;

  // Functions on COFF can be non-DSO local for three reasons:
  // - They are intrinsic functions (!GV)
  // - They are marked dllimport
  // - They are extern_weak, and a stub is needed
  if (isTargetCOFF()) {
    if (!GV)
      return X86II::MO_NO_FLAG;
    if (GV->hasDLLImportStorageClass())
      return X86II::MO_DLLIMPORT;
    return X86II::MO_COFFSTUB;
  }

  const Function *F = dyn_cast_or_null<Function>(GV);

  if (isTargetELF()) {
    if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
      // According to psABI, PLT stub clobbers XMM8-XMM15.
      // In Regcall calling convention those registers are used for passing
      // parameters. Thus we need to prevent lazy binding in Regcall.
      return X86II::MO_GOTPCREL;
    // If PLT must be avoided then the call should be via GOTPCREL.
    if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
         (!F && M.getRtLibUseGOT())) &&
        is64Bit())
       return X86II::MO_GOTPCREL;
    // Reference ExternalSymbol directly in static relocation model.
    if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static)
      return X86II::MO_NO_FLAG;
    return X86II::MO_PLT;
  }

  if (is64Bit()) {
    if (F && F->hasFnAttribute(Attribute::NonLazyBind))
      // If the function is marked as non-lazy, generate an indirect call
      // which loads from the GOT directly. This avoids runtime overhead
      // at the cost of eager binding (and one extra byte of encoding).
      return X86II::MO_GOTPCREL;
    return X86II::MO_NO_FLAG;
  }

  return X86II::MO_NO_FLAG;
}

/// Return true if the subtarget allows calls to immediate address.
bool X86Subtarget::isLegalToCallImmediateAddr() const {
  // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
  // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
  // the following check for Win32 should be removed.
  if (Is64Bit || isTargetWin32())
    return false;
  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}

void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU,
                                         StringRef FS) {
  if (CPU.empty())
    CPU = "generic";

  if (TuneCPU.empty())
    TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect.

  std::string FullFS = X86_MC::ParseX86Triple(TargetTriple);
  assert(!FullFS.empty() && "Failed to parse X86 triple");

  if (!FS.empty())
    FullFS = (Twine(FullFS) + "," + FS).str();

  // Parse features string and set the CPU.
  ParseSubtargetFeatures(CPU, TuneCPU, FullFS);

  // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
  // 16-bytes and under that are reasonably fast. These features were
  // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
  // micro-architectures respectively.
  if (hasSSE42() || hasSSE4A())
    IsUnalignedMem16Slow = false;

  LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
                    << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
                    << HasX86_64 << "\n");
  if (Is64Bit && !HasX86_64)
    report_fatal_error("64-bit code requested on a subtarget that doesn't "
                       "support it!");

  // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all
  // 64-bit targets.  On Solaris (32-bit), stack alignment is 4 bytes
  // following the i386 psABI, while on Illumos it is always 16 bytes.
  if (StackAlignOverride)
    stackAlignment = *StackAlignOverride;
  else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
           isTargetNaCl() || Is64Bit)
    stackAlignment = Align(16);

  // Consume the vector width attribute or apply any target specific limit.
  if (PreferVectorWidthOverride)
    PreferVectorWidth = PreferVectorWidthOverride;
  else if (Prefer128Bit)
    PreferVectorWidth = 128;
  else if (Prefer256Bit)
    PreferVectorWidth = 256;
}

X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
                                                            StringRef TuneCPU,
                                                            StringRef FS) {
  initSubtargetFeatures(CPU, TuneCPU, FS);
  return *this;
}

X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU,
                           StringRef FS, const X86TargetMachine &TM,
                           MaybeAlign StackAlignOverride,
                           unsigned PreferVectorWidthOverride,
                           unsigned RequiredVectorWidth)
    : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS),
      PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT),
      StackAlignOverride(StackAlignOverride),
      PreferVectorWidthOverride(PreferVectorWidthOverride),
      RequiredVectorWidth(RequiredVectorWidth),
      InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
      TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
  // Determine the PICStyle based on the target selected.
  if (!isPositionIndependent())
    setPICStyle(PICStyles::Style::None);
  else if (is64Bit())
    setPICStyle(PICStyles::Style::RIPRel);
  else if (isTargetCOFF())
    setPICStyle(PICStyles::Style::None);
  else if (isTargetDarwin())
    setPICStyle(PICStyles::Style::StubPIC);
  else if (isTargetELF())
    setPICStyle(PICStyles::Style::GOT);

  CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
  Legalizer.reset(new X86LegalizerInfo(*this, TM));

  auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
  RegBankInfo.reset(RBI);
  InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
}

const CallLowering *X86Subtarget::getCallLowering() const {
  return CallLoweringInfo.get();
}

InstructionSelector *X86Subtarget::getInstructionSelector() const {
  return InstSelector.get();
}

const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
  return Legalizer.get();
}

const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
  return RegBankInfo.get();
}

bool X86Subtarget::enableEarlyIfConversion() const {
  return canUseCMOV() && X86EarlyIfConv;
}

void X86Subtarget::getPostRAMutations(
    std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
  Mutations.push_back(createX86MacroFusionDAGMutation());
}

bool X86Subtarget::isPositionIndependent() const {
  return TM.isPositionIndependent();
}