1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
|
//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 x87 FPU instruction set, defining the
// instructions, and properties of the instructions which are needed for code
// generation, machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// FPStack specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTX86Fld : SDTypeProfile<1, 1, [SDTCisFP<0>,
SDTCisPtrTy<1>]>;
def SDTX86Fst : SDTypeProfile<0, 2, [SDTCisFP<0>,
SDTCisPtrTy<1>]>;
def SDTX86Fild : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
def SDTX86Fist : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDTX86CwdLoad : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def X86fp80_add : SDNode<"X86ISD::FP80_ADD", SDTFPBinOp, [SDNPCommutative]>;
def X86strict_fp80_add : SDNode<"X86ISD::STRICT_FP80_ADD", SDTFPBinOp,
[SDNPHasChain,SDNPCommutative]>;
def any_X86fp80_add : PatFrags<(ops node:$lhs, node:$rhs),
[(X86strict_fp80_add node:$lhs, node:$rhs),
(X86fp80_add node:$lhs, node:$rhs)]>;
def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def X86fst : SDNode<"X86ISD::FST", SDTX86Fst,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def X86fist : SDNode<"X86ISD::FIST", SDTX86Fist,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore,
[SDNPHasChain, SDNPMayStore, SDNPSideEffect,
SDNPMemOperand]>;
def X86fp_cwd_set16 : SDNode<"X86ISD::FLDCW16m", SDTX86CwdLoad,
[SDNPHasChain, SDNPMayLoad, SDNPSideEffect,
SDNPMemOperand]>;
def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
(X86fst node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
(X86fst node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
}]>;
def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
(X86fst node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
}]>;
def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
}]>;
def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
}]>;
def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
}]>;
def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def X86fist32 : PatFrag<(ops node:$val, node:$ptr),
(X86fist node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
(X86fist node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
(X86fp_to_mem node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
(X86fp_to_mem node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
(X86fp_to_mem node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
//===----------------------------------------------------------------------===//
// FPStack pattern fragments
//===----------------------------------------------------------------------===//
def fpimm0 : FPImmLeaf<fAny, [{
return Imm.isExactlyValue(+0.0);
}]>;
def fpimmneg0 : FPImmLeaf<fAny, [{
return Imm.isExactlyValue(-0.0);
}]>;
def fpimm1 : FPImmLeaf<fAny, [{
return Imm.isExactlyValue(+1.0);
}]>;
def fpimmneg1 : FPImmLeaf<fAny, [{
return Imm.isExactlyValue(-1.0);
}]>;
// Some 'special' instructions - expanded after instruction selection.
// Clobbers EFLAGS due to OR instruction used internally.
// FIXME: Can we model this in SelectionDAG?
let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
[(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
[(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
[(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
[(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
[(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
[(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
[(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
[(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
[(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
def FP80_ADDr : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
[(set RFP80:$dst,
(any_X86fp80_add RFP80:$src1, RFP80:$src2))]>;
def FP80_ADDm32 : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2),
[(set RFP80:$dst,
(any_X86fp80_add RFP80:$src1,
(f80 (extloadf32 addr:$src2))))]>;
}
// All FP Stack operations are represented with four instructions here. The
// first three instructions, generated by the instruction selector, use "RFP32"
// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
// 64-bit or 80-bit floating point values. These sizes apply to the values,
// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
// copied to each other without losing information. These instructions are all
// pseudo instructions and use the "_Fp" suffix.
// In some cases there are additional variants with a mixture of different
// register sizes.
// The second instruction is defined with FPI, which is the actual instruction
// emitted by the assembler. These use "RST" registers, although frequently
// the actual register(s) used are implicit. These are always 80 bits.
// The FP stackifier pass converts one to the other after register allocation
// occurs.
//
// Note that the FpI instruction should have instruction selection info (e.g.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).
// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
// f80 instructions cannot use SSE and use neither of these.
class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
// Factoring for arithmetic.
multiclass FPBinary_rr<SDPatternOperator OpNode> {
// Register op register -> register
// These are separated out because they have no reversed form.
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
[(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
[(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
[(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
}
// The FopST0 series are not included here because of the irregularities
// in where the 'r' goes in assembly output.
// These instructions cannot address 80-bit memory.
multiclass FPBinary<SDPatternOperator OpNode, Format fp, string asmstring,
bit Forward = 1> {
// ST(0) = ST(0) + [mem]
def _Fp32m : FpIf32<(outs RFP32:$dst),
(ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
[!if(Forward,
(set RFP32:$dst,
(OpNode RFP32:$src1, (loadf32 addr:$src2))),
(set RFP32:$dst,
(OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
def _Fp64m : FpIf64<(outs RFP64:$dst),
(ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
[!if(Forward,
(set RFP64:$dst,
(OpNode RFP64:$src1, (loadf64 addr:$src2))),
(set RFP64:$dst,
(OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
def _Fp64m32: FpIf64<(outs RFP64:$dst),
(ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
[!if(Forward,
(set RFP64:$dst,
(OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
(set RFP64:$dst,
(OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
def _Fp80m32: FpI_<(outs RFP80:$dst),
(ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
[!if(Forward,
(set RFP80:$dst,
(OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
(set RFP80:$dst,
(OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
def _Fp80m64: FpI_<(outs RFP80:$dst),
(ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
[!if(Forward,
(set RFP80:$dst,
(OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
(set RFP80:$dst,
(OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
let mayLoad = 1 in
def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src),
!strconcat("f", asmstring, "{s}\t$src")>;
let mayLoad = 1 in
def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src),
!strconcat("f", asmstring, "{l}\t$src")>;
// ST(0) = ST(0) + [memint]
def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
OneArgFPRW,
[!if(Forward,
(set RFP32:$dst,
(OpNode RFP32:$src1, (X86fild16 addr:$src2))),
(set RFP32:$dst,
(OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
OneArgFPRW,
[!if(Forward,
(set RFP32:$dst,
(OpNode RFP32:$src1, (X86fild32 addr:$src2))),
(set RFP32:$dst,
(OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
OneArgFPRW,
[!if(Forward,
(set RFP64:$dst,
(OpNode RFP64:$src1, (X86fild16 addr:$src2))),
(set RFP64:$dst,
(OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
OneArgFPRW,
[!if(Forward,
(set RFP64:$dst,
(OpNode RFP64:$src1, (X86fild32 addr:$src2))),
(set RFP64:$dst,
(OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
OneArgFPRW,
[!if(Forward,
(set RFP80:$dst,
(OpNode RFP80:$src1, (X86fild16 addr:$src2))),
(set RFP80:$dst,
(OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
OneArgFPRW,
[!if(Forward,
(set RFP80:$dst,
(OpNode RFP80:$src1, (X86fild32 addr:$src2))),
(set RFP80:$dst,
(OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
let mayLoad = 1 in
def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src),
!strconcat("fi", asmstring, "{s}\t$src")>;
let mayLoad = 1 in
def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src),
!strconcat("fi", asmstring, "{l}\t$src")>;
}
let Uses = [FPCW], mayRaiseFPException = 1 in {
// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
// resources.
let hasNoSchedulingInfo = 1 in {
defm ADD : FPBinary_rr<any_fadd>;
defm SUB : FPBinary_rr<any_fsub>;
defm MUL : FPBinary_rr<any_fmul>;
defm DIV : FPBinary_rr<any_fdiv>;
}
// Sets the scheduling resources for the actual NAME#_F<size>m definitions.
let SchedRW = [WriteFAddLd] in {
defm ADD : FPBinary<any_fadd, MRM0m, "add">;
defm SUB : FPBinary<any_fsub, MRM4m, "sub">;
defm SUBR: FPBinary<any_fsub ,MRM5m, "subr", 0>;
}
let SchedRW = [WriteFMulLd] in {
defm MUL : FPBinary<any_fmul, MRM1m, "mul">;
}
let SchedRW = [WriteFDivLd] in {
defm DIV : FPBinary<any_fdiv, MRM6m, "div">;
defm DIVR: FPBinary<any_fdiv, MRM7m, "divr", 0>;
}
} // Uses = [FPCW], mayRaiseFPException = 1
class FPST0rInst<Format fp, string asm>
: FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
class FPrST0Inst<Format fp, string asm>
: FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
class FPrST0PInst<Format fp, string asm>
: FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
// of some of the 'reverse' forms of the fsub and fdiv instructions. As such,
// we have to put some 'r's in and take them out of weird places.
let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in {
def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
} // SchedRW
let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in {
def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">;
def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">;
} // SchedRW
let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in {
def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
} // SchedRW
let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in {
def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
} // SchedRW
// Unary operations.
multiclass FPUnary<SDPatternOperator OpNode, Format fp, string asmstring> {
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
[(set RFP32:$dst, (OpNode RFP32:$src))]>;
def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
[(set RFP64:$dst, (OpNode RFP64:$src))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
[(set RFP80:$dst, (OpNode RFP80:$src))]>;
def _F : FPI<0xD9, fp, (outs), (ins), asmstring>;
}
let SchedRW = [WriteFSign] in {
defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
}
let Uses = [FPCW], mayRaiseFPException = 1 in {
let SchedRW = [WriteFSqrt80] in
defm SQRT: FPUnary<any_fsqrt,MRM_FA, "fsqrt">;
let SchedRW = [WriteFCom] in {
let hasSideEffects = 0 in {
def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
} // hasSideEffects
def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
} // SchedRW
} // Uses = [FPCW], mayRaiseFPException = 1
let SchedRW = [WriteFTest], Defs = [FPSW] in {
def XAM_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
def XAM_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
def XAM_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
def XAM_F : FPI<0xD9, MRM_E5, (outs), (ins), "fxam">;
} // SchedRW
// Versions of FP instructions that take a single memory operand. Added for the
// disassembler; remove as they are included with patterns elsewhere.
let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1,
mayLoad = 1 in {
def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
} // SchedRW
let SchedRW = [WriteMicrocoded] in {
let Defs = [FPSW, FPCW], mayLoad = 1 in {
def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins anymem:$src), "fldenv\t$src">;
def FRSTORm : FPI<0xDD, MRM4m, (outs), (ins anymem:$src), "frstor\t$src">;
}
let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW], mayStore = 1 in {
def FSTENVm : FPI<0xD9, MRM6m, (outs), (ins anymem:$dst), "fnstenv\t$dst">;
def FSAVEm : FPI<0xDD, MRM6m, (outs), (ins anymem:$dst), "fnsave\t$dst">;
}
let Uses = [FPSW], mayStore = 1 in
def FNSTSWm : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
let mayLoad = 1 in
def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
let Uses = [FPCW] ,mayRaiseFPException = 1, mayStore = 1 in
def FBSTPm : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
} // SchedRW
// Floating point cmovs.
class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMOV]>;
class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMOV]>;
multiclass FPCMov<PatLeaf cc> {
def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
CondMovFP,
[(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
cc, EFLAGS))]>;
def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
CondMovFP,
[(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
cc, EFLAGS))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
CondMovFP,
[(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
cc, EFLAGS))]>,
Requires<[HasCMOV]>;
}
let SchedRW = [WriteFCMOV] in {
let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
defm CMOVB : FPCMov<X86_COND_B>;
defm CMOVBE : FPCMov<X86_COND_BE>;
defm CMOVE : FPCMov<X86_COND_E>;
defm CMOVP : FPCMov<X86_COND_P>;
defm CMOVNB : FPCMov<X86_COND_AE>;
defm CMOVNBE: FPCMov<X86_COND_A>;
defm CMOVNE : FPCMov<X86_COND_NE>;
defm CMOVNP : FPCMov<X86_COND_NP>;
} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
let Predicates = [HasCMOV] in {
// These are not factored because there's no clean way to pass DA/DB.
def CMOVB_F : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
"fcmovb\t{$op, %st|st, $op}">;
def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
"fcmovbe\t{$op, %st|st, $op}">;
def CMOVE_F : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
"fcmove\t{$op, %st|st, $op}">;
def CMOVP_F : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
"fcmovu\t{$op, %st|st, $op}">;
def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
"fcmovnb\t{$op, %st|st, $op}">;
def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
"fcmovnbe\t{$op, %st|st, $op}">;
def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
"fcmovne\t{$op, %st|st, $op}">;
def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
"fcmovnu\t{$op, %st|st, $op}">;
} // Predicates = [HasCMOV]
} // SchedRW
let mayRaiseFPException = 1 in {
// Floating point loads & stores.
let SchedRW = [WriteLoad], Uses = [FPCW] in {
let canFoldAsLoad = 1 in {
def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
[(set RFP32:$dst, (loadf32 addr:$src))]>;
def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
[(set RFP64:$dst, (loadf64 addr:$src))]>;
def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
[(set RFP80:$dst, (loadf80 addr:$src))]>;
} // canFoldAsLoad
def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
[(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
[(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
[(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
let mayRaiseFPException = 0 in {
def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
[(set RFP32:$dst, (X86fild16 addr:$src))]>;
def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
[(set RFP32:$dst, (X86fild32 addr:$src))]>;
def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
[(set RFP32:$dst, (X86fild64 addr:$src))]>;
def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
[(set RFP64:$dst, (X86fild16 addr:$src))]>;
def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
[(set RFP64:$dst, (X86fild32 addr:$src))]>;
def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
[(set RFP64:$dst, (X86fild64 addr:$src))]>;
def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
[(set RFP80:$dst, (X86fild16 addr:$src))]>;
def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
[(set RFP80:$dst, (X86fild32 addr:$src))]>;
def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
[(set RFP80:$dst, (X86fild64 addr:$src))]>;
} // mayRaiseFPException = 0
} // SchedRW
let SchedRW = [WriteStore], Uses = [FPCW] in {
def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
[(store RFP32:$src, addr:$op)]>;
def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
[(truncstoref32 RFP64:$src, addr:$op)]>;
def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
[(store RFP64:$src, addr:$op)]>;
def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
[(truncstoref32 RFP80:$src, addr:$op)]>;
def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
[(truncstoref64 RFP80:$src, addr:$op)]>;
// FST does not support 80-bit memory target; FSTP must be used.
let mayStore = 1, hasSideEffects = 0 in {
def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
} // mayStore
def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
[(store RFP80:$src, addr:$op)]>;
let mayStore = 1, hasSideEffects = 0 in {
def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
[(X86fist32 RFP32:$src, addr:$op)]>;
def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
[(X86fist64 RFP32:$src, addr:$op)]>;
def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
[(X86fist32 RFP64:$src, addr:$op)]>;
def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
[(X86fist64 RFP64:$src, addr:$op)]>;
def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
[(X86fist32 RFP80:$src, addr:$op)]>;
def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
[(X86fist64 RFP80:$src, addr:$op)]>;
} // mayStore
} // SchedRW, Uses = [FPCW]
let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
let mayRaiseFPException = 0 in {
def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
}
}
let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
}
// FISTTP requires SSE3 even though it's a FPStack op.
let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
[(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
[(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
[(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
[(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
[(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
[(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
[(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
[(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
[(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
} // Predicates = [HasSSE3]
let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
}
// FP Stack manipulation instructions.
let SchedRW = [WriteMove], Uses = [FPCW] in {
def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
let mayRaiseFPException = 0 in
def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
}
// Floating point constant loads.
let SchedRW = [WriteZero], Uses = [FPCW] in {
def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
[(set RFP32:$dst, fpimm0)]>;
def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
[(set RFP32:$dst, fpimm1)]>;
def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
[(set RFP64:$dst, fpimm0)]>;
def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
[(set RFP64:$dst, fpimm1)]>;
def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
[(set RFP80:$dst, fpimm0)]>;
def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
[(set RFP80:$dst, fpimm1)]>;
}
let SchedRW = [WriteFLD0], Uses = [FPCW], mayRaiseFPException = 0 in
def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
let SchedRW = [WriteFLD1], Uses = [FPCW], mayRaiseFPException = 0 in
def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW], mayRaiseFPException = 0 in {
def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
} // SchedRW
// Floating point compares.
let SchedRW = [WriteFCom], Uses = [FPCW], hasSideEffects = 0 in {
def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
def COM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
def COM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
def COM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
} // SchedRW
} // mayRaiseFPException = 1
let SchedRW = [WriteFCom], mayRaiseFPException = 1 in {
// CC = ST(0) cmp ST(i)
let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
[(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>,
Requires<[FPStackf32, HasCMOV]>;
def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
[(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>,
Requires<[FPStackf64, HasCMOV]>;
def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
[(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>,
Requires<[HasCMOV]>;
def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
[(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>,
Requires<[FPStackf32, HasCMOV]>;
def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
[(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>,
Requires<[FPStackf64, HasCMOV]>;
def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
[(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>,
Requires<[HasCMOV]>;
}
let Uses = [ST0, FPCW] in {
def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i)
(outs), (ins RSTi:$reg), "fucom\t$reg">;
def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop
(outs), (ins RSTi:$reg), "fucomp\t$reg">;
def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop
(outs), (ins), "fucompp">;
}
let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i)
(outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop
(outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
"fcomi\t{$reg, %st|st, $reg}">;
def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
"fcompi\t{$reg, %st|st, $reg}">;
}
} // SchedRW
// Floating point flag ops.
let SchedRW = [WriteALU] in {
let Defs = [AX, FPSW], Uses = [FPSW], hasSideEffects = 0 in
def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags
(outs), (ins), "fnstsw\t{%ax|ax}", []>;
let Defs = [FPSW], Uses = [FPCW] in
def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world
(outs), (ins i16mem:$dst), "fnstcw\t$dst",
[(X86fp_cwd_get16 addr:$dst)]>;
} // SchedRW
let Defs = [FPSW,FPCW], mayLoad = 1 in
def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16]
(outs), (ins i16mem:$dst), "fldcw\t$dst",
[(X86fp_cwd_set16 addr:$dst)]>,
Sched<[WriteLoad]>;
// FPU control instructions
let SchedRW = [WriteMicrocoded] in {
def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
let Defs = [FPSW, FPCW] in
def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
// Clear exceptions
let Defs = [FPSW] in
def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
} // SchedRW
// Operand-less floating-point instructions for the disassembler.
let Defs = [FPSW] in
def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
let SchedRW = [WriteMicrocoded] in {
let Defs = [FPSW] in {
def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
let Uses = [FPCW], mayRaiseFPException = 1 in {
def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>;
def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>;
def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
} // Uses = [FPCW], mayRaiseFPException = 1
} // Defs = [FPSW]
let Uses = [FPSW, FPCW] in {
def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
"fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, PS,
Requires<[HasFXSR]>;
def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
"fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
PS, Requires<[HasFXSR, In64BitMode]>;
} // Uses = [FPSW, FPCW]
let Defs = [FPSW, FPCW] in {
def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
"fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
PS, Requires<[HasFXSR]>;
def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
"fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
PS, Requires<[HasFXSR, In64BitMode]>;
} // Defs = [FPSW, FPCW]
} // SchedRW
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Required for RET of f32 / f64 / f80 values.
def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>;
def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>;
def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>;
def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
// Required for CALL which return f32 / f64 / f80 values.
def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
// Floating point constant -0.0 and -1.0
def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
// FP extensions map onto simple pseudo-value conversions if they are to/from
// the FP stack.
def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
Requires<[FPStackf32]>;
def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
Requires<[FPStackf32]>;
def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
Requires<[FPStackf64]>;
// FP truncations map onto simple pseudo-value conversions if they are to/from
// the FP stack. We have validated that only value-preserving truncations make
// it through isel.
def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
Requires<[FPStackf32]>;
def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
Requires<[FPStackf32]>;
def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
Requires<[FPStackf64]>;
|