aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/X86/X86InstrCompiler.td
blob: 8fddd0037999d38ef059668d2b98e0f5f528f408 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the various pseudo instructions used by the compiler,
// as well as Pat patterns used during instruction selection.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pattern Matching Support

def GetLo32XForm : SDNodeXForm<imm, [{
  // Transformation function: get the low 32 bits.
  return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
}]>;


//===----------------------------------------------------------------------===//
// Random Pseudo Instructions.

// PIC base construction.  This expands to code that looks like this:
//     call  $next_inst
//     popl %destreg"
let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
    SchedRW = [WriteJump] in
  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
                      "", []>;

// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
                           "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                           Requires<[NotLP64]>;
}
def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
       (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;


// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
                           (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
                           "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                           Requires<[IsLP64]>;
}
def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
        (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;

let SchedRW = [WriteSystem] in {

// x86-64 va_start lowering magic.
let hasSideEffects = 1, mayStore = 1, Defs = [EFLAGS] in {
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
                              (outs),
                              (ins GR8:$al, i8mem:$regsavefi, variable_ops),
                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi",
                              [(X86vastart_save_xmm_regs GR8:$al, addr:$regsavefi),
                               (implicit EFLAGS)]>;
}

let usesCustomInserter = 1, Defs = [EFLAGS] in {
// The VAARG_64 and VAARG_X32 pseudo-instructions take the address of the
// va_list, and place the address of the next argument into a register.
let Defs = [EFLAGS] in {
def VAARG_64 : I<0, Pseudo,
                 (outs GR64:$dst),
                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
                 [(set GR64:$dst,
                    (X86vaarg64 addr:$ap, timm:$size, timm:$mode, timm:$align)),
                  (implicit EFLAGS)]>, Requires<[In64BitMode, IsLP64]>;
def VAARG_X32 : I<0, Pseudo,
                 (outs GR32:$dst),
                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
                 "#VAARG_X32 $dst, $ap, $size, $mode, $align",
                 [(set GR32:$dst,
                    (X86vaargx32 addr:$ap, timm:$size, timm:$mode, timm:$align)),
                  (implicit EFLAGS)]>, Requires<[In64BitMode, NotLP64]>;
}

// When using segmented stacks these are lowered into instructions which first
// check if the current stacklet has enough free memory. If it does, memory is
// allocated by bumping the stack pointer. Otherwise memory is allocated from
// the heap.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR32:$dst,
                         (X86SegAlloca GR32:$size))]>,
                    Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
                      "# variable sized alloca for segmented stacks",
                      [(set GR64:$dst,
                         (X86SegAlloca GR64:$size))]>,
                    Requires<[In64BitMode]>;

// To protect against stack clash, dynamic allocation should perform a memory
// probe at each page.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def PROBED_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
                      "# variable sized alloca with probing",
                      [(set GR32:$dst,
                         (X86ProbedAlloca GR32:$size))]>,
                    Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def PROBED_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
                      "# variable sized alloca with probing",
                      [(set GR64:$dst,
                         (X86ProbedAlloca GR64:$size))]>,
                    Requires<[In64BitMode]>;
}

let hasNoSchedulingInfo = 1 in
def STACKALLOC_W_PROBING : I<0, Pseudo, (outs), (ins i64imm:$stacksize),
                             "# fixed size alloca with probing",
                             []>;

// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
// targets.  These calls are needed to probe the stack when allocating more than
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
// ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.

let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def DYN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
                     "# dynamic stack allocation",
                     [(X86DynAlloca GR32:$size)]>,
                     Requires<[NotLP64]>;

let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def DYN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
                     "# dynamic stack allocation",
                     [(X86DynAlloca GR64:$size)]>,
                     Requires<[In64BitMode]>;
} // SchedRW

// These instructions XOR the frame pointer into a GPR. They are used in some
// stack protection schemes. These are post-RA pseudos because we only know the
// frame register after register allocation.
let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in {
  def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
                  "xorl\t$$FP, $src", []>,
                  Requires<[NotLP64]>, Sched<[WriteALU]>;
  def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
                  "xorq\t$$FP $src", []>,
                  Requires<[In64BitMode]>, Sched<[WriteALU]>;
}

//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let SchedRW = [WriteSystem] in {
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
                    "ret\t#eh_return, addr: $addr",
                    [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;

}

let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
                     "ret\t#eh_return, addr: $addr",
                     [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;

}

let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in {
  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;

  // CATCHRET needs a custom inserter for SEH.
  let usesCustomInserter = 1 in
    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
                     "# CATCHRET",
                     [(catchret bb:$dst, bb:$from)]>;
}

let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    usesCustomInserter = 1 in {
  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
                            "#EH_SJLJ_SETJMP32",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
                            "#EH_SJLJ_SETJMP64",
                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
                          Requires<[In64BitMode]>;
  let isTerminator = 1 in {
  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
                            "#EH_SJLJ_LONGJMP32",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[Not64BitMode]>;
  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
                            "#EH_SJLJ_LONGJMP64",
                            [(X86eh_sjlj_longjmp addr:$buf)]>,
                          Requires<[In64BitMode]>;
  }
}

let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
                        "#EH_SjLj_Setup\t$dst", []>;
}
} // SchedRW

//===----------------------------------------------------------------------===//
// Pseudo instructions used by unwind info.
//
let isPseudo = 1, SchedRW = [WriteSystem] in {
  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
                            "#SEH_PushReg $reg", []>;
  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
                            "#SEH_SaveReg $reg, $dst", []>;
  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
                            "#SEH_SaveXMM $reg, $dst", []>;
  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
                            "#SEH_StackAlloc $size", []>;
  def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align),
                            "#SEH_StackAlign $align", []>;
  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
                            "#SEH_SetFrame $reg, $offset", []>;
  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
                            "#SEH_PushFrame $mode", []>;
  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
                            "#SEH_EndPrologue", []>;
  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
                            "#SEH_Epilogue", []>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions used by KCFI.
//===----------------------------------------------------------------------===//
let
  Defs = [R10, R11, EFLAGS] in {
def KCFI_CHECK : PseudoI<
  (outs), (ins GR64:$ptr, i32imm:$type), []>, Sched<[]>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions used by address sanitizer.
//===----------------------------------------------------------------------===//
let
  Defs = [R10, R11, EFLAGS] in {
def ASAN_CHECK_MEMACCESS : PseudoI<
  (outs), (ins GR64PLTSafe:$addr, i32imm:$accessinfo),
  [(int_asan_check_memaccess GR64PLTSafe:$addr, (i32 timm:$accessinfo))]>,
  Sched<[]>;
}

//===----------------------------------------------------------------------===//
// Pseudo instructions used by segmented stacks.
//

// This is lowered into a RET instruction by MCInstLower.  We need
// this so that we don't have to have a MachineBasicBlock which ends
// with a RET and also has successors.
let isPseudo = 1, SchedRW = [WriteJumpLd] in {
def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;

// This instruction is lowered to a RET followed by a MOV.  The two
// instructions are not generated on a higher level since then the
// verifier sees a MachineBasicBlock ending with a non-terminator.
def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
}

//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//

// Alias instruction mapping movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
    isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in
def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                 [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;

// Other widths can also make use of the 32-bit xor, which may have a smaller
// encoding and avoid partial register updates.
let AddedComplexity = 10 in {
def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
}

let Predicates = [OptForSize, Not64BitMode],
    AddedComplexity = 10 in {
  let SchedRW = [WriteALU] in {
  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
  // which only require 3 bytes compared to MOV32ri which requires 5.
  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                        [(set GR32:$dst, 1)]>;
    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
                        [(set GR32:$dst, -1)]>;
  }
  } // SchedRW

  // MOV16ri is 4 bytes, so the instructions above are smaller.
  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
}

let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
    SchedRW = [WriteALU] in {
// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
                       [(set GR32:$dst, i32immSExt8:$src)]>,
                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
                       [(set GR64:$dst, i64immSExt8:$src)]>,
                       Requires<[OptForMinSize, NotWin64WithoutFP]>;
}

// Materialize i64 constant where top 32-bits are zero. This could theoretically
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
// that would make it more difficult to rematerialize.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
    isPseudo = 1, SchedRW = [WriteMove] in
def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "",
                  [(set GR64:$dst, i64immZExt32:$src)]>;

// This 64-bit pseudo-move can also be used for labels in the x86-64 small code
// model.
def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [X86Wrapper]>;
def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>;

// Use sbb to materialize carry bit.
let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteADC],
    hasSideEffects = 0 in {
// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
// However, Pat<> can't replicate the destination reg into the inputs of the
// result.
def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", []>;
def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", []>;
} // isCodeGenOnly

//===----------------------------------------------------------------------===//
// String Pseudo Instructions
//
let SchedRW = [WriteMicrocoded] in {
let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins),
                    "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}",
                    [(X86rep_movs i8)]>, REP, AdSize32,
                   Requires<[NotLP64]>;
def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}",
                    [(X86rep_movs i16)]>, REP, AdSize32, OpSize16,
                   Requires<[NotLP64]>;
def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}",
                    [(X86rep_movs i32)]>, REP, AdSize32, OpSize32,
                   Requires<[NotLP64]>;
def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}",
                    [(X86rep_movs i64)]>, REP, AdSize32,
                   Requires<[NotLP64, In64BitMode]>;
}

let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins),
                    "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}",
                    [(X86rep_movs i8)]>, REP, AdSize64,
                   Requires<[IsLP64]>;
def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}",
                    [(X86rep_movs i16)]>, REP, AdSize64, OpSize16,
                   Requires<[IsLP64]>;
def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}",
                    [(X86rep_movs i32)]>, REP, AdSize64, OpSize32,
                   Requires<[IsLP64]>;
def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins),
                    "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}",
                    [(X86rep_movs i64)]>, REP, AdSize64,
                   Requires<[IsLP64]>;
}

// FIXME: Should use "(X86rep_stos AL)" as the pattern.
let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
  let Uses = [AL,ECX,EDI] in
  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins),
                       "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}",
                      [(X86rep_stos i8)]>, REP, AdSize32,
                     Requires<[NotLP64]>;
  let Uses = [AX,ECX,EDI] in
  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}",
                      [(X86rep_stos i16)]>, REP, AdSize32, OpSize16,
                     Requires<[NotLP64]>;
  let Uses = [EAX,ECX,EDI] in
  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}",
                      [(X86rep_stos i32)]>, REP, AdSize32, OpSize32,
                     Requires<[NotLP64]>;
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins),
                        "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}",
                        [(X86rep_stos i64)]>, REP, AdSize32,
                        Requires<[NotLP64, In64BitMode]>;
}

let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
  let Uses = [AL,RCX,RDI] in
  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins),
                       "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}",
                       [(X86rep_stos i8)]>, REP, AdSize64,
                       Requires<[IsLP64]>;
  let Uses = [AX,RCX,RDI] in
  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins),
                       "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}",
                       [(X86rep_stos i16)]>, REP, AdSize64, OpSize16,
                       Requires<[IsLP64]>;
  let Uses = [RAX,RCX,RDI] in
  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins),
                      "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}",
                       [(X86rep_stos i32)]>, REP, AdSize64, OpSize32,
                       Requires<[IsLP64]>;

  let Uses = [RAX,RCX,RDI] in
  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins),
                        "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}",
                        [(X86rep_stos i64)]>, REP, AdSize64,
                        Requires<[IsLP64]>;
}
} // SchedRW

//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//
let SchedRW = [WriteSystem] in {

// ELF TLS Support
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
    usesCustomInserter = 1, Uses = [ESP, SSP] in {
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_addr32",
                  [(X86tlsaddr tls32addr:$sym)]>,
                  Requires<[Not64BitMode]>;
def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                  "# TLS_base_addr32",
                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
                  Requires<[Not64BitMode]>;
}

// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
    usesCustomInserter = 1, Uses = [RSP, SSP] in {
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_addr64",
                  [(X86tlsaddr tls64addr:$sym)]>,
                  Requires<[In64BitMode, IsLP64]>;
def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                   "# TLS_base_addr64",
                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
                  Requires<[In64BitMode, IsLP64]>;
def TLS_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                   "# TLS_addrX32",
                  [(X86tlsaddr tls32addr:$sym)]>,
                  Requires<[In64BitMode, NotLP64]>;
def TLS_base_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                   "# TLS_base_addrX32",
                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
                  Requires<[In64BitMode, NotLP64]>;
}

// Darwin TLS Support
// For i386, the address of the thunk is passed on the stack, on return the
// address of the variable is in %eax.  %ecx is trashed during the function
// call.  All other registers are preserved.
let Defs = [EAX, ECX, EFLAGS, DF],
    Uses = [ESP, SSP],
    usesCustomInserter = 1 in
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
                "# TLSCall_32",
                [(X86TLSCall addr:$sym)]>,
                Requires<[Not64BitMode]>;

// For x86_64, the address of the thunk is passed in %rdi, but the
// pseudo directly use the symbol, so do not add an implicit use of
// %rdi. The lowering will do the right thing with RDI.
// On return the address of the variable is in %rax.  All other
// registers are preserved.
let Defs = [RAX, EFLAGS, DF],
    Uses = [RSP, SSP],
    usesCustomInserter = 1 in
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
                  "# TLSCall_64",
                  [(X86TLSCall addr:$sym)]>,
                  Requires<[In64BitMode]>;
} // SchedRW

//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions

// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
// instruction selection into a branch sequence.
multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
  def CMOV#NAME  : I<0, Pseudo,
                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
                    "#CMOV_"#NAME#" PSEUDO!",
                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, timm:$cond,
                                                EFLAGS)))]>;
}

let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
  // however that requires promoting the operands, and can induce additional
  // i8 register pressure.
  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;

  let Predicates = [NoCMOV] in {
    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
  } // Predicates = [NoCMOV]

  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
  // SSE1/SSE2.
  let Predicates = [FPStackf32] in
    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;

  let Predicates = [FPStackf64] in
    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;

  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;

  let Predicates = [HasMMX] in
    defm _VR64   : CMOVrr_PSEUDO<VR64, x86mmx>;

  let Predicates = [HasSSE1,NoAVX512] in
    defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
  let Predicates = [HasSSE2,NoAVX512] in {
    defm _FR16   : CMOVrr_PSEUDO<FR16, f16>;
    defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
  }
  let Predicates = [HasAVX512] in {
    defm _FR16X  : CMOVrr_PSEUDO<FR16X, f16>;
    defm _FR32X  : CMOVrr_PSEUDO<FR32X, f32>;
    defm _FR64X  : CMOVrr_PSEUDO<FR64X, f64>;
  }
  let Predicates = [NoVLX] in {
    defm _VR128  : CMOVrr_PSEUDO<VR128, v2i64>;
    defm _VR256  : CMOVrr_PSEUDO<VR256, v4i64>;
  }
  let Predicates = [HasVLX] in {
    defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>;
    defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>;
  }
  defm _VR512  : CMOVrr_PSEUDO<VR512, v8i64>;
  defm _VK1    : CMOVrr_PSEUDO<VK1,  v1i1>;
  defm _VK2    : CMOVrr_PSEUDO<VK2,  v2i1>;
  defm _VK4    : CMOVrr_PSEUDO<VK4,  v4i1>;
  defm _VK8    : CMOVrr_PSEUDO<VK8,  v8i1>;
  defm _VK16   : CMOVrr_PSEUDO<VK16, v16i1>;
  defm _VK32   : CMOVrr_PSEUDO<VK32, v32i1>;
  defm _VK64   : CMOVrr_PSEUDO<VK64, v64i1>;
} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]

def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
          (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;

let Predicates = [NoVLX] in {
  def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;
  def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>;

  def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
  def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>;
}
let Predicates = [HasVLX] in {
  def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v8f16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;
  def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>;

  def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v16f16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
  def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)),
            (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>;
}

def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v32f16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;
def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)),
          (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>;

//===----------------------------------------------------------------------===//
// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
//===----------------------------------------------------------------------===//

// FIXME: Use normal instructions and add lock prefix dynamically.

// Memory barriers

let isCodeGenOnly = 1, Defs = [EFLAGS] in
def OR32mi8Locked  : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero),
                         "or{l}\t{$zero, $dst|$dst, $zero}", []>,
                         Requires<[Not64BitMode]>, OpSize32, LOCK,
                         Sched<[WriteALURMW]>;

// RegOpc corresponds to the mr version of the instruction
// ImmOpc corresponds to the mi version of the instruction
// ImmOpc8 corresponds to the mi8 version of the instruction
// ImmMod corresponds to the instruction format of the mi and mi8 versions
multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
                           Format ImmMod, SDNode Op, string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    SchedRW = [WriteALURMW] in {

def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
                  !strconcat(mnemonic, "{b}\t",
                             "{$src2, $dst|$dst, $src2}"),
                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;

def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
                   !strconcat(mnemonic, "{w}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
                   OpSize16, LOCK;

def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
                   !strconcat(mnemonic, "{l}\t",
                              "{$src2, $dst|$dst, $src2}"),
                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
                   OpSize32, LOCK;

def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                    !strconcat(mnemonic, "{q}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;

// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
                      OpSize16, LOCK;

def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
                      OpSize32, LOCK;

def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
                       !strconcat(mnemonic, "{q}\t",
                                  "{$src2, $dst|$dst, $src2}"),
                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
                       LOCK;

def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
                    !strconcat(mnemonic, "{b}\t",
                               "{$src2, $dst|$dst, $src2}"),
                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;

def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
                      !strconcat(mnemonic, "{w}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
                      OpSize16, LOCK;

def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
                      !strconcat(mnemonic, "{l}\t",
                                 "{$src2, $dst|$dst, $src2}"),
                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
                      OpSize32, LOCK;

def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
                          !strconcat(mnemonic, "{q}\t",
                                     "{$src2, $dst|$dst, $src2}"),
                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
                          LOCK;
}

}

defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;

def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs),
                               (X86lock_add node:$lhs, node:$rhs), [{
  return hasNoCarryFlagUses(SDValue(N, 0));
}]>;

def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs),
                               (X86lock_sub node:$lhs, node:$rhs), [{
  return hasNoCarryFlagUses(SDValue(N, 0));
}]>;

let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    SchedRW = [WriteALURMW]  in {
  let Predicates = [UseIncDec] in {
    def LOCK_INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
                        "inc{b}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>,
                        LOCK;
    def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
                        "inc{w}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>,
                        OpSize16, LOCK;
    def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
                        "inc{l}\t$dst",
                        [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>,
                        OpSize32, LOCK;

    def LOCK_DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
                        "dec{b}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>,
                        LOCK;
    def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
                        "dec{w}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>,
                        OpSize16, LOCK;
    def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
                        "dec{l}\t$dst",
                        [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>,
                        OpSize32, LOCK;
  }

  let Predicates = [UseIncDec, In64BitMode] in {
    def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
                         "inc{q}\t$dst",
                         [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>,
                         LOCK;
    def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
                         "dec{q}\t$dst",
                         [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>,
                         LOCK;
  }
}

let Predicates = [UseIncDec] in {
  // Additional patterns for -1 constant.
  def : Pat<(X86lock_add addr:$dst, (i8  -1)), (LOCK_DEC8m  addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>;
  def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i8  -1)), (LOCK_INC8m  addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>;
}

let Predicates = [UseIncDec, In64BitMode] in {
  // Additional patterns for -1 constant.
  def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>;
  def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>;
}

// Atomic bit test.
def X86LBTest : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisPtrTy<1>,
                                     SDTCisVT<2, i8>, SDTCisVT<3, i32>]>;
def x86bts : SDNode<"X86ISD::LBTS", X86LBTest,
                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
def x86btc : SDNode<"X86ISD::LBTC", X86LBTest,
                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
def x86btr : SDNode<"X86ISD::LBTR", X86LBTest,
                    [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;

def X86LBTestRM : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>,
                                       SDTCisInt<2>]>;

def x86_rm_bts : SDNode<"X86ISD::LBTS_RM", X86LBTestRM,
                        [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
def x86_rm_btc : SDNode<"X86ISD::LBTC_RM", X86LBTestRM,
                        [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;
def x86_rm_btr : SDNode<"X86ISD::LBTR_RM", X86LBTestRM,
                        [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>;


multiclass ATOMIC_LOGIC_OP<Format Form, string s> {
  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
      SchedRW = [WriteBitTestSetRegRMW]  in {
    def 16m : Ii8<0xBA, Form, (outs), (ins i16mem:$src1, i8imm:$src2),
                  !strconcat(s, "{w}\t{$src2, $src1|$src1, $src2}"),
                  [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 16)))]>,
              OpSize16, TB, LOCK;
    def 32m : Ii8<0xBA, Form, (outs), (ins i32mem:$src1, i8imm:$src2),
                  !strconcat(s, "{l}\t{$src2, $src1|$src1, $src2}"),
                  [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 32)))]>,
              OpSize32, TB, LOCK;
    def 64m : RIi8<0xBA, Form, (outs), (ins i64mem:$src1, i8imm:$src2),
                   !strconcat(s, "{q}\t{$src2, $src1|$src1, $src2}"),
                   [(set EFLAGS, (!cast<SDNode>("x86" # s) addr:$src1, timm:$src2, (i32 64)))]>,
              TB, LOCK;
  }
}

multiclass ATOMIC_LOGIC_OP_RM<bits<8> Opc8, string s> {
  let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
      SchedRW = [WriteBitTestSetRegRMW]  in {
    def 16rm : Ii8<Opc8, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
                  !strconcat(s, "{w}\t{$src2, $src1|$src1, $src2}"),
                  [(set EFLAGS, (!cast<SDNode>("x86_rm_" # s) addr:$src1, GR16:$src2))]>,
               OpSize16, TB, LOCK;
    def 32rm : Ii8<Opc8, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
                  !strconcat(s, "{l}\t{$src2, $src1|$src1, $src2}"),
                  [(set EFLAGS, (!cast<SDNode>("x86_rm_" # s) addr:$src1, GR32:$src2))]>,
               OpSize32, TB, LOCK;
    def 64rm : RIi8<Opc8, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
                   !strconcat(s, "{q}\t{$src2, $src1|$src1, $src2}"),
                   [(set EFLAGS, (!cast<SDNode>("x86_rm_" # s) addr:$src1, GR64:$src2))]>,
               TB, LOCK;
  }
}


defm LOCK_BTS : ATOMIC_LOGIC_OP<MRM5m, "bts">;
defm LOCK_BTC : ATOMIC_LOGIC_OP<MRM7m, "btc">;
defm LOCK_BTR : ATOMIC_LOGIC_OP<MRM6m, "btr">;

defm LOCK_BTS_RM : ATOMIC_LOGIC_OP_RM<0xAB, "bts">;
defm LOCK_BTC_RM : ATOMIC_LOGIC_OP_RM<0xBB, "btc">;
defm LOCK_BTR_RM : ATOMIC_LOGIC_OP_RM<0xB3, "btr">;

// Atomic compare and swap.
multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
                          string mnemonic, SDPatternOperator frag> {
let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in {
  let Defs = [AL, EFLAGS], Uses = [AL] in
  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
  let Defs = [AX, EFLAGS], Uses = [AX] in
  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
  let Defs = [EAX, EFLAGS], Uses = [EAX] in
  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
                  [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
  let Defs = [RAX, EFLAGS], Uses = [RAX] in
  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
                   [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
}
}

let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
    Predicates = [HasCX8], SchedRW = [WriteCMPXCHGRMW],
    isCodeGenOnly = 1, usesCustomInserter = 1 in {
def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
                   "cmpxchg8b\t$ptr",
                   [(X86cas8 addr:$ptr)]>, TB, LOCK;
}

let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
    isCodeGenOnly = 1, mayLoad = 1, mayStore = 1, hasSideEffects = 0 in {
def LCMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$ptr),
                     "cmpxchg16b\t$ptr",
                     []>, TB, LOCK;
}

// This pseudo must be used when the frame uses RBX as
// the base pointer. Indeed, in such situation RBX is a reserved
// register and the register allocator will ignore any use/def of
// it. In other words, the register will not fix the clobbering of
// RBX that will happen when setting the arguments for the instrucion.
//
// Unlike the actual related instruction, we mark that this one
// defines RBX (instead of using RBX).
// The rationale is that we will define RBX during the expansion of
// the pseudo. The argument feeding RBX is rbx_input.
//
// The additional argument, $rbx_save, is a temporary register used to
// save the value of RBX across the actual instruction.
//
// To make sure the register assigned to $rbx_save does not interfere with
// the definition of the actual instruction, we use a definition $dst which
// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
// the instruction and we are sure we will have a valid register to restore
// the value of RBX.
let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
    isCodeGenOnly = 1, isPseudo = 1,
    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
    Constraints = "$rbx_save = $dst" in {
def LCMPXCHG16B_SAVE_RBX :
    I<0, Pseudo, (outs GR64:$dst),
      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), "", []>;
}

// Pseudo instruction that doesn't read/write RBX. Will be turned into either
// LCMPXCHG16B_SAVE_RBX or LCMPXCHG16B via a custom inserter.
let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RCX, RDX],
    Predicates = [HasCX16,In64BitMode], SchedRW = [WriteCMPXCHGRMW],
    isCodeGenOnly = 1, isPseudo = 1,
    mayLoad = 1, mayStore = 1, hasSideEffects = 0,
    usesCustomInserter = 1 in {
def LCMPXCHG16B_NO_RBX :
    I<0, Pseudo, (outs), (ins i128mem:$ptr, GR64:$rbx_input), "",
      [(X86cas16 addr:$ptr, GR64:$rbx_input)]>;
}

// This pseudo must be used when the frame uses RBX/EBX as
// the base pointer.
// cf comment for LCMPXCHG16B_SAVE_RBX.
let Defs = [EBX], Uses = [ECX, EAX],
    Predicates = [HasMWAITX], SchedRW = [WriteSystem],
    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst" in {
def MWAITX_SAVE_RBX :
    I<0, Pseudo, (outs GR64:$dst),
      (ins GR32:$ebx_input, GR64:$rbx_save),
      "mwaitx",
      []>;
}

// Pseudo mwaitx instruction to use for custom insertion.
let Predicates = [HasMWAITX], SchedRW = [WriteSystem],
    isCodeGenOnly = 1, isPseudo = 1,
    usesCustomInserter = 1 in {
def MWAITX :
    I<0, Pseudo, (outs), (ins GR32:$ecx, GR32:$eax, GR32:$ebx),
      "mwaitx",
      [(int_x86_mwaitx GR32:$ecx, GR32:$eax, GR32:$ebx)]>;
}


defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;

// Atomic exchange and add
multiclass ATOMIC_RMW_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
                            string frag> {
  let Constraints = "$val = $dst", Defs = [EFLAGS], mayLoad = 1, mayStore = 1,
      isCodeGenOnly = 1, SchedRW = [WriteALURMW] in {
    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
                    (ins GR8:$val, i8mem:$ptr),
                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
                    [(set GR8:$dst,
                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
                    (ins GR16:$val, i16mem:$ptr),
                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR16:$dst,
                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
                    OpSize16;
    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
                    (ins GR32:$val, i32mem:$ptr),
                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
                    [(set
                       GR32:$dst,
                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
                    OpSize32;
    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
                     (ins GR64:$val, i64mem:$ptr),
                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
                     [(set
                        GR64:$dst,
                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
  }
}

defm LXADD : ATOMIC_RMW_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;

/* The following multiclass tries to make sure that in code like
 *    x.store (immediate op x.load(acquire), release)
 * and
 *    x.store (register op x.load(acquire), release)
 * an operation directly on memory is generated instead of wasting a register.
 * It is not automatic as atomic_store/load are only lowered to MOV instructions
 * extremely late to prevent them from being accidentally reordered in the backend
 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
 */
multiclass RELEASE_BINOP_MI<string Name, SDNode op> {
  def : Pat<(atomic_store_8 addr:$dst,
             (op (atomic_load_8 addr:$dst), (i8 imm:$src))),
            (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_16 addr:$dst,
             (op (atomic_load_16 addr:$dst), (i16 imm:$src))),
            (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_32 addr:$dst,
             (op (atomic_load_32 addr:$dst), (i32 imm:$src))),
            (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>;
  def : Pat<(atomic_store_64 addr:$dst,
             (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))),
            (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>;

  def : Pat<(atomic_store_8 addr:$dst,
             (op (atomic_load_8 addr:$dst), (i8 GR8:$src))),
            (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>;
  def : Pat<(atomic_store_16 addr:$dst,
             (op (atomic_load_16 addr:$dst), (i16 GR16:$src))),
            (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>;
  def : Pat<(atomic_store_32 addr:$dst,
             (op (atomic_load_32 addr:$dst), (i32 GR32:$src))),
            (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>;
  def : Pat<(atomic_store_64 addr:$dst,
             (op (atomic_load_64 addr:$dst), (i64 GR64:$src))),
            (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>;
}
defm : RELEASE_BINOP_MI<"ADD", add>;
defm : RELEASE_BINOP_MI<"AND", and>;
defm : RELEASE_BINOP_MI<"OR",  or>;
defm : RELEASE_BINOP_MI<"XOR", xor>;
defm : RELEASE_BINOP_MI<"SUB", sub>;

// Atomic load + floating point patterns.
// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> {
  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
            (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>,
            Requires<[UseSSE1]>;
  def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>,
            Requires<[UseAVX]>;
  def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>,
            Requires<[HasAVX512]>;

  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
            (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>,
            Requires<[UseSSE1]>;
  def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>,
            Requires<[UseAVX]>;
  def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))),
            (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>,
            Requires<[HasAVX512]>;
}
defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>;
// FIXME: Add fsub, fmul, fdiv, ...

multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32,
                        dag dag64> {
  def : Pat<(atomic_store_8 addr:$dst, dag8),
            (!cast<Instruction>(Name#8m) addr:$dst)>;
  def : Pat<(atomic_store_16 addr:$dst, dag16),
            (!cast<Instruction>(Name#16m) addr:$dst)>;
  def : Pat<(atomic_store_32 addr:$dst, dag32),
            (!cast<Instruction>(Name#32m) addr:$dst)>;
  def : Pat<(atomic_store_64 addr:$dst, dag64),
            (!cast<Instruction>(Name#64m) addr:$dst)>;
}

let Predicates = [UseIncDec] in {
  defm : RELEASE_UNOP<"INC",
      (add (atomic_load_8  addr:$dst), (i8 1)),
      (add (atomic_load_16 addr:$dst), (i16 1)),
      (add (atomic_load_32 addr:$dst), (i32 1)),
      (add (atomic_load_64 addr:$dst), (i64 1))>;
  defm : RELEASE_UNOP<"DEC",
      (add (atomic_load_8  addr:$dst), (i8 -1)),
      (add (atomic_load_16 addr:$dst), (i16 -1)),
      (add (atomic_load_32 addr:$dst), (i32 -1)),
      (add (atomic_load_64 addr:$dst), (i64 -1))>;
}

defm : RELEASE_UNOP<"NEG",
    (ineg (i8 (atomic_load_8  addr:$dst))),
    (ineg (i16 (atomic_load_16 addr:$dst))),
    (ineg (i32 (atomic_load_32 addr:$dst))),
    (ineg (i64 (atomic_load_64 addr:$dst)))>;
defm : RELEASE_UNOP<"NOT",
    (not (i8 (atomic_load_8  addr:$dst))),
    (not (i16 (atomic_load_16 addr:$dst))),
    (not (i32 (atomic_load_32 addr:$dst))),
    (not (i64 (atomic_load_64 addr:$dst)))>;

def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)),
          (MOV8mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)),
          (MOV16mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)),
          (MOV32mi addr:$dst, imm:$src)>;
def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)),
          (MOV64mi32 addr:$dst, i64immSExt32:$src)>;

def : Pat<(atomic_store_8 addr:$dst, GR8:$src),
          (MOV8mr addr:$dst, GR8:$src)>;
def : Pat<(atomic_store_16 addr:$dst, GR16:$src),
          (MOV16mr addr:$dst, GR16:$src)>;
def : Pat<(atomic_store_32 addr:$dst, GR32:$src),
          (MOV32mr addr:$dst, GR32:$src)>;
def : Pat<(atomic_store_64 addr:$dst, GR64:$src),
          (MOV64mr addr:$dst, GR64:$src)>;

def : Pat<(i8  (atomic_load_8 addr:$src)),  (MOV8rm addr:$src)>;
def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>;
def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>;
def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>;

// Floating point loads/stores.
def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
          (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>;
def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
          (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>;
def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))),
          (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>;

def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
          (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>;
def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>;
def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))),
          (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>;

def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
          (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>;
def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
          (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>;
def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))),
          (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>;

def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
          (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>;
def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
          (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>;
def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))),
          (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>;

//===----------------------------------------------------------------------===//
// DAG Pattern Matching Rules
//===----------------------------------------------------------------------===//

// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
// binary size compared to a regular MOV, but it introduces an unnecessary
// load, so is not suitable for regular or optsize functions.
let Predicates = [OptForMinSize] in {
def : Pat<(simple_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
def : Pat<(simple_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
def : Pat<(simple_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
def : Pat<(simple_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
def : Pat<(simple_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
def : Pat<(simple_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
}

// In kernel code model, we can get the address of a label
// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
// the MOV64ri32 should accept these.
def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper mcsym:$dst)),
          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;

// If we have small model and -static mode, it is safe to store global addresses
// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
// for MOV64mi32 should handle this sort of thing.
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tconstpool:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tjumptable:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, texternalsym:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, mcsym:$src)>,
          Requires<[NearData, IsNotPIC]>;
def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
          Requires<[NearData, IsNotPIC]>;

def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;

// Calls

// tls has some funny stuff here...
// This corresponds to movabs $foo@tpoff, %rax
def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
          (MOV64ri32 tglobaltlsaddr :$dst)>;
// This corresponds to add $foo@tpoff, %rax
def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;


// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
          (CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
          (CALL64pcrel32 texternalsym:$dst)>;

def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 texternalsym:$dst)),
          (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, texternalsym:$dst)>;
def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 tglobaladdr:$dst)),
          (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, tglobaladdr:$dst)>;


// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
// can never use callee-saved registers. That is the purpose of the GR64_TC
// register classes.
//
// The only volatile register that is never used by the calling convention is
// %r11. This happens when calling a vararg function with 6 arguments.
//
// Match an X86tcret that uses less than 7 volatile registers.
def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
                             (X86tcret node:$ptr, node:$off), [{
  // X86tcret args: (*chain, ptr, imm, regs..., glue)
  unsigned NumRegs = 0;
  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
      return false;
  return true;
}]>;

def X86tcret_1reg : PatFrag<(ops node:$ptr, node:$off),
                             (X86tcret node:$ptr, node:$off), [{
  // X86tcret args: (*chain, ptr, imm, regs..., glue)
  unsigned NumRegs = 1;
  const SDValue& BasePtr = cast<LoadSDNode>(N->getOperand(1))->getBasePtr();
  if (isa<FrameIndexSDNode>(BasePtr))
    NumRegs = 3;
  else if (BasePtr->getNumOperands() && isa<GlobalAddressSDNode>(BasePtr->getOperand(0)))
    NumRegs = 3;
  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
    if (isa<RegisterSDNode>(N->getOperand(i)) && ( NumRegs-- == 0))
      return false;
  return true;
}]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
          (TCRETURNri ptr_rc_tailcall:$dst, timm:$off)>,
          Requires<[Not64BitMode, NotUseIndirectThunkCalls]>;

// FIXME: This is disabled for 32-bit PIC mode because the global base
// register which is part of the address mode may be assigned a
// callee-saved register.
// Similar to X86tcret_6regs, here we only have 1 register left
def : Pat<(X86tcret_1reg (load addr:$dst), timm:$off),
          (TCRETURNmi addr:$dst, timm:$off)>,
          Requires<[Not64BitMode, IsNotPIC, NotUseIndirectThunkCalls]>;

def : Pat<(X86tcret (i32 tglobaladdr:$dst), timm:$off),
          (TCRETURNdi tglobaladdr:$dst, timm:$off)>,
          Requires<[NotLP64]>;

def : Pat<(X86tcret (i32 texternalsym:$dst), timm:$off),
          (TCRETURNdi texternalsym:$dst, timm:$off)>,
          Requires<[NotLP64]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
          (TCRETURNri64 ptr_rc_tailcall:$dst, timm:$off)>,
          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;

// Don't fold loads into X86tcret requiring more than 6 regs.
// There wouldn't be enough scratch registers for base+index.
def : Pat<(X86tcret_6regs (load addr:$dst), timm:$off),
          (TCRETURNmi64 addr:$dst, timm:$off)>,
          Requires<[In64BitMode, NotUseIndirectThunkCalls]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
          (INDIRECT_THUNK_TCRETURN64 ptr_rc_tailcall:$dst, timm:$off)>,
          Requires<[In64BitMode, UseIndirectThunkCalls]>;

def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off),
          (INDIRECT_THUNK_TCRETURN32 ptr_rc_tailcall:$dst, timm:$off)>,
          Requires<[Not64BitMode, UseIndirectThunkCalls]>;

def : Pat<(X86tcret (i64 tglobaladdr:$dst), timm:$off),
          (TCRETURNdi64 tglobaladdr:$dst, timm:$off)>,
          Requires<[IsLP64]>;

def : Pat<(X86tcret (i64 texternalsym:$dst), timm:$off),
          (TCRETURNdi64 texternalsym:$dst, timm:$off)>,
          Requires<[IsLP64]>;

// Normal calls, with various flavors of addresses.
def : Pat<(X86call (i32 tglobaladdr:$dst)),
          (CALLpcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i32 texternalsym:$dst)),
          (CALLpcrel32 texternalsym:$dst)>;
def : Pat<(X86call (i32 imm:$dst)),
          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;

// Comparisons.

// TEST R,R is smaller than CMP R,0
def : Pat<(X86cmp GR8:$src1, 0),
          (TEST8rr GR8:$src1, GR8:$src1)>;
def : Pat<(X86cmp GR16:$src1, 0),
          (TEST16rr GR16:$src1, GR16:$src1)>;
def : Pat<(X86cmp GR32:$src1, 0),
          (TEST32rr GR32:$src1, GR32:$src1)>;
def : Pat<(X86cmp GR64:$src1, 0),
          (TEST64rr GR64:$src1, GR64:$src1)>;

// zextload bool -> zextload byte
// i1 stored in one byte in zero-extended form.
// Upper bits cleanup should be executed before Store.
def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
def : Pat<(zextloadi16i1 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(zextloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;

// extload bool -> extload byte
// When extloading from 16-bit and smaller memory locations into 64-bit
// registers, use zero-extending loads so that the entire 64-bit register is
// defined, avoiding partial-register updates.

def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
def : Pat<(extloadi16i1 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;

// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
// NOTE: The extloadi64i32 pattern needs to be first as it will try to form
// 32-bit loads for 4 byte aligned i8/i16 loads.
def : Pat<(extloadi64i32 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
def : Pat<(extloadi64i1 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i8 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i16 addr:$src),
          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;

// anyext. Define these to do an explicit zero-extend to
// avoid partial-register updates.
def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;

// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
def : Pat<(i32 (anyext GR16:$src)),
          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;

def : Pat<(i64 (anyext GR8 :$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR16:$src)),
          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;

// If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX
// instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move
// %ah to the lower byte of a register. By using a MOVSX here we allow a
// post-isel peephole to merge the two MOVSX instructions into one.
def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{
  return (N->getOperand(0).getOpcode() == ISD::SDIVREM &&
          N->getOperand(0).getResNo() == 1);
}]>;
def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>;

// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. AssertSext/AssertZext/AssertAlign aren't saying
// anything about the upper 32 bits, they're probably just qualifying a
// CopyFromReg. FREEZE may be coming from a a truncate. Any other 32-bit
// operation will zero-extend up to 64 bits.
def def32 : PatLeaf<(i32 GR32:$src), [{
  return N->getOpcode() != ISD::TRUNCATE &&
         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
         N->getOpcode() != ISD::CopyFromReg &&
         N->getOpcode() != ISD::AssertSext &&
         N->getOpcode() != ISD::AssertZext &&
         N->getOpcode() != ISD::AssertAlign &&
         N->getOpcode() != ISD::FREEZE;
}]>;

// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)),
          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)),
          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;

//===----------------------------------------------------------------------===//
// Pattern match OR as ADD
//===----------------------------------------------------------------------===//

// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
// 3-addressified into an LEA instruction to avoid copies.  However, we also
// want to finally emit these instructions as an or at the end of the code
// generator to make the generated code easier to read.  To do this, we select
// into "disjoint bits" pseudo ops.

// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());

  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
  return (~Known0.Zero & ~Known1.Zero) == 0;
}]>;


// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
// Try this before the selecting to OR.
let SchedRW = [WriteALU] in {

let isConvertibleToThreeAddress = 1, isPseudo = 1,
    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
let isCommutable = 1 in {
def ADD8rr_DB   : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2),
                    "", // orb/addb REG, REG
                    [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>;
def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
                    "", // orw/addw REG, REG
                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
                    "", // orl/addl REG, REG
                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "", // orq/addq REG, REG
                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
} // isCommutable

// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.

def ADD8ri_DB :   I<0, Pseudo,
                    (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2),
                    "", // orb/addb REG, imm8
                    [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>;
def ADD16ri8_DB : I<0, Pseudo,
                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
                    "", // orw/addw REG, imm8
                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
                    "", // orw/addw REG, imm
                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;

def ADD32ri8_DB : I<0, Pseudo,
                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
                    "", // orl/addl REG, imm8
                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
                    "", // orl/addl REG, imm
                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;


def ADD64ri8_DB : I<0, Pseudo,
                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "", // orq/addq REG, imm8
                    [(set GR64:$dst, (or_is_add GR64:$src1,
                                                i64immSExt8:$src2))]>;
def ADD64ri32_DB : I<0, Pseudo,
                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                     "", // orq/addq REG, imm
                     [(set GR64:$dst, (or_is_add GR64:$src1,
                                                 i64immSExt32:$src2))]>;
}
} // AddedComplexity, SchedRW

//===----------------------------------------------------------------------===//
// Pattern match XOR as ADD
//===----------------------------------------------------------------------===//

// Prefer to pattern match XOR with min_signed_value as ADD at isel time.
// ADD can be 3-addressified into an LEA instruction to avoid copies.
let AddedComplexity = 5 in {
def : Pat<(xor GR8:$src1, -128),
          (ADD8ri GR8:$src1, -128)>;
def : Pat<(xor GR16:$src1, -32768),
          (ADD16ri GR16:$src1, -32768)>;
def : Pat<(xor GR32:$src1, -2147483648),
          (ADD32ri GR32:$src1, -2147483648)>;
}

//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//

// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR16:$src1, 128),
          (SUB16ri8 GR16:$src1, -128)>;
def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
          (SUB16mi8 addr:$dst, -128)>;

def : Pat<(add GR32:$src1, 128),
          (SUB32ri8 GR32:$src1, -128)>;
def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
          (SUB32mi8 addr:$dst, -128)>;

def : Pat<(add GR64:$src1, 128),
          (SUB64ri8 GR64:$src1, -128)>;
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
          (SUB64mi8 addr:$dst, -128)>;

def : Pat<(X86add_flag_nocf GR16:$src1, 128),
          (SUB16ri8 GR16:$src1, -128)>;
def : Pat<(X86add_flag_nocf GR32:$src1, 128),
          (SUB32ri8 GR32:$src1, -128)>;
def : Pat<(X86add_flag_nocf GR64:$src1, 128),
          (SUB64ri8 GR64:$src1, -128)>;

// The same trick applies for 32-bit immediate fields in 64-bit
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;

def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000),
          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;

// To avoid needing to materialize an immediate in a register, use a 32-bit and
// with implicit zero-extension instead of a 64-bit and if the immediate has at
// least 32 bits of leading zeros. If in addition the last 32 bits can be
// represented with a sign extension of a 8 bit constant, use that.
// This can also reduce instruction size by eliminating the need for the REX
// prefix.

// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
let AddedComplexity = 1 in {
def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri8
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo32XForm imm:$imm))),
            sub_32bit)>;

def : Pat<(and GR64:$src, i64immZExt32:$imm),
          (SUBREG_TO_REG
            (i64 0),
            (AND32ri
              (EXTRACT_SUBREG GR64:$src, sub_32bit),
              (i32 (GetLo32XForm imm:$imm))),
            sub_32bit)>;
} // AddedComplexity = 1


// AddedComplexity is needed due to the increased complexity on the
// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
// the MOVZX patterns keeps thems together in DAGIsel tables.
let AddedComplexity = 1 in {
// r & (2^16-1) ==> movz
def : Pat<(and GR32:$src1, 0xffff),
          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
          (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
             sub_16bit)>;

// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
          (SUBREG_TO_REG (i64 0),
                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
                         sub_32bit)>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
          (SUBREG_TO_REG (i64 0),
                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
                      sub_32bit)>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
          (SUBREG_TO_REG (i64 0),
                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
                         sub_32bit)>;
} // AddedComplexity = 1


// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.

def BTRXForm : SDNodeXForm<imm, [{
  // Transformation function: Find the lowest 0.
  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
}]>;

def BTCBTSXForm : SDNodeXForm<imm, [{
  // Transformation function: Find the lowest 1.
  return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
}]>;

def BTRMask64 : ImmLeaf<i64, [{
  return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
}]>;

def BTCBTSMask64 : ImmLeaf<i64, [{
  return !isInt<32>(Imm) && isPowerOf2_64(Imm);
}]>;

// For now only do this for optsize.
let AddedComplexity = 1, Predicates=[OptForSize] in {
  def : Pat<(and GR64:$src1, BTRMask64:$mask),
            (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
  def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
            (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
  def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
            (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
}


// sext_inreg patterns
def : Pat<(sext_inreg GR32:$src, i16),
          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;

def : Pat<(sext_inreg GR16:$src, i8),
           (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
             sub_16bit)>;

def : Pat<(sext_inreg GR64:$src, i32),
          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
def : Pat<(sext_inreg GR64:$src, i16),
          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
def : Pat<(sext_inreg GR64:$src, i8),
          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;

// sext, sext_load, zext, zext_load
def: Pat<(i16 (sext GR8:$src)),
          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(sextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
def: Pat<(i16 (zext GR8:$src)),
          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(zextloadi16i8 addr:$src),
          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;

// trunc patterns
def : Pat<(i16 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
                          sub_8bit)>,
      Requires<[Not64BitMode]>;
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
def : Pat<(i16 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
      Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
      Requires<[In64BitMode]>;

def immff00_ffff  : ImmLeaf<i32, [{
  return Imm >= 0xff00 && Imm <= 0xffff;
}]>;

// h-register tricks
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
          (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
          (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
      Requires<[Not64BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
          (EXTRACT_SUBREG
            (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_16bit)>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
          (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;

// h-register tricks.
// For now, be conservative on x86-64 and use an h-register extract only if the
// value is immediately zero-extended or stored, which are somewhat common
// cases. This uses a bunch of code to prevent a register requiring a REX prefix
// from being allocated in the same instruction as the h register, as there's
// currently no way to describe this requirement to the register allocator.

// h-register extract and zero-extend.
def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_32bit)>;
def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32rr8_NOREX
              (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
            sub_32bit)>;

// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
      Requires<[In64BitMode]>;

// Special pattern to catch the last step of __builtin_parity handling. Our
// goal is to use an xor of an h-register with the corresponding l-register.
// The above patterns would handle this on non 64-bit targets, but for 64-bit
// we need to be more careful. We're using a NOREX instruction here in case
// register allocation fails to keep the two registers together. So we need to
// make sure we can't accidentally mix R8-R15 with an h-register.
def : Pat<(X86xor_flag (i8 (trunc GR32:$src)),
                       (i8 (trunc (srl_su GR32:$src, (i8 8))))),
          (XOR8rr_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit),
                        (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;

// (shl x, 1) ==> (add x, x)
// Note that if x is undef (immediate or otherwise), we could theoretically
// end up with the two uses of x getting different values, producing a result
// where the least significant bit is not 0. However, the probability of this
// happening is considered low enough that this is officially not a
// "real problem".
def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;

def shiftMask8 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 3);
}]>;

def shiftMask16 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 4);
}]>;

def shiftMask32 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 5);
}]>;

def shiftMask64 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{
  return isUnneededShiftMask(N, 6);
}]>;


// Shift amount is implicitly masked.
multiclass MaskedShiftAmountPats<SDNode frag, string name> {
  // (shift x (and y, 31)) ==> (shift x, y)
  def : Pat<(frag GR8:$src1, (shiftMask32 CL)),
            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
  def : Pat<(frag GR16:$src1, (shiftMask32 CL)),
            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst),
            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst),
            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
            (!cast<Instruction>(name # "32mCL") addr:$dst)>;

  // (shift x (and y, 63)) ==> (shift x, y)
  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
}

defm : MaskedShiftAmountPats<shl, "SHL">;
defm : MaskedShiftAmountPats<srl, "SHR">;
defm : MaskedShiftAmountPats<sra, "SAR">;

// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
// because over-rotating produces the same result. This is noted in the Intel
// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
// amount could affect EFLAGS results, but that does not matter because we are
// not tracking flags for these nodes.
multiclass MaskedRotateAmountPats<SDNode frag, string name> {
  // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
  def : Pat<(frag GR8:$src1, (shiftMask8 CL)),
  (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
  def : Pat<(frag GR16:$src1, (shiftMask16 CL)),
  (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
  def : Pat<(frag GR32:$src1, (shiftMask32 CL)),
  (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
  def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst),
  (!cast<Instruction>(name # "8mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst),
  (!cast<Instruction>(name # "16mCL") addr:$dst)>;
  def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst),
  (!cast<Instruction>(name # "32mCL") addr:$dst)>;

  // (rot x (and y, 63)) ==> (rot x, y)
  def : Pat<(frag GR64:$src1, (shiftMask64 CL)),
  (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
  def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst),
  (!cast<Instruction>(name # "64mCL") addr:$dst)>;
}


defm : MaskedRotateAmountPats<rotl, "ROL">;
defm : MaskedRotateAmountPats<rotr, "ROR">;

// Double "funnel" shift amount is implicitly masked.
// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) (NOTE: modulo32)
def : Pat<(X86fshl GR16:$src1, GR16:$src2, (shiftMask32 CL)),
          (SHLD16rrCL GR16:$src1, GR16:$src2)>;
def : Pat<(X86fshr GR16:$src2, GR16:$src1, (shiftMask32 CL)),
          (SHRD16rrCL GR16:$src1, GR16:$src2)>;

// (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y)
def : Pat<(fshl GR32:$src1, GR32:$src2, (shiftMask32 CL)),
          (SHLD32rrCL GR32:$src1, GR32:$src2)>;
def : Pat<(fshr GR32:$src2, GR32:$src1, (shiftMask32 CL)),
          (SHRD32rrCL GR32:$src1, GR32:$src2)>;

// (fshl/fshr x (and y, 63)) ==> (fshl/fshr x, y)
def : Pat<(fshl GR64:$src1, GR64:$src2, (shiftMask64 CL)),
          (SHLD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(fshr GR64:$src2, GR64:$src1, (shiftMask64 CL)),
          (SHRD64rrCL GR64:$src1, GR64:$src2)>;

let Predicates = [HasBMI2] in {
  let AddedComplexity = 1 in {
    def : Pat<(sra GR32:$src1, (shiftMask32 GR8:$src2)),
              (SARX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(sra GR64:$src1, (shiftMask64 GR8:$src2)),
              (SARX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

    def : Pat<(srl GR32:$src1, (shiftMask32 GR8:$src2)),
              (SHRX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(srl GR64:$src1, (shiftMask64 GR8:$src2)),
              (SHRX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

    def : Pat<(shl GR32:$src1, (shiftMask32 GR8:$src2)),
              (SHLX32rr GR32:$src1,
                        (INSERT_SUBREG
                          (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
    def : Pat<(shl GR64:$src1, (shiftMask64 GR8:$src2)),
              (SHLX64rr GR64:$src1,
                        (INSERT_SUBREG
                          (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  }

  def : Pat<(sra (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
            (SARX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(sra (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
            (SARX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  def : Pat<(srl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
            (SHRX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(srl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
            (SHRX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  def : Pat<(shl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
            (SHLX32rm addr:$src1,
                      (INSERT_SUBREG
                        (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(shl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
            (SHLX64rm addr:$src1,
                      (INSERT_SUBREG
                        (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}

// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
                            Instruction BTS, Instruction BTC,
                            PatFrag ShiftMask> {
  def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
            (BTR RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
            (BTS RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
            (BTC RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;

  // Similar to above, but removing unneeded masking of the shift amount.
  def : Pat<(and RC:$src1, (rotl -2, (ShiftMask GR8:$src2))),
            (BTR RC:$src1,
                 (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(or RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
            (BTS RC:$src1,
                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(xor RC:$src1, (shl 1, (ShiftMask GR8:$src2))),
            (BTC RC:$src1,
                (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}

defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>;
defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>;
defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>;

//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//

// add reg, reg
def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;

// add reg, mem
def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
          (ADD8rm GR8:$src1, addr:$src2)>;
def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
          (ADD16rm GR16:$src1, addr:$src2)>;
def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
          (ADD32rm GR32:$src1, addr:$src2)>;
def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
          (ADD64rm GR64:$src1, addr:$src2)>;

// add reg, imm
def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(add GR16:$src1, i16immSExt8:$src2),
          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(add GR32:$src1, i32immSExt8:$src2),
          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt8:$src2),
          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt32:$src2),
          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;

// sub reg, reg
def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;

// sub reg, mem
def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
          (SUB8rm GR8:$src1, addr:$src2)>;
def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
          (SUB16rm GR16:$src1, addr:$src2)>;
def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
          (SUB32rm GR32:$src1, addr:$src2)>;
def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
          (SUB64rm GR64:$src1, addr:$src2)>;

// sub reg, imm
def : Pat<(sub GR8:$src1, imm:$src2),
          (SUB8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, imm:$src2),
          (SUB16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub GR32:$src1, imm:$src2),
          (SUB32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;

// sub 0, reg
def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;

// mul reg, reg
def : Pat<(mul GR16:$src1, GR16:$src2),
          (IMUL16rr GR16:$src1, GR16:$src2)>;
def : Pat<(mul GR32:$src1, GR32:$src2),
          (IMUL32rr GR32:$src1, GR32:$src2)>;
def : Pat<(mul GR64:$src1, GR64:$src2),
          (IMUL64rr GR64:$src1, GR64:$src2)>;

// mul reg, mem
def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
          (IMUL16rm GR16:$src1, addr:$src2)>;
def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
          (IMUL32rm GR32:$src1, addr:$src2)>;
def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
          (IMUL64rm GR64:$src1, addr:$src2)>;

// mul reg, imm
def : Pat<(mul GR16:$src1, imm:$src2),
          (IMUL16rri GR16:$src1, imm:$src2)>;
def : Pat<(mul GR32:$src1, imm:$src2),
          (IMUL32rri GR32:$src1, imm:$src2)>;
def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;

// reg = mul mem, imm
def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
          (IMUL16rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
          (IMUL32rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;

// Increment/Decrement reg.
// Do not make INC/DEC if it is slow
let Predicates = [UseIncDec] in {
  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;

  def : Pat<(X86add_flag_nocf GR8:$src, -1),  (DEC8r GR8:$src)>;
  def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>;
  def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>;
  def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>;
  def : Pat<(X86sub_flag_nocf GR8:$src, -1),  (INC8r GR8:$src)>;
  def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>;
  def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>;
  def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>;
}

// or reg/reg.
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;

// or reg/mem
def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
          (OR8rm GR8:$src1, addr:$src2)>;
def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
          (OR16rm GR16:$src1, addr:$src2)>;
def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
          (OR32rm GR32:$src1, addr:$src2)>;
def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
          (OR64rm GR64:$src1, addr:$src2)>;

// or reg/imm
def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, i16immSExt8:$src2),
          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(or GR32:$src1, i32immSExt8:$src2),
          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt8:$src2),
          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt32:$src2),
          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// xor reg/reg
def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;

// xor reg/mem
def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
          (XOR8rm GR8:$src1, addr:$src2)>;
def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
          (XOR16rm GR16:$src1, addr:$src2)>;
def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
          (XOR32rm GR32:$src1, addr:$src2)>;
def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
          (XOR64rm GR64:$src1, addr:$src2)>;

// xor reg/imm
def : Pat<(xor GR8:$src1, imm:$src2),
          (XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, imm:$src2),
          (XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(xor GR32:$src1, imm:$src2),
          (XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;

// and reg/reg
def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;

// and reg/mem
def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
          (AND8rm GR8:$src1, addr:$src2)>;
def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
          (AND16rm GR16:$src1, addr:$src2)>;
def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
          (AND32rm GR32:$src1, addr:$src2)>;
def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
          (AND64rm GR64:$src1, addr:$src2)>;

// and reg/imm
def : Pat<(and GR8:$src1, imm:$src2),
          (AND8ri GR8:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, imm:$src2),
          (AND16ri GR16:$src1, imm:$src2)>;
def : Pat<(and GR32:$src1, imm:$src2),
          (AND32ri GR32:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, i16immSExt8:$src2),
          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(and GR32:$src1, i32immSExt8:$src2),
          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt8:$src2),
          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt32:$src2),
          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;

// Bit scan instruction patterns to match explicit zero-undef behavior.
def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;

// When HasMOVBE is enabled it is possible to get a non-legalized
// register-register 16 bit bswap. This maps it to a ROL instruction.
let Predicates = [HasMOVBE] in {
 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
}