aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
blob: 2b819641ee5fc77f074b0fbabf79df1b14c26706 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>

using namespace llvm;

#define DEBUG_TYPE "mccodeemitter"

namespace {

class X86MCCodeEmitter : public MCCodeEmitter {
  const MCInstrInfo &MCII;
  MCContext &Ctx;

public:
  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
      : MCII(mcii), Ctx(ctx) {}
  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
  X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
  ~X86MCCodeEmitter() override = default;

  void emitPrefix(const MCInst &MI, raw_ostream &OS,
                  const MCSubtargetInfo &STI) const override;

  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const override;

private:
  unsigned getX86RegNum(const MCOperand &MO) const;

  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const;

  /// \param MI a single low-level machine instruction.
  /// \param OpNum the operand #.
  /// \returns true if the OpNumth operand of MI  require a bit to be set in
  /// REX prefix.
  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const;

  void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
                     MCFixupKind FixupKind, uint64_t StartByte, raw_ostream &OS,
                     SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;

  void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
                        raw_ostream &OS) const;

  void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
                   raw_ostream &OS) const;

  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
                        uint64_t TSFlags, bool HasREX, uint64_t StartByte,
                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI,
                        bool ForceSIB = false) const;

  bool emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
                      const MCSubtargetInfo &STI, raw_ostream &OS) const;

  void emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
                           raw_ostream &OS) const;

  void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI,
                                 raw_ostream &OS) const;

  bool emitOpcodePrefix(int MemOperand, const MCInst &MI,
                        const MCSubtargetInfo &STI, raw_ostream &OS) const;

  bool emitREXPrefix(int MemOperand, const MCInst &MI,
                     const MCSubtargetInfo &STI, raw_ostream &OS) const;
};

} // end anonymous namespace

static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
  return RM | (RegOpcode << 3) | (Mod << 6);
}

static void emitByte(uint8_t C, raw_ostream &OS) { OS << static_cast<char>(C); }

static void emitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) {
  // Output the constant in little endian byte order.
  for (unsigned i = 0; i != Size; ++i) {
    emitByte(Val & 255, OS);
    Val >>= 8;
  }
}

/// Determine if this immediate can fit in a disp8 or a compressed disp8 for
/// EVEX instructions. \p will be set to the value to pass to the ImmOffset
/// parameter of emitImmediate.
static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) {
  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;

  int CD8_Scale =
      (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
  if (!HasEVEX || CD8_Scale == 0)
    return isInt<8>(Value);

  assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!");
  if (Value & (CD8_Scale - 1)) // Unaligned offset
    return false;

  int CDisp8 = Value / CD8_Scale;
  if (!isInt<8>(CDisp8))
    return false;

  // ImmOffset will be added to Value in emitImmediate leaving just CDisp8.
  ImmOffset = CDisp8 - Value;
  return true;
}

/// \returns the appropriate fixup kind to use for an immediate in an
/// instruction with the specified TSFlags.
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
  unsigned Size = X86II::getSizeOfImm(TSFlags);
  bool isPCRel = X86II::isImmPCRel(TSFlags);

  if (X86II::isImmSigned(TSFlags)) {
    switch (Size) {
    default:
      llvm_unreachable("Unsupported signed fixup size!");
    case 4:
      return MCFixupKind(X86::reloc_signed_4byte);
    }
  }
  return MCFixup::getKindForSize(Size, isPCRel);
}

enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };

/// Check if this expression starts with  _GLOBAL_OFFSET_TABLE_ and if it is
/// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
/// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
/// binary expression.
static GlobalOffsetTableExprKind
startsWithGlobalOffsetTable(const MCExpr *Expr) {
  const MCExpr *RHS = nullptr;
  if (Expr->getKind() == MCExpr::Binary) {
    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    Expr = BE->getLHS();
    RHS = BE->getRHS();
  }

  if (Expr->getKind() != MCExpr::SymbolRef)
    return GOT_None;

  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
  const MCSymbol &S = Ref->getSymbol();
  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
    return GOT_None;
  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
    return GOT_SymDiff;
  return GOT_Normal;
}

static bool hasSecRelSymbolRef(const MCExpr *Expr) {
  if (Expr->getKind() == MCExpr::SymbolRef) {
    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
  }
  return false;
}

static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 &&
       Opcode != X86::JCC_4) ||
      getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
    return false;

  unsigned CurOp = X86II::getOperandBias(Desc);
  const MCOperand &Op = MI.getOperand(CurOp);
  if (!Op.isExpr())
    return false;

  const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
  return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
}

unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const {
  return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
}

unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI,
                                             unsigned OpNum) const {
  return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg());
}

/// \param MI a single low-level machine instruction.
/// \param OpNum the operand #.
/// \returns true if the OpNumth operand of MI  require a bit to be set in
/// REX prefix.
bool X86MCCodeEmitter::isREXExtendedReg(const MCInst &MI,
                                        unsigned OpNum) const {
  return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
}

void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
                                     unsigned Size, MCFixupKind FixupKind,
                                     uint64_t StartByte, raw_ostream &OS,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     int ImmOffset) const {
  const MCExpr *Expr = nullptr;
  if (DispOp.isImm()) {
    // If this is a simple integer displacement that doesn't require a
    // relocation, emit it now.
    if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
        FixupKind != FK_PCRel_4) {
      emitConstant(DispOp.getImm() + ImmOffset, Size, OS);
      return;
    }
    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
  } else {
    Expr = DispOp.getExpr();
  }

  // If we have an immoffset, add it to the expression.
  if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
    GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
    if (Kind != GOT_None) {
      assert(ImmOffset == 0);

      if (Size == 8) {
        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
      } else {
        assert(Size == 4);
        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
      }

      if (Kind == GOT_Normal)
        ImmOffset = static_cast<int>(OS.tell() - StartByte);
    } else if (Expr->getKind() == MCExpr::SymbolRef) {
      if (hasSecRelSymbolRef(Expr)) {
        FixupKind = MCFixupKind(FK_SecRel_4);
      }
    } else if (Expr->getKind() == MCExpr::Binary) {
      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
      if (hasSecRelSymbolRef(Bin->getLHS()) ||
          hasSecRelSymbolRef(Bin->getRHS())) {
        FixupKind = MCFixupKind(FK_SecRel_4);
      }
    }
  }

  // If the fixup is pc-relative, we need to bias the value to be relative to
  // the start of the field, not the end of the field.
  if (FixupKind == FK_PCRel_4 ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
      FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
    ImmOffset -= 4;
    // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
    // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
    // this needs to be a GOTPC32 relocation.
    if (startsWithGlobalOffsetTable(Expr) != GOT_None)
      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
  }
  if (FixupKind == FK_PCRel_2)
    ImmOffset -= 2;
  if (FixupKind == FK_PCRel_1)
    ImmOffset -= 1;

  if (ImmOffset)
    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
                                   Ctx);

  // Emit a symbolic constant as a fixup and 4 zeros.
  Fixups.push_back(MCFixup::create(static_cast<uint32_t>(OS.tell() - StartByte),
                                   Expr, FixupKind, Loc));
  emitConstant(0, Size, OS);
}

void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg,
                                        unsigned RegOpcodeFld,
                                        raw_ostream &OS) const {
  emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), OS);
}

void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
                                   raw_ostream &OS) const {
  // SIB byte is in the same format as the modRMByte.
  emitByte(modRMByte(SS, Index, Base), OS);
}

void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
                                        unsigned RegOpcodeField,
                                        uint64_t TSFlags, bool HasREX,
                                        uint64_t StartByte, raw_ostream &OS,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI,
                                        bool ForceSIB) const {
  const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
  const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
  const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
  unsigned BaseReg = Base.getReg();

  // Handle %rip relative addressing.
  if (BaseReg == X86::RIP ||
      BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
    assert(STI.hasFeature(X86::Is64Bit) &&
           "Rip-relative addressing requires 64-bit mode");
    assert(IndexReg.getReg() == 0 && !ForceSIB &&
           "Invalid rip-relative address");
    emitByte(modRMByte(0, RegOpcodeField, 5), OS);

    unsigned Opcode = MI.getOpcode();
    unsigned FixupKind = [&]() {
      // Enable relaxed relocation only for a MCSymbolRefExpr.  We cannot use a
      // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4).
      if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Disp.getExpr())))
        return X86::reloc_riprel_4byte;

      // Certain loads for GOT references can be relocated against the symbol
      // directly if the symbol ends up in the same linkage unit.
      switch (Opcode) {
      default:
        return X86::reloc_riprel_4byte;
      case X86::MOV64rm:
        // movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a
        // special case because COFF and Mach-O don't support ELF's more
        // flexible R_X86_64_REX_GOTPCRELX relaxation.
        assert(HasREX);
        return X86::reloc_riprel_4byte_movq_load;
      case X86::ADC32rm:
      case X86::ADD32rm:
      case X86::AND32rm:
      case X86::CMP32rm:
      case X86::MOV32rm:
      case X86::OR32rm:
      case X86::SBB32rm:
      case X86::SUB32rm:
      case X86::TEST32mr:
      case X86::XOR32rm:
      case X86::CALL64m:
      case X86::JMP64m:
      case X86::TAILJMPm64:
      case X86::TEST64mr:
      case X86::ADC64rm:
      case X86::ADD64rm:
      case X86::AND64rm:
      case X86::CMP64rm:
      case X86::OR64rm:
      case X86::SBB64rm:
      case X86::SUB64rm:
      case X86::XOR64rm:
        return HasREX ? X86::reloc_riprel_4byte_relax_rex
                      : X86::reloc_riprel_4byte_relax;
      }
    }();

    // rip-relative addressing is actually relative to the *next* instruction.
    // Since an immediate can follow the mod/rm byte for an instruction, this
    // means that we need to bias the displacement field of the instruction with
    // the size of the immediate field. If we have this case, add it into the
    // expression to emit.
    // Note: rip-relative addressing using immediate displacement values should
    // not be adjusted, assuming it was the user's intent.
    int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
                      ? X86II::getSizeOfImm(TSFlags)
                      : 0;

    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
                  Fixups, -ImmSize);
    return;
  }

  unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;

  // 16-bit addressing forms of the ModR/M byte have a different encoding for
  // the R/M field and are far more limited in which registers can be used.
  if (X86_MC::is16BitMemOperand(MI, Op, STI)) {
    if (BaseReg) {
      // For 32-bit addressing, the row and column values in Table 2-2 are
      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
      // some special cases. And getX86RegNum reflects that numbering.
      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
      // while values 0-3 indicate the allowed combinations (base+index) of
      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
      //
      // R16Table[] is a lookup from the normal RegNo, to the row values from
      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
      static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
      unsigned RMfield = R16Table[BaseRegNo];

      assert(RMfield && "invalid 16-bit base register");

      if (IndexReg.getReg()) {
        unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];

        assert(IndexReg16 && "invalid 16-bit index register");
        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
        assert(((IndexReg16 ^ RMfield) & 2) &&
               "invalid 16-bit base/index register combination");
        assert(Scale.getImm() == 1 &&
               "invalid scale for 16-bit memory reference");

        // Allow base/index to appear in either order (although GAS doesn't).
        if (IndexReg16 & 2)
          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
        else
          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
      }

      if (Disp.isImm() && isInt<8>(Disp.getImm())) {
        if (Disp.getImm() == 0 && RMfield != 6) {
          // There is no displacement; just the register.
          emitByte(modRMByte(0, RegOpcodeField, RMfield), OS);
          return;
        }
        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
        emitByte(modRMByte(1, RegOpcodeField, RMfield), OS);
        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups);
        return;
      }
      // This is the [REG]+disp16 case.
      emitByte(modRMByte(2, RegOpcodeField, RMfield), OS);
    } else {
      assert(IndexReg.getReg() == 0 && "Unexpected index register!");
      // There is no BaseReg; this is the plain [disp16] case.
      emitByte(modRMByte(0, RegOpcodeField, 6), OS);
    }

    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
    emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, OS, Fixups);
    return;
  }

  // Check for presence of {disp8} or {disp32} pseudo prefixes.
  bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8;
  bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32;

  // We only allow no displacement if no pseudo prefix is present.
  bool AllowNoDisp = !UseDisp8 && !UseDisp32;
  // Disp8 is allowed unless the {disp32} prefix is present.
  bool AllowDisp8 = !UseDisp32;

  // Determine whether a SIB byte is needed.
  if (// The SIB byte must be used if there is an index register or the
      // encoding requires a SIB byte.
      !ForceSIB && IndexReg.getReg() == 0 &&
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
      // encode to an R/M value of 4, which indicates that a SIB byte is
      // present.
      BaseRegNo != N86::ESP &&
      // If there is no base register and we're in 64-bit mode, we need a SIB
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
      (!STI.hasFeature(X86::Is64Bit) || BaseReg != 0)) {

    if (BaseReg == 0) { // [disp32]     in X86-32 mode
      emitByte(modRMByte(0, RegOpcodeField, 5), OS);
      emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, OS, Fixups);
      return;
    }

    // If the base is not EBP/ESP/R12/R13 and there is no displacement, use
    // simple indirect register encoding, this handles addresses like [EAX].
    // The encoding for [EBP] or[R13] with no displacement means [disp32] so we
    // handle it by emitting a displacement of 0 later.
    if (BaseRegNo != N86::EBP) {
      if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) {
        emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
        return;
      }

      // If the displacement is @tlscall, treat it as a zero.
      if (Disp.isExpr()) {
        auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
        if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
          // This is exclusively used by call *a@tlscall(base). The relocation
          // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
          Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
          emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), OS);
          return;
        }
      }
    }

    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    // Including a compressed disp8 for EVEX instructions that support it.
    // This also handles the 0 displacement for [EBP] or [R13]. We can't use
    // disp8 if the {disp32} pseudo prefix is present.
    if (Disp.isImm() && AllowDisp8) {
      int ImmOffset = 0;
      if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
        emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), OS);
        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
                      ImmOffset);
        return;
      }
    }

    // Otherwise, emit the most general non-SIB encoding: [REG+disp32].
    // Displacement may be 0 for [EBP] or [R13] case if {disp32} pseudo prefix
    // prevented using disp8 above.
    emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), OS);
    unsigned Opcode = MI.getOpcode();
    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
                                                : X86::reloc_signed_4byte;
    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, OS,
                  Fixups);
    return;
  }

  // We need a SIB byte, so start by outputting the ModR/M byte first
  assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
         "Cannot use ESP as index reg!");

  bool ForceDisp32 = false;
  bool ForceDisp8 = false;
  int ImmOffset = 0;
  if (BaseReg == 0) {
    // If there is no base register, we emit the special case SIB byte with
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    BaseRegNo = 5;
    emitByte(modRMByte(0, RegOpcodeField, 4), OS);
    ForceDisp32 = true;
  } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp &&
             // Base reg can't be EBP/RBP/R13 as that would end up with '5' as
             // the base field, but that is the magic [*] nomenclature that
             // indicates no base when mod=0. For these cases we'll emit a 0
             // displacement instead.
             BaseRegNo != N86::EBP) {
    // Emit no displacement ModR/M byte
    emitByte(modRMByte(0, RegOpcodeField, 4), OS);
  } else if (Disp.isImm() && AllowDisp8 &&
             isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
    // Displacement fits in a byte or matches an EVEX compressed disp8, use
    // disp8 encoding. This also handles EBP/R13 base with 0 displacement unless
    // {disp32} pseudo prefix was used.
    emitByte(modRMByte(1, RegOpcodeField, 4), OS);
    ForceDisp8 = true;
  } else {
    // Otherwise, emit the normal disp32 encoding.
    emitByte(modRMByte(2, RegOpcodeField, 4), OS);
    ForceDisp32 = true;
  }

  // Calculate what the SS field value should be...
  static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
  unsigned SS = SSTable[Scale.getImm()];

  unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4;

  emitSIBByte(SS, IndexRegNo, BaseRegNo, OS);

  // Do we need to output a displacement?
  if (ForceDisp8)
    emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, OS, Fixups,
                  ImmOffset);
  else if (ForceDisp32)
    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
                  StartByte, OS, Fixups);
}

/// Emit all instruction prefixes.
///
/// \returns true if REX prefix is used, otherwise returns false.
bool X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
                                      const MCSubtargetInfo &STI,
                                      raw_ostream &OS) const {
  uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags;
  // Determine where the memory operand starts, if present.
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
  // Emit segment override opcode prefix as needed.
  if (MemoryOperand != -1) {
    MemoryOperand += CurOp;
    emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, OS);
  }

  // Emit the repeat opcode prefix as needed.
  unsigned Flags = MI.getFlags();
  if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
    emitByte(0xF3, OS);
  if (Flags & X86::IP_HAS_REPEAT_NE)
    emitByte(0xF2, OS);

  // Emit the address size opcode prefix as needed.
  if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) ||
      Flags & X86::IP_HAS_AD_SIZE)
    emitByte(0x67, OS);

  uint64_t Form = TSFlags & X86II::FormMask;
  switch (Form) {
  default:
    break;
  case X86II::RawFrmDstSrc: {
    // Emit segment override opcode prefix as needed (not for %ds).
    if (MI.getOperand(2).getReg() != X86::DS)
      emitSegmentOverridePrefix(2, MI, OS);
    CurOp += 3; // Consume operands.
    break;
  }
  case X86II::RawFrmSrc: {
    // Emit segment override opcode prefix as needed (not for %ds).
    if (MI.getOperand(1).getReg() != X86::DS)
      emitSegmentOverridePrefix(1, MI, OS);
    CurOp += 2; // Consume operands.
    break;
  }
  case X86II::RawFrmDst: {
    ++CurOp; // Consume operand.
    break;
  }
  case X86II::RawFrmMemOffs: {
    // Emit segment override opcode prefix as needed.
    emitSegmentOverridePrefix(1, MI, OS);
    break;
  }
  }

  // REX prefix is optional, but if used must be immediately before the opcode
  // Encoding type for this instruction.
  uint64_t Encoding = TSFlags & X86II::EncodingMask;
  bool HasREX = false;
  if (Encoding)
    emitVEXOpcodePrefix(MemoryOperand, MI, OS);
  else
    HasREX = emitOpcodePrefix(MemoryOperand, MI, STI, OS);

  return HasREX;
}

/// AVX instructions are encoded using a opcode prefix called VEX.
void X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
                                           raw_ostream &OS) const {
  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
  uint64_t TSFlags = Desc.TSFlags;

  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");

  uint64_t Encoding = TSFlags & X86II::EncodingMask;
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;

  // VEX_R: opcode externsion equivalent to REX.R in
  // 1's complement (inverted) form
  //
  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
  //  0: Same as REX_R=1 (64 bit mode only)
  //
  uint8_t VEX_R = 0x1;
  uint8_t EVEX_R2 = 0x1;

  // VEX_X: equivalent to REX.X, only used when a
  // register is used for index in SIB Byte.
  //
  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
  //  0: Same as REX.X=1 (64-bit mode only)
  uint8_t VEX_X = 0x1;

  // VEX_B:
  //
  //  1: Same as REX_B=0 (ignored in 32-bit mode)
  //  0: Same as REX_B=1 (64 bit mode only)
  //
  uint8_t VEX_B = 0x1;

  // VEX_W: opcode specific (use like REX.W, or used for
  // opcode extension, or ignored, depending on the opcode byte)
  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;

  // VEX_5M (VEX m-mmmmm field):
  //
  //  0b00000: Reserved for future use
  //  0b00001: implied 0F leading opcode
  //  0b00010: implied 0F 38 leading opcode bytes
  //  0b00011: implied 0F 3A leading opcode bytes
  //  0b00100: Reserved for future use
  //  0b00101: VEX MAP5
  //  0b00110: VEX MAP6
  //  0b00111-0b11111: Reserved for future use
  //  0b01000: XOP map select - 08h instructions with imm byte
  //  0b01001: XOP map select - 09h instructions with no imm byte
  //  0b01010: XOP map select - 0Ah instructions with imm dword
  uint8_t VEX_5M;
  switch (TSFlags & X86II::OpMapMask) {
  default:
    llvm_unreachable("Invalid prefix!");
  case X86II::TB:
    VEX_5M = 0x1;
    break; // 0F
  case X86II::T8:
    VEX_5M = 0x2;
    break; // 0F 38
  case X86II::TA:
    VEX_5M = 0x3;
    break; // 0F 3A
  case X86II::XOP8:
    VEX_5M = 0x8;
    break;
  case X86II::XOP9:
    VEX_5M = 0x9;
    break;
  case X86II::XOPA:
    VEX_5M = 0xA;
    break;
  case X86II::T_MAP5:
    VEX_5M = 0x5;
    break;
  case X86II::T_MAP6:
    VEX_5M = 0x6;
    break;
  }

  // VEX_4V (VEX vvvv field): a register specifier
  // (in 1's complement form) or 1111 if unused.
  uint8_t VEX_4V = 0xf;
  uint8_t EVEX_V2 = 0x1;

  // EVEX_L2/VEX_L (Vector Length):
  //
  // L2 L
  //  0 0: scalar or 128-bit vector
  //  0 1: 256-bit vector
  //  1 0: 512-bit vector
  //
  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;

  // VEX_PP: opcode extension providing equivalent
  // functionality of a SIMD prefix
  //
  //  0b00: None
  //  0b01: 66
  //  0b10: F3
  //  0b11: F2
  //
  uint8_t VEX_PP = 0;
  switch (TSFlags & X86II::OpPrefixMask) {
  case X86II::PD:
    VEX_PP = 0x1;
    break; // 66
  case X86II::XS:
    VEX_PP = 0x2;
    break; // F3
  case X86II::XD:
    VEX_PP = 0x3;
    break; // F2
  }

  // EVEX_U
  uint8_t EVEX_U = 1; // Always '1' so far

  // EVEX_z
  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;

  // EVEX_b
  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;

  // EVEX_rc
  uint8_t EVEX_rc = 0;

  // EVEX_aaa
  uint8_t EVEX_aaa = 0;

  bool EncodeRC = false;

  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  switch (TSFlags & X86II::FormMask) {
  default:
    llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
  case X86II::MRMDestMem4VOp3CC: {
    //  MemAddr, src1(ModR/M), src2(VEX_4V)
    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;

    CurOp += X86::AddrNumOperands;

    unsigned RegEnc = getX86RegEncoding(MI, ++CurOp);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_4V = ~VRegEnc & 0xf;
    break;
  }
  case X86II::MRM_C0:
  case X86II::RawFrm:
  case X86II::PrefixByte:
    break;
  case X86II::MRMDestMemFSIB:
  case X86II::MRMDestMem: {
    // MRMDestMem instructions forms:
    //  MemAddr, src1(ModR/M)
    //  MemAddr, src1(VEX_4V), src2(ModR/M)
    //  MemAddr, src1(ModR/M), imm8
    //
    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    CurOp += X86::AddrNumOperands;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;
    break;
  }
  case X86II::MRMSrcMemFSIB:
  case X86II::MRMSrcMem: {
    // MRMSrcMem instructions forms:
    //  src1(ModR/M), MemAddr
    //  src1(ModR/M), src2(VEX_4V), MemAddr
    //  src1(ModR/M), MemAddr, imm8
    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
    //
    //  FMA4:
    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    break;
  }
  case X86II::MRMSrcMem4VOp3: {
    // Instruction format for 4VOp3:
    //   src1(ModR/M), MemAddr, src3(VEX_4V)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;

    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
    break;
  }
  case X86II::MRMSrcMemOp4: {
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_4V = ~VRegEnc & 0xf;

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    break;
  }
  case X86II::MRM0m:
  case X86II::MRM1m:
  case X86II::MRM2m:
  case X86II::MRM3m:
  case X86II::MRM4m:
  case X86II::MRM5m:
  case X86II::MRM6m:
  case X86II::MRM7m: {
    // MRM[0-9]m instructions forms:
    //  MemAddr
    //  src1(VEX_4V), MemAddr
    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    break;
  }
  case X86II::MRMSrcReg: {
    // MRMSrcReg instructions forms:
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    //  dst(ModR/M), src1(ModR/M)
    //  dst(ModR/M), src1(ModR/M), imm8
    //
    //  FMA4:
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;

    if (EVEX_b) {
      if (HasEVEX_RC) {
        unsigned RcOperand = NumOps - 1;
        assert(RcOperand >= CurOp);
        EVEX_rc = MI.getOperand(RcOperand).getImm();
        assert(EVEX_rc <= 3 && "Invalid rounding control!");
      }
      EncodeRC = true;
    }
    break;
  }
  case X86II::MRMSrcReg4VOp3: {
    // Instruction format for 4VOp3:
    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;

    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
    break;
  }
  case X86II::MRMSrcRegOp4: {
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_4V = ~VRegEnc & 0xf;

    // Skip second register source (encoded in Imm[7:4])
    ++CurOp;

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;
    break;
  }
  case X86II::MRMDestReg: {
    // MRMDestReg instructions forms:
    //  dst(ModR/M), src(ModR/M)
    //  dst(ModR/M), src(ModR/M), imm8
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;
    if (EVEX_b)
      EncodeRC = true;
    break;
  }
  case X86II::MRMr0: {
    // MRMr0 instructions forms:
    //  11:rrr:000
    //  dst(ModR/M)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;
    break;
  }
  case X86II::MRM0r:
  case X86II::MRM1r:
  case X86II::MRM2r:
  case X86II::MRM3r:
  case X86II::MRM4r:
  case X86II::MRM5r:
  case X86II::MRM6r:
  case X86II::MRM7r: {
    // MRM0r-MRM7r instructions forms:
    //  dst(VEX_4V), src(ModR/M), imm8
    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }
    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;
    break;
  }
  }

  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
    // VEX opcode prefix can have 2 or 3 bytes
    //
    //  3 bytes:
    //    +-----+ +--------------+ +-------------------+
    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    //    +-----+ +--------------+ +-------------------+
    //  2 bytes:
    //    +-----+ +-------------------+
    //    | C5h | | R | vvvv | L | pp |
    //    +-----+ +-------------------+
    //
    //  XOP uses a similar prefix:
    //    +-----+ +--------------+ +-------------------+
    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
    //    +-----+ +--------------+ +-------------------+
    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);

    // Can we use the 2 byte VEX prefix?
    if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX &&
        VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
      emitByte(0xC5, OS);
      emitByte(LastByte | (VEX_R << 7), OS);
      return;
    }

    // 3 byte VEX prefix
    emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, OS);
    emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, OS);
    emitByte(LastByte | (VEX_W << 7), OS);
  } else {
    assert(Encoding == X86II::EVEX && "unknown encoding!");
    // EVEX opcode prefix can have 4 bytes
    //
    // +-----+ +--------------+ +-------------------+ +------------------------+
    // | 62h | | RXBR' | 0mmm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
    // +-----+ +--------------+ +-------------------+ +------------------------+
    assert((VEX_5M & 0x7) == VEX_5M &&
           "More than 3 significant bits in VEX.m-mmmm fields for EVEX!");

    emitByte(0x62, OS);
    emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) |
                 VEX_5M,
             OS);
    emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, OS);
    if (EncodeRC)
      emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) |
                   EVEX_aaa,
               OS);
    else
      emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) |
                   (EVEX_V2 << 3) | EVEX_aaa,
               OS);
  }
}

/// Emit REX prefix which specifies
///   1) 64-bit instructions,
///   2) non-default operand size, and
///   3) use of X86-64 extended registers.
///
/// \returns true if REX prefix is used, otherwise returns false.
bool X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI,
                                     const MCSubtargetInfo &STI,
                                     raw_ostream &OS) const {
  uint8_t REX = [&, MemOperand]() {
    uint8_t REX = 0;
    bool UsesHighByteReg = false;

    const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
    uint64_t TSFlags = Desc.TSFlags;

    if (TSFlags & X86II::REX_W)
      REX |= 1 << 3; // set REX.W

    if (MI.getNumOperands() == 0)
      return REX;

    unsigned NumOps = MI.getNumOperands();
    unsigned CurOp = X86II::getOperandBias(Desc);

    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
    for (unsigned i = CurOp; i != NumOps; ++i) {
      const MCOperand &MO = MI.getOperand(i);
      if (MO.isReg()) {
        unsigned Reg = MO.getReg();
        if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH ||
            Reg == X86::DH)
          UsesHighByteReg = true;
        if (X86II::isX86_64NonExtLowByteReg(Reg))
          // FIXME: The caller of determineREXPrefix slaps this prefix onto
          // anything that returns non-zero.
          REX |= 0x40; // REX fixed encoding prefix
      } else if (MO.isExpr() && STI.getTargetTriple().isX32()) {
        // GOTTPOFF and TLSDESC relocations require a REX prefix to allow
        // linker optimizations: even if the instructions we see may not require
        // any prefix, they may be replaced by instructions that do. This is
        // handled as a special case here so that it also works for hand-written
        // assembly without the user needing to write REX, as with GNU as.
        const auto *Ref = dyn_cast<MCSymbolRefExpr>(MO.getExpr());
        if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF ||
                    Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) {
          REX |= 0x40; // REX fixed encoding prefix
        }
      }
    }

    switch (TSFlags & X86II::FormMask) {
    case X86II::AddRegFrm:
      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
      break;
    case X86II::MRMSrcReg:
    case X86II::MRMSrcRegCC:
      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
      break;
    case X86II::MRMSrcMem:
    case X86II::MRMSrcMemCC:
      REX |= isREXExtendedReg(MI, CurOp++) << 2;                        // REX.R
      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
      CurOp += X86::AddrNumOperands;
      break;
    case X86II::MRMDestReg:
      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
      break;
    case X86II::MRMDestMem:
      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
      CurOp += X86::AddrNumOperands;
      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
      break;
    case X86II::MRMXmCC:
    case X86II::MRMXm:
    case X86II::MRM0m:
    case X86II::MRM1m:
    case X86II::MRM2m:
    case X86II::MRM3m:
    case X86II::MRM4m:
    case X86II::MRM5m:
    case X86II::MRM6m:
    case X86II::MRM7m:
      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
      REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
      break;
    case X86II::MRMXrCC:
    case X86II::MRMXr:
    case X86II::MRM0r:
    case X86II::MRM1r:
    case X86II::MRM2r:
    case X86II::MRM3r:
    case X86II::MRM4r:
    case X86II::MRM5r:
    case X86II::MRM6r:
    case X86II::MRM7r:
      REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
      break;
    case X86II::MRMr0:
      REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
      break;
    case X86II::MRMDestMemFSIB:
      llvm_unreachable("FSIB format never need REX prefix!");
    }
    if (REX && UsesHighByteReg)
      report_fatal_error(
          "Cannot encode high byte register in REX-prefixed instruction");
    return REX;
  }();

  if (!REX)
    return false;

  emitByte(0x40 | REX, OS);
  return true;
}

/// Emit segment override opcode prefix as needed.
void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned SegOperand,
                                                 const MCInst &MI,
                                                 raw_ostream &OS) const {
  // Check for explicit segment override on memory operand.
  if (unsigned Reg = MI.getOperand(SegOperand).getReg())
    emitByte(X86::getSegmentOverridePrefixForReg(Reg), OS);
}

/// Emit all instruction prefixes prior to the opcode.
///
/// \param MemOperand the operand # of the start of a memory operand if present.
/// If not present, it is -1.
///
/// \returns true if REX prefix is used, otherwise returns false.
bool X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI,
                                        const MCSubtargetInfo &STI,
                                        raw_ostream &OS) const {
  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
  uint64_t TSFlags = Desc.TSFlags;

  // Emit the operand size opcode prefix as needed.
  if ((TSFlags & X86II::OpSizeMask) ==
      (STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16))
    emitByte(0x66, OS);

  // Emit the LOCK opcode prefix.
  if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
    emitByte(0xF0, OS);

  // Emit the NOTRACK opcode prefix.
  if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
    emitByte(0x3E, OS);

  switch (TSFlags & X86II::OpPrefixMask) {
  case X86II::PD: // 66
    emitByte(0x66, OS);
    break;
  case X86II::XS: // F3
    emitByte(0xF3, OS);
    break;
  case X86II::XD: // F2
    emitByte(0xF2, OS);
    break;
  }

  // Handle REX prefix.
  assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) &&
         "REX.W requires 64bit mode.");
  bool HasREX = STI.hasFeature(X86::Is64Bit)
                    ? emitREXPrefix(MemOperand, MI, STI, OS)
                    : false;

  // 0x0F escape code must be emitted just before the opcode.
  switch (TSFlags & X86II::OpMapMask) {
  case X86II::TB:        // Two-byte opcode map
  case X86II::T8:        // 0F 38
  case X86II::TA:        // 0F 3A
  case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
    emitByte(0x0F, OS);
    break;
  }

  switch (TSFlags & X86II::OpMapMask) {
  case X86II::T8: // 0F 38
    emitByte(0x38, OS);
    break;
  case X86II::TA: // 0F 3A
    emitByte(0x3A, OS);
    break;
  }

  return HasREX;
}

void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS,
                                  const MCSubtargetInfo &STI) const {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  uint64_t TSFlags = Desc.TSFlags;

  // Pseudo instructions don't get encoded.
  if (X86II::isPseudo(TSFlags))
    return;

  unsigned CurOp = X86II::getOperandBias(Desc);

  emitPrefixImpl(CurOp, MI, STI, OS);
}

void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
                                         SmallVectorImpl<MCFixup> &Fixups,
                                         const MCSubtargetInfo &STI) const {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  uint64_t TSFlags = Desc.TSFlags;

  // Pseudo instructions don't get encoded.
  if (X86II::isPseudo(TSFlags))
    return;

  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  uint64_t StartByte = OS.tell();

  bool HasREX = emitPrefixImpl(CurOp, MI, STI, OS);

  // It uses the VEX.VVVV field?
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;

  // It uses the EVEX.aaa field?
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;

  // Used if a register is encoded in 7:4 of immediate.
  unsigned I8RegNum = 0;

  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);

  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
    BaseOpcode = 0x0F; // Weird 3DNow! encoding.

  unsigned OpcodeOffset = 0;

  uint64_t Form = TSFlags & X86II::FormMask;
  switch (Form) {
  default:
    errs() << "FORM: " << Form << "\n";
    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
  case X86II::Pseudo:
    llvm_unreachable("Pseudo instruction shouldn't be emitted");
  case X86II::RawFrmDstSrc:
  case X86II::RawFrmSrc:
  case X86II::RawFrmDst:
  case X86II::PrefixByte:
    emitByte(BaseOpcode, OS);
    break;
  case X86II::AddCCFrm: {
    // This will be added to the opcode in the fallthrough.
    OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
    assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
    --NumOps; // Drop the operand from the end.
    [[fallthrough]];
  case X86II::RawFrm:
    emitByte(BaseOpcode + OpcodeOffset, OS);

    if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII))
      break;

    const MCOperand &Op = MI.getOperand(CurOp++);
    emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
                  MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, OS,
                  Fixups);
    break;
  }
  case X86II::RawFrmMemOffs:
    emitByte(BaseOpcode, OS);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  StartByte, OS, Fixups);
    ++CurOp; // skip segment operand
    break;
  case X86II::RawFrmImm8:
    emitByte(BaseOpcode, OS);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  StartByte, OS, Fixups);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte,
                  OS, Fixups);
    break;
  case X86II::RawFrmImm16:
    emitByte(BaseOpcode, OS);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  StartByte, OS, Fixups);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte,
                  OS, Fixups);
    break;

  case X86II::AddRegFrm:
    emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), OS);
    break;

  case X86II::MRMDestReg: {
    emitByte(BaseOpcode, OS);
    unsigned SrcRegNum = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    emitRegModRMByte(MI.getOperand(CurOp),
                     getX86RegNum(MI.getOperand(SrcRegNum)), OS);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMDestMem4VOp3CC: {
    unsigned CC = MI.getOperand(8).getImm();
    emitByte(BaseOpcode + CC, OS);
    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
    emitMemModRMByte(MI, CurOp + 1, getX86RegNum(MI.getOperand(0)), TSFlags,
                    HasREX, StartByte, OS, Fixups, STI, false);
    CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC
    break;
  }
  case X86II::MRMDestMemFSIB:
  case X86II::MRMDestMem: {
    emitByte(BaseOpcode, OS);
    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    bool ForceSIB = (Form == X86II::MRMDestMemFSIB);
    emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
                     HasREX, StartByte, OS, Fixups, STI, ForceSIB);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMSrcReg: {
    emitByte(BaseOpcode, OS);
    unsigned SrcRegNum = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    emitRegModRMByte(MI.getOperand(SrcRegNum),
                     getX86RegNum(MI.getOperand(CurOp)), OS);
    CurOp = SrcRegNum + 1;
    if (HasVEX_I8Reg)
      I8RegNum = getX86RegEncoding(MI, CurOp++);
    // do not count the rounding control operand
    if (HasEVEX_RC)
      --NumOps;
    break;
  }
  case X86II::MRMSrcReg4VOp3: {
    emitByte(BaseOpcode, OS);
    unsigned SrcRegNum = CurOp + 1;

    emitRegModRMByte(MI.getOperand(SrcRegNum),
                     getX86RegNum(MI.getOperand(CurOp)), OS);
    CurOp = SrcRegNum + 1;
    ++CurOp; // Encoded in VEX.VVVV
    break;
  }
  case X86II::MRMSrcRegOp4: {
    emitByte(BaseOpcode, OS);
    unsigned SrcRegNum = CurOp + 1;

    // Skip 1st src (which is encoded in VEX_VVVV)
    ++SrcRegNum;

    // Capture 2nd src (which is encoded in Imm[7:4])
    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);

    emitRegModRMByte(MI.getOperand(SrcRegNum),
                     getX86RegNum(MI.getOperand(CurOp)), OS);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMSrcRegCC: {
    unsigned FirstOp = CurOp++;
    unsigned SecondOp = CurOp++;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, OS);

    emitRegModRMByte(MI.getOperand(SecondOp),
                     getX86RegNum(MI.getOperand(FirstOp)), OS);
    break;
  }
  case X86II::MRMSrcMemFSIB:
  case X86II::MRMSrcMem: {
    unsigned FirstMemOp = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++FirstMemOp;

    if (HasVEX_4V)
      ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).

    emitByte(BaseOpcode, OS);

    bool ForceSIB = (Form == X86II::MRMSrcMemFSIB);
    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, HasREX, StartByte, OS, Fixups, STI, ForceSIB);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    if (HasVEX_I8Reg)
      I8RegNum = getX86RegEncoding(MI, CurOp++);
    break;
  }
  case X86II::MRMSrcMem4VOp3: {
    unsigned FirstMemOp = CurOp + 1;

    emitByte(BaseOpcode, OS);

    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, HasREX, StartByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    ++CurOp; // Encoded in VEX.VVVV.
    break;
  }
  case X86II::MRMSrcMemOp4: {
    unsigned FirstMemOp = CurOp + 1;

    ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).

    // Capture second register source (encoded in Imm[7:4])
    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);

    emitByte(BaseOpcode, OS);

    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, HasREX, StartByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    break;
  }
  case X86II::MRMSrcMemCC: {
    unsigned RegOp = CurOp++;
    unsigned FirstMemOp = CurOp;
    CurOp = FirstMemOp + X86::AddrNumOperands;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, OS);

    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
                     TSFlags, HasREX, StartByte, OS, Fixups, STI);
    break;
  }

  case X86II::MRMXrCC: {
    unsigned RegOp = CurOp++;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, OS);
    emitRegModRMByte(MI.getOperand(RegOp), 0, OS);
    break;
  }

  case X86II::MRMXr:
  case X86II::MRM0r:
  case X86II::MRM1r:
  case X86II::MRM2r:
  case X86II::MRM3r:
  case X86II::MRM4r:
  case X86II::MRM5r:
  case X86II::MRM6r:
  case X86II::MRM7r:
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
      ++CurOp;
    if (HasEVEX_K) // Skip writemask
      ++CurOp;
    emitByte(BaseOpcode, OS);
    emitRegModRMByte(MI.getOperand(CurOp++),
                     (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, OS);
    break;
  case X86II::MRMr0:
    emitByte(BaseOpcode, OS);
    emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)),0), OS);
    break;

  case X86II::MRMXmCC: {
    unsigned FirstMemOp = CurOp;
    CurOp = FirstMemOp + X86::AddrNumOperands;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, OS);

    emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, HasREX, StartByte, OS, Fixups,
                     STI);
    break;
  }

  case X86II::MRMXm:
  case X86II::MRM0m:
  case X86II::MRM1m:
  case X86II::MRM2m:
  case X86II::MRM3m:
  case X86II::MRM4m:
  case X86II::MRM5m:
  case X86II::MRM6m:
  case X86II::MRM7m:
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
      ++CurOp;
    if (HasEVEX_K) // Skip writemask
      ++CurOp;
    emitByte(BaseOpcode, OS);
    emitMemModRMByte(MI, CurOp,
                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
                     HasREX, StartByte, OS, Fixups, STI);
    CurOp += X86::AddrNumOperands;
    break;

  case X86II::MRM0X:
  case X86II::MRM1X:
  case X86II::MRM2X:
  case X86II::MRM3X:
  case X86II::MRM4X:
  case X86II::MRM5X:
  case X86II::MRM6X:
  case X86II::MRM7X:
    emitByte(BaseOpcode, OS);
    emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), OS);
    break;

  case X86II::MRM_C0:
  case X86II::MRM_C1:
  case X86II::MRM_C2:
  case X86II::MRM_C3:
  case X86II::MRM_C4:
  case X86II::MRM_C5:
  case X86II::MRM_C6:
  case X86II::MRM_C7:
  case X86II::MRM_C8:
  case X86II::MRM_C9:
  case X86II::MRM_CA:
  case X86II::MRM_CB:
  case X86II::MRM_CC:
  case X86II::MRM_CD:
  case X86II::MRM_CE:
  case X86II::MRM_CF:
  case X86II::MRM_D0:
  case X86II::MRM_D1:
  case X86II::MRM_D2:
  case X86II::MRM_D3:
  case X86II::MRM_D4:
  case X86II::MRM_D5:
  case X86II::MRM_D6:
  case X86II::MRM_D7:
  case X86II::MRM_D8:
  case X86II::MRM_D9:
  case X86II::MRM_DA:
  case X86II::MRM_DB:
  case X86II::MRM_DC:
  case X86II::MRM_DD:
  case X86II::MRM_DE:
  case X86II::MRM_DF:
  case X86II::MRM_E0:
  case X86II::MRM_E1:
  case X86II::MRM_E2:
  case X86II::MRM_E3:
  case X86II::MRM_E4:
  case X86II::MRM_E5:
  case X86II::MRM_E6:
  case X86II::MRM_E7:
  case X86II::MRM_E8:
  case X86II::MRM_E9:
  case X86II::MRM_EA:
  case X86II::MRM_EB:
  case X86II::MRM_EC:
  case X86II::MRM_ED:
  case X86II::MRM_EE:
  case X86II::MRM_EF:
  case X86II::MRM_F0:
  case X86II::MRM_F1:
  case X86II::MRM_F2:
  case X86II::MRM_F3:
  case X86II::MRM_F4:
  case X86II::MRM_F5:
  case X86II::MRM_F6:
  case X86II::MRM_F7:
  case X86II::MRM_F8:
  case X86II::MRM_F9:
  case X86II::MRM_FA:
  case X86II::MRM_FB:
  case X86II::MRM_FC:
  case X86II::MRM_FD:
  case X86II::MRM_FE:
  case X86II::MRM_FF:
    emitByte(BaseOpcode, OS);
    emitByte(0xC0 + Form - X86II::MRM_C0, OS);
    break;
  }

  if (HasVEX_I8Reg) {
    // The last source register of a 4 operand instruction in AVX is encoded
    // in bits[7:4] of a immediate byte.
    assert(I8RegNum < 16 && "Register encoding out of range");
    I8RegNum <<= 4;
    if (CurOp != NumOps) {
      unsigned Val = MI.getOperand(CurOp++).getImm();
      assert(Val < 16 && "Immediate operand value out of range");
      I8RegNum |= Val;
    }
    emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
                  StartByte, OS, Fixups);
  } else {
    // If there is a remaining operand, it must be a trailing immediate. Emit it
    // according to the right size for the instruction. Some instructions
    // (SSE4a extrq and insertq) have two trailing immediates.
    while (CurOp != NumOps && NumOps - CurOp <= 2) {
      emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                    StartByte, OS, Fixups);
    }
  }

  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
    emitByte(X86II::getBaseOpcodeFor(TSFlags), OS);

  assert(OS.tell() - StartByte <= 15 &&
         "The size of instruction must be no longer than 15.");
#ifndef NDEBUG
  // FIXME: Verify.
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
    errs() << "Cannot encode all operands of: ";
    MI.dump();
    errs() << '\n';
    abort();
  }
#endif
}

MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
                                            MCContext &Ctx) {
  return new X86MCCodeEmitter(MCII, Ctx);
}