1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
|
//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "MCTargetDesc/X86InstrRelaxTables.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
/// A wrapper for holding a mask of the values from X86::AlignBranchBoundaryKind
class X86AlignBranchKind {
private:
uint8_t AlignBranchKind = 0;
public:
void operator=(const std::string &Val) {
if (Val.empty())
return;
SmallVector<StringRef, 6> BranchTypes;
StringRef(Val).split(BranchTypes, '+', -1, false);
for (auto BranchType : BranchTypes) {
if (BranchType == "fused")
addKind(X86::AlignBranchFused);
else if (BranchType == "jcc")
addKind(X86::AlignBranchJcc);
else if (BranchType == "jmp")
addKind(X86::AlignBranchJmp);
else if (BranchType == "call")
addKind(X86::AlignBranchCall);
else if (BranchType == "ret")
addKind(X86::AlignBranchRet);
else if (BranchType == "indirect")
addKind(X86::AlignBranchIndirect);
else {
errs() << "invalid argument " << BranchType.str()
<< " to -x86-align-branch=; each element must be one of: fused, "
"jcc, jmp, call, ret, indirect.(plus separated)\n";
}
}
}
operator uint8_t() const { return AlignBranchKind; }
void addKind(X86::AlignBranchBoundaryKind Value) { AlignBranchKind |= Value; }
};
X86AlignBranchKind X86AlignBranchKindLoc;
cl::opt<unsigned> X86AlignBranchBoundary(
"x86-align-branch-boundary", cl::init(0),
cl::desc(
"Control how the assembler should align branches with NOP. If the "
"boundary's size is not 0, it should be a power of 2 and no less "
"than 32. Branches will be aligned to prevent from being across or "
"against the boundary of specified size. The default value 0 does not "
"align branches."));
cl::opt<X86AlignBranchKind, true, cl::parser<std::string>> X86AlignBranch(
"x86-align-branch",
cl::desc(
"Specify types of branches to align (plus separated list of types):"
"\njcc indicates conditional jumps"
"\nfused indicates fused conditional jumps"
"\njmp indicates direct unconditional jumps"
"\ncall indicates direct and indirect calls"
"\nret indicates rets"
"\nindirect indicates indirect unconditional jumps"),
cl::location(X86AlignBranchKindLoc));
cl::opt<bool> X86AlignBranchWithin32BBoundaries(
"x86-branches-within-32B-boundaries", cl::init(false),
cl::desc(
"Align selected instructions to mitigate negative performance impact "
"of Intel's micro code update for errata skx102. May break "
"assumptions about labels corresponding to particular instructions, "
"and should be used with caution."));
cl::opt<unsigned> X86PadMaxPrefixSize(
"x86-pad-max-prefix-size", cl::init(0),
cl::desc("Maximum number of prefixes to use for padding"));
cl::opt<bool> X86PadForAlign(
"x86-pad-for-align", cl::init(false), cl::Hidden,
cl::desc("Pad previous instructions to implement align directives"));
cl::opt<bool> X86PadForBranchAlign(
"x86-pad-for-branch-align", cl::init(true), cl::Hidden,
cl::desc("Pad previous instructions to implement branch alignment"));
class X86AsmBackend : public MCAsmBackend {
const MCSubtargetInfo &STI;
std::unique_ptr<const MCInstrInfo> MCII;
X86AlignBranchKind AlignBranchType;
Align AlignBoundary;
unsigned TargetPrefixMax = 0;
MCInst PrevInst;
MCBoundaryAlignFragment *PendingBA = nullptr;
std::pair<MCFragment *, size_t> PrevInstPosition;
bool CanPadInst;
uint8_t determinePaddingPrefix(const MCInst &Inst) const;
bool isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const;
bool needAlign(const MCInst &Inst) const;
bool canPadBranches(MCObjectStreamer &OS) const;
bool canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const;
public:
X86AsmBackend(const Target &T, const MCSubtargetInfo &STI)
: MCAsmBackend(support::little), STI(STI),
MCII(T.createMCInstrInfo()) {
if (X86AlignBranchWithin32BBoundaries) {
// At the moment, this defaults to aligning fused branches, unconditional
// jumps, and (unfused) conditional jumps with nops. Both the
// instructions aligned and the alignment method (nop vs prefix) may
// change in the future.
AlignBoundary = assumeAligned(32);;
AlignBranchType.addKind(X86::AlignBranchFused);
AlignBranchType.addKind(X86::AlignBranchJcc);
AlignBranchType.addKind(X86::AlignBranchJmp);
}
// Allow overriding defaults set by main flag
if (X86AlignBranchBoundary.getNumOccurrences())
AlignBoundary = assumeAligned(X86AlignBranchBoundary);
if (X86AlignBranch.getNumOccurrences())
AlignBranchType = X86AlignBranchKindLoc;
if (X86PadMaxPrefixSize.getNumOccurrences())
TargetPrefixMax = X86PadMaxPrefixSize;
}
bool allowAutoPadding() const override;
bool allowEnhancedRelaxation() const override;
void emitInstructionBegin(MCObjectStreamer &OS, const MCInst &Inst,
const MCSubtargetInfo &STI) override;
void emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst) override;
unsigned getNumFixupKinds() const override {
return X86::NumTargetFixupKinds;
}
std::optional<MCFixupKind> getFixupKind(StringRef Name) const override;
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override;
bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target) override;
void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target, MutableArrayRef<char> Data,
uint64_t Value, bool IsResolved,
const MCSubtargetInfo *STI) const override;
bool mayNeedRelaxation(const MCInst &Inst,
const MCSubtargetInfo &STI) const override;
bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const override;
void relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const override;
bool padInstructionViaRelaxation(MCRelaxableFragment &RF,
MCCodeEmitter &Emitter,
unsigned &RemainingSize) const;
bool padInstructionViaPrefix(MCRelaxableFragment &RF, MCCodeEmitter &Emitter,
unsigned &RemainingSize) const;
bool padInstructionEncoding(MCRelaxableFragment &RF, MCCodeEmitter &Emitter,
unsigned &RemainingSize) const;
void finishLayout(MCAssembler const &Asm, MCAsmLayout &Layout) const override;
unsigned getMaximumNopSize(const MCSubtargetInfo &STI) const override;
bool writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const override;
};
} // end anonymous namespace
static unsigned getRelaxedOpcodeBranch(const MCInst &Inst, bool Is16BitMode) {
unsigned Op = Inst.getOpcode();
switch (Op) {
default:
return Op;
case X86::JCC_1:
return (Is16BitMode) ? X86::JCC_2 : X86::JCC_4;
case X86::JMP_1:
return (Is16BitMode) ? X86::JMP_2 : X86::JMP_4;
}
}
static unsigned getRelaxedOpcodeArith(const MCInst &Inst) {
unsigned Op = Inst.getOpcode();
return X86::getRelaxedOpcodeArith(Op);
}
static unsigned getRelaxedOpcode(const MCInst &Inst, bool Is16BitMode) {
unsigned R = getRelaxedOpcodeArith(Inst);
if (R != Inst.getOpcode())
return R;
return getRelaxedOpcodeBranch(Inst, Is16BitMode);
}
static X86::CondCode getCondFromBranch(const MCInst &MI,
const MCInstrInfo &MCII) {
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default:
return X86::COND_INVALID;
case X86::JCC_1: {
const MCInstrDesc &Desc = MCII.get(Opcode);
return static_cast<X86::CondCode>(
MI.getOperand(Desc.getNumOperands() - 1).getImm());
}
}
}
static X86::SecondMacroFusionInstKind
classifySecondInstInMacroFusion(const MCInst &MI, const MCInstrInfo &MCII) {
X86::CondCode CC = getCondFromBranch(MI, MCII);
return classifySecondCondCodeInMacroFusion(CC);
}
/// Check if the instruction uses RIP relative addressing.
static bool isRIPRelative(const MCInst &MI, const MCInstrInfo &MCII) {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
unsigned CurOp = X86II::getOperandBias(Desc);
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
if (MemoryOperand < 0)
return false;
unsigned BaseRegNum = MemoryOperand + CurOp + X86::AddrBaseReg;
unsigned BaseReg = MI.getOperand(BaseRegNum).getReg();
return (BaseReg == X86::RIP);
}
/// Check if the instruction is a prefix.
static bool isPrefix(const MCInst &MI, const MCInstrInfo &MCII) {
return X86II::isPrefix(MCII.get(MI.getOpcode()).TSFlags);
}
/// Check if the instruction is valid as the first instruction in macro fusion.
static bool isFirstMacroFusibleInst(const MCInst &Inst,
const MCInstrInfo &MCII) {
// An Intel instruction with RIP relative addressing is not macro fusible.
if (isRIPRelative(Inst, MCII))
return false;
X86::FirstMacroFusionInstKind FIK =
X86::classifyFirstOpcodeInMacroFusion(Inst.getOpcode());
return FIK != X86::FirstMacroFusionInstKind::Invalid;
}
/// X86 can reduce the bytes of NOP by padding instructions with prefixes to
/// get a better peformance in some cases. Here, we determine which prefix is
/// the most suitable.
///
/// If the instruction has a segment override prefix, use the existing one.
/// If the target is 64-bit, use the CS.
/// If the target is 32-bit,
/// - If the instruction has a ESP/EBP base register, use SS.
/// - Otherwise use DS.
uint8_t X86AsmBackend::determinePaddingPrefix(const MCInst &Inst) const {
assert((STI.hasFeature(X86::Is32Bit) || STI.hasFeature(X86::Is64Bit)) &&
"Prefixes can be added only in 32-bit or 64-bit mode.");
const MCInstrDesc &Desc = MCII->get(Inst.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
// Determine where the memory operand starts, if present.
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
if (MemoryOperand != -1)
MemoryOperand += X86II::getOperandBias(Desc);
unsigned SegmentReg = 0;
if (MemoryOperand >= 0) {
// Check for explicit segment override on memory operand.
SegmentReg = Inst.getOperand(MemoryOperand + X86::AddrSegmentReg).getReg();
}
switch (TSFlags & X86II::FormMask) {
default:
break;
case X86II::RawFrmDstSrc: {
// Check segment override opcode prefix as needed (not for %ds).
if (Inst.getOperand(2).getReg() != X86::DS)
SegmentReg = Inst.getOperand(2).getReg();
break;
}
case X86II::RawFrmSrc: {
// Check segment override opcode prefix as needed (not for %ds).
if (Inst.getOperand(1).getReg() != X86::DS)
SegmentReg = Inst.getOperand(1).getReg();
break;
}
case X86II::RawFrmMemOffs: {
// Check segment override opcode prefix as needed.
SegmentReg = Inst.getOperand(1).getReg();
break;
}
}
if (SegmentReg != 0)
return X86::getSegmentOverridePrefixForReg(SegmentReg);
if (STI.hasFeature(X86::Is64Bit))
return X86::CS_Encoding;
if (MemoryOperand >= 0) {
unsigned BaseRegNum = MemoryOperand + X86::AddrBaseReg;
unsigned BaseReg = Inst.getOperand(BaseRegNum).getReg();
if (BaseReg == X86::ESP || BaseReg == X86::EBP)
return X86::SS_Encoding;
}
return X86::DS_Encoding;
}
/// Check if the two instructions will be macro-fused on the target cpu.
bool X86AsmBackend::isMacroFused(const MCInst &Cmp, const MCInst &Jcc) const {
const MCInstrDesc &InstDesc = MCII->get(Jcc.getOpcode());
if (!InstDesc.isConditionalBranch())
return false;
if (!isFirstMacroFusibleInst(Cmp, *MCII))
return false;
const X86::FirstMacroFusionInstKind CmpKind =
X86::classifyFirstOpcodeInMacroFusion(Cmp.getOpcode());
const X86::SecondMacroFusionInstKind BranchKind =
classifySecondInstInMacroFusion(Jcc, *MCII);
return X86::isMacroFused(CmpKind, BranchKind);
}
/// Check if the instruction has a variant symbol operand.
static bool hasVariantSymbol(const MCInst &MI) {
for (auto &Operand : MI) {
if (!Operand.isExpr())
continue;
const MCExpr &Expr = *Operand.getExpr();
if (Expr.getKind() == MCExpr::SymbolRef &&
cast<MCSymbolRefExpr>(Expr).getKind() != MCSymbolRefExpr::VK_None)
return true;
}
return false;
}
bool X86AsmBackend::allowAutoPadding() const {
return (AlignBoundary != Align(1) && AlignBranchType != X86::AlignBranchNone);
}
bool X86AsmBackend::allowEnhancedRelaxation() const {
return allowAutoPadding() && TargetPrefixMax != 0 && X86PadForBranchAlign;
}
/// X86 has certain instructions which enable interrupts exactly one
/// instruction *after* the instruction which stores to SS. Return true if the
/// given instruction has such an interrupt delay slot.
static bool hasInterruptDelaySlot(const MCInst &Inst) {
switch (Inst.getOpcode()) {
case X86::POPSS16:
case X86::POPSS32:
case X86::STI:
return true;
case X86::MOV16sr:
case X86::MOV32sr:
case X86::MOV64sr:
case X86::MOV16sm:
if (Inst.getOperand(0).getReg() == X86::SS)
return true;
break;
}
return false;
}
/// Check if the instruction to be emitted is right after any data.
static bool
isRightAfterData(MCFragment *CurrentFragment,
const std::pair<MCFragment *, size_t> &PrevInstPosition) {
MCFragment *F = CurrentFragment;
// Empty data fragments may be created to prevent further data being
// added into the previous fragment, we need to skip them since they
// have no contents.
for (; isa_and_nonnull<MCDataFragment>(F); F = F->getPrevNode())
if (cast<MCDataFragment>(F)->getContents().size() != 0)
break;
// Since data is always emitted into a DataFragment, our check strategy is
// simple here.
// - If the fragment is a DataFragment
// - If it's not the fragment where the previous instruction is,
// returns true.
// - If it's the fragment holding the previous instruction but its
// size changed since the the previous instruction was emitted into
// it, returns true.
// - Otherwise returns false.
// - If the fragment is not a DataFragment, returns false.
if (auto *DF = dyn_cast_or_null<MCDataFragment>(F))
return DF != PrevInstPosition.first ||
DF->getContents().size() != PrevInstPosition.second;
return false;
}
/// \returns the fragment size if it has instructions, otherwise returns 0.
static size_t getSizeForInstFragment(const MCFragment *F) {
if (!F || !F->hasInstructions())
return 0;
// MCEncodedFragmentWithContents being templated makes this tricky.
switch (F->getKind()) {
default:
llvm_unreachable("Unknown fragment with instructions!");
case MCFragment::FT_Data:
return cast<MCDataFragment>(*F).getContents().size();
case MCFragment::FT_Relaxable:
return cast<MCRelaxableFragment>(*F).getContents().size();
case MCFragment::FT_CompactEncodedInst:
return cast<MCCompactEncodedInstFragment>(*F).getContents().size();
}
}
/// Return true if we can insert NOP or prefixes automatically before the
/// the instruction to be emitted.
bool X86AsmBackend::canPadInst(const MCInst &Inst, MCObjectStreamer &OS) const {
if (hasVariantSymbol(Inst))
// Linker may rewrite the instruction with variant symbol operand(e.g.
// TLSCALL).
return false;
if (hasInterruptDelaySlot(PrevInst))
// If this instruction follows an interrupt enabling instruction with a one
// instruction delay, inserting a nop would change behavior.
return false;
if (isPrefix(PrevInst, *MCII))
// If this instruction follows a prefix, inserting a nop/prefix would change
// semantic.
return false;
if (isPrefix(Inst, *MCII))
// If this instruction is a prefix, inserting a prefix would change
// semantic.
return false;
if (isRightAfterData(OS.getCurrentFragment(), PrevInstPosition))
// If this instruction follows any data, there is no clear
// instruction boundary, inserting a nop/prefix would change semantic.
return false;
return true;
}
bool X86AsmBackend::canPadBranches(MCObjectStreamer &OS) const {
if (!OS.getAllowAutoPadding())
return false;
assert(allowAutoPadding() && "incorrect initialization!");
// We only pad in text section.
if (!OS.getCurrentSectionOnly()->getKind().isText())
return false;
// To be Done: Currently don't deal with Bundle cases.
if (OS.getAssembler().isBundlingEnabled())
return false;
// Branches only need to be aligned in 32-bit or 64-bit mode.
if (!(STI.hasFeature(X86::Is64Bit) || STI.hasFeature(X86::Is32Bit)))
return false;
return true;
}
/// Check if the instruction operand needs to be aligned.
bool X86AsmBackend::needAlign(const MCInst &Inst) const {
const MCInstrDesc &Desc = MCII->get(Inst.getOpcode());
return (Desc.isConditionalBranch() &&
(AlignBranchType & X86::AlignBranchJcc)) ||
(Desc.isUnconditionalBranch() &&
(AlignBranchType & X86::AlignBranchJmp)) ||
(Desc.isCall() && (AlignBranchType & X86::AlignBranchCall)) ||
(Desc.isReturn() && (AlignBranchType & X86::AlignBranchRet)) ||
(Desc.isIndirectBranch() &&
(AlignBranchType & X86::AlignBranchIndirect));
}
/// Insert BoundaryAlignFragment before instructions to align branches.
void X86AsmBackend::emitInstructionBegin(MCObjectStreamer &OS,
const MCInst &Inst, const MCSubtargetInfo &STI) {
CanPadInst = canPadInst(Inst, OS);
if (!canPadBranches(OS))
return;
if (!isMacroFused(PrevInst, Inst))
// Macro fusion doesn't happen indeed, clear the pending.
PendingBA = nullptr;
if (!CanPadInst)
return;
if (PendingBA && OS.getCurrentFragment()->getPrevNode() == PendingBA) {
// Macro fusion actually happens and there is no other fragment inserted
// after the previous instruction.
//
// Do nothing here since we already inserted a BoudaryAlign fragment when
// we met the first instruction in the fused pair and we'll tie them
// together in emitInstructionEnd.
//
// Note: When there is at least one fragment, such as MCAlignFragment,
// inserted after the previous instruction, e.g.
//
// \code
// cmp %rax %rcx
// .align 16
// je .Label0
// \ endcode
//
// We will treat the JCC as a unfused branch although it may be fused
// with the CMP.
return;
}
if (needAlign(Inst) || ((AlignBranchType & X86::AlignBranchFused) &&
isFirstMacroFusibleInst(Inst, *MCII))) {
// If we meet a unfused branch or the first instuction in a fusiable pair,
// insert a BoundaryAlign fragment.
OS.insert(PendingBA = new MCBoundaryAlignFragment(AlignBoundary, STI));
}
}
/// Set the last fragment to be aligned for the BoundaryAlignFragment.
void X86AsmBackend::emitInstructionEnd(MCObjectStreamer &OS, const MCInst &Inst) {
PrevInst = Inst;
MCFragment *CF = OS.getCurrentFragment();
PrevInstPosition = std::make_pair(CF, getSizeForInstFragment(CF));
if (auto *F = dyn_cast_or_null<MCRelaxableFragment>(CF))
F->setAllowAutoPadding(CanPadInst);
if (!canPadBranches(OS))
return;
if (!needAlign(Inst) || !PendingBA)
return;
// Tie the aligned instructions into a a pending BoundaryAlign.
PendingBA->setLastFragment(CF);
PendingBA = nullptr;
// We need to ensure that further data isn't added to the current
// DataFragment, so that we can get the size of instructions later in
// MCAssembler::relaxBoundaryAlign. The easiest way is to insert a new empty
// DataFragment.
if (isa_and_nonnull<MCDataFragment>(CF))
OS.insert(new MCDataFragment());
// Update the maximum alignment on the current section if necessary.
MCSection *Sec = OS.getCurrentSectionOnly();
Sec->ensureMinAlignment(AlignBoundary);
}
std::optional<MCFixupKind> X86AsmBackend::getFixupKind(StringRef Name) const {
if (STI.getTargetTriple().isOSBinFormatELF()) {
unsigned Type;
if (STI.getTargetTriple().getArch() == Triple::x86_64) {
Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(X, Y) .Case(#X, Y)
#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
#undef ELF_RELOC
.Case("BFD_RELOC_NONE", ELF::R_X86_64_NONE)
.Case("BFD_RELOC_8", ELF::R_X86_64_8)
.Case("BFD_RELOC_16", ELF::R_X86_64_16)
.Case("BFD_RELOC_32", ELF::R_X86_64_32)
.Case("BFD_RELOC_64", ELF::R_X86_64_64)
.Default(-1u);
} else {
Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(X, Y) .Case(#X, Y)
#include "llvm/BinaryFormat/ELFRelocs/i386.def"
#undef ELF_RELOC
.Case("BFD_RELOC_NONE", ELF::R_386_NONE)
.Case("BFD_RELOC_8", ELF::R_386_8)
.Case("BFD_RELOC_16", ELF::R_386_16)
.Case("BFD_RELOC_32", ELF::R_386_32)
.Default(-1u);
}
if (Type == -1u)
return std::nullopt;
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
}
return MCAsmBackend::getFixupKind(Name);
}
const MCFixupKindInfo &X86AsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
{"reloc_riprel_4byte", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
{"reloc_riprel_4byte_movq_load", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
{"reloc_riprel_4byte_relax", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
{"reloc_riprel_4byte_relax_rex", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
{"reloc_signed_4byte", 0, 32, 0},
{"reloc_signed_4byte_relax", 0, 32, 0},
{"reloc_global_offset_table", 0, 32, 0},
{"reloc_global_offset_table8", 0, 64, 0},
{"reloc_branch_4byte_pcrel", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
};
// Fixup kinds from .reloc directive are like R_386_NONE/R_X86_64_NONE. They
// do not require any extra processing.
if (Kind >= FirstLiteralRelocationKind)
return MCAsmBackend::getFixupKindInfo(FK_NONE);
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
assert(Infos[Kind - FirstTargetFixupKind].Name && "Empty fixup name!");
return Infos[Kind - FirstTargetFixupKind];
}
bool X86AsmBackend::shouldForceRelocation(const MCAssembler &,
const MCFixup &Fixup,
const MCValue &) {
return Fixup.getKind() >= FirstLiteralRelocationKind;
}
static unsigned getFixupKindSize(unsigned Kind) {
switch (Kind) {
default:
llvm_unreachable("invalid fixup kind!");
case FK_NONE:
return 0;
case FK_PCRel_1:
case FK_SecRel_1:
case FK_Data_1:
return 1;
case FK_PCRel_2:
case FK_SecRel_2:
case FK_Data_2:
return 2;
case FK_PCRel_4:
case X86::reloc_riprel_4byte:
case X86::reloc_riprel_4byte_relax:
case X86::reloc_riprel_4byte_relax_rex:
case X86::reloc_riprel_4byte_movq_load:
case X86::reloc_signed_4byte:
case X86::reloc_signed_4byte_relax:
case X86::reloc_global_offset_table:
case X86::reloc_branch_4byte_pcrel:
case FK_SecRel_4:
case FK_Data_4:
return 4;
case FK_PCRel_8:
case FK_SecRel_8:
case FK_Data_8:
case X86::reloc_global_offset_table8:
return 8;
}
}
void X86AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
const MCValue &Target,
MutableArrayRef<char> Data,
uint64_t Value, bool IsResolved,
const MCSubtargetInfo *STI) const {
unsigned Kind = Fixup.getKind();
if (Kind >= FirstLiteralRelocationKind)
return;
unsigned Size = getFixupKindSize(Kind);
assert(Fixup.getOffset() + Size <= Data.size() && "Invalid fixup offset!");
int64_t SignedValue = static_cast<int64_t>(Value);
if ((Target.isAbsolute() || IsResolved) &&
getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel) {
// check that PC relative fixup fits into the fixup size.
if (Size > 0 && !isIntN(Size * 8, SignedValue))
Asm.getContext().reportError(
Fixup.getLoc(), "value of " + Twine(SignedValue) +
" is too large for field of " + Twine(Size) +
((Size == 1) ? " byte." : " bytes."));
} else {
// Check that uppper bits are either all zeros or all ones.
// Specifically ignore overflow/underflow as long as the leakage is
// limited to the lower bits. This is to remain compatible with
// other assemblers.
assert((Size == 0 || isIntN(Size * 8 + 1, SignedValue)) &&
"Value does not fit in the Fixup field");
}
for (unsigned i = 0; i != Size; ++i)
Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}
bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst,
const MCSubtargetInfo &STI) const {
// Branches can always be relaxed in either mode.
if (getRelaxedOpcodeBranch(Inst, false) != Inst.getOpcode())
return true;
// Check if this instruction is ever relaxable.
if (getRelaxedOpcodeArith(Inst) == Inst.getOpcode())
return false;
// Check if the relaxable operand has an expression. For the current set of
// relaxable instructions, the relaxable operand is always the last operand.
unsigned RelaxableOp = Inst.getNumOperands() - 1;
if (Inst.getOperand(RelaxableOp).isExpr())
return true;
return false;
}
bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
// Relax if the value is too big for a (signed) i8.
return !isInt<8>(Value);
}
// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const {
// The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
bool Is16BitMode = STI.getFeatureBits()[X86::Is16Bit];
unsigned RelaxedOp = getRelaxedOpcode(Inst, Is16BitMode);
if (RelaxedOp == Inst.getOpcode()) {
SmallString<256> Tmp;
raw_svector_ostream OS(Tmp);
Inst.dump_pretty(OS);
OS << "\n";
report_fatal_error("unexpected instruction to relax: " + OS.str());
}
Inst.setOpcode(RelaxedOp);
}
/// Return true if this instruction has been fully relaxed into it's most
/// general available form.
static bool isFullyRelaxed(const MCRelaxableFragment &RF) {
auto &Inst = RF.getInst();
auto &STI = *RF.getSubtargetInfo();
bool Is16BitMode = STI.getFeatureBits()[X86::Is16Bit];
return getRelaxedOpcode(Inst, Is16BitMode) == Inst.getOpcode();
}
bool X86AsmBackend::padInstructionViaPrefix(MCRelaxableFragment &RF,
MCCodeEmitter &Emitter,
unsigned &RemainingSize) const {
if (!RF.getAllowAutoPadding())
return false;
// If the instruction isn't fully relaxed, shifting it around might require a
// larger value for one of the fixups then can be encoded. The outer loop
// will also catch this before moving to the next instruction, but we need to
// prevent padding this single instruction as well.
if (!isFullyRelaxed(RF))
return false;
const unsigned OldSize = RF.getContents().size();
if (OldSize == 15)
return false;
const unsigned MaxPossiblePad = std::min(15 - OldSize, RemainingSize);
const unsigned RemainingPrefixSize = [&]() -> unsigned {
SmallString<15> Code;
raw_svector_ostream VecOS(Code);
Emitter.emitPrefix(RF.getInst(), VecOS, STI);
assert(Code.size() < 15 && "The number of prefixes must be less than 15.");
// TODO: It turns out we need a decent amount of plumbing for the target
// specific bits to determine number of prefixes its safe to add. Various
// targets (older chips mostly, but also Atom family) encounter decoder
// stalls with too many prefixes. For testing purposes, we set the value
// externally for the moment.
unsigned ExistingPrefixSize = Code.size();
if (TargetPrefixMax <= ExistingPrefixSize)
return 0;
return TargetPrefixMax - ExistingPrefixSize;
}();
const unsigned PrefixBytesToAdd =
std::min(MaxPossiblePad, RemainingPrefixSize);
if (PrefixBytesToAdd == 0)
return false;
const uint8_t Prefix = determinePaddingPrefix(RF.getInst());
SmallString<256> Code;
Code.append(PrefixBytesToAdd, Prefix);
Code.append(RF.getContents().begin(), RF.getContents().end());
RF.getContents() = Code;
// Adjust the fixups for the change in offsets
for (auto &F : RF.getFixups()) {
F.setOffset(F.getOffset() + PrefixBytesToAdd);
}
RemainingSize -= PrefixBytesToAdd;
return true;
}
bool X86AsmBackend::padInstructionViaRelaxation(MCRelaxableFragment &RF,
MCCodeEmitter &Emitter,
unsigned &RemainingSize) const {
if (isFullyRelaxed(RF))
// TODO: There are lots of other tricks we could apply for increasing
// encoding size without impacting performance.
return false;
MCInst Relaxed = RF.getInst();
relaxInstruction(Relaxed, *RF.getSubtargetInfo());
SmallVector<MCFixup, 4> Fixups;
SmallString<15> Code;
raw_svector_ostream VecOS(Code);
Emitter.encodeInstruction(Relaxed, VecOS, Fixups, *RF.getSubtargetInfo());
const unsigned OldSize = RF.getContents().size();
const unsigned NewSize = Code.size();
assert(NewSize >= OldSize && "size decrease during relaxation?");
unsigned Delta = NewSize - OldSize;
if (Delta > RemainingSize)
return false;
RF.setInst(Relaxed);
RF.getContents() = Code;
RF.getFixups() = Fixups;
RemainingSize -= Delta;
return true;
}
bool X86AsmBackend::padInstructionEncoding(MCRelaxableFragment &RF,
MCCodeEmitter &Emitter,
unsigned &RemainingSize) const {
bool Changed = false;
if (RemainingSize != 0)
Changed |= padInstructionViaRelaxation(RF, Emitter, RemainingSize);
if (RemainingSize != 0)
Changed |= padInstructionViaPrefix(RF, Emitter, RemainingSize);
return Changed;
}
void X86AsmBackend::finishLayout(MCAssembler const &Asm,
MCAsmLayout &Layout) const {
// See if we can further relax some instructions to cut down on the number of
// nop bytes required for code alignment. The actual win is in reducing
// instruction count, not number of bytes. Modern X86-64 can easily end up
// decode limited. It is often better to reduce the number of instructions
// (i.e. eliminate nops) even at the cost of increasing the size and
// complexity of others.
if (!X86PadForAlign && !X86PadForBranchAlign)
return;
// The processed regions are delimitered by LabeledFragments. -g may have more
// MCSymbols and therefore different relaxation results. X86PadForAlign is
// disabled by default to eliminate the -g vs non -g difference.
DenseSet<MCFragment *> LabeledFragments;
for (const MCSymbol &S : Asm.symbols())
LabeledFragments.insert(S.getFragment(false));
for (MCSection &Sec : Asm) {
if (!Sec.getKind().isText())
continue;
SmallVector<MCRelaxableFragment *, 4> Relaxable;
for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
MCFragment &F = *I;
if (LabeledFragments.count(&F))
Relaxable.clear();
if (F.getKind() == MCFragment::FT_Data ||
F.getKind() == MCFragment::FT_CompactEncodedInst)
// Skip and ignore
continue;
if (F.getKind() == MCFragment::FT_Relaxable) {
auto &RF = cast<MCRelaxableFragment>(*I);
Relaxable.push_back(&RF);
continue;
}
auto canHandle = [](MCFragment &F) -> bool {
switch (F.getKind()) {
default:
return false;
case MCFragment::FT_Align:
return X86PadForAlign;
case MCFragment::FT_BoundaryAlign:
return X86PadForBranchAlign;
}
};
// For any unhandled kind, assume we can't change layout.
if (!canHandle(F)) {
Relaxable.clear();
continue;
}
#ifndef NDEBUG
const uint64_t OrigOffset = Layout.getFragmentOffset(&F);
#endif
const uint64_t OrigSize = Asm.computeFragmentSize(Layout, F);
// To keep the effects local, prefer to relax instructions closest to
// the align directive. This is purely about human understandability
// of the resulting code. If we later find a reason to expand
// particular instructions over others, we can adjust.
MCFragment *FirstChangedFragment = nullptr;
unsigned RemainingSize = OrigSize;
while (!Relaxable.empty() && RemainingSize != 0) {
auto &RF = *Relaxable.pop_back_val();
// Give the backend a chance to play any tricks it wishes to increase
// the encoding size of the given instruction. Target independent code
// will try further relaxation, but target's may play further tricks.
if (padInstructionEncoding(RF, Asm.getEmitter(), RemainingSize))
FirstChangedFragment = &RF;
// If we have an instruction which hasn't been fully relaxed, we can't
// skip past it and insert bytes before it. Changing its starting
// offset might require a larger negative offset than it can encode.
// We don't need to worry about larger positive offsets as none of the
// possible offsets between this and our align are visible, and the
// ones afterwards aren't changing.
if (!isFullyRelaxed(RF))
break;
}
Relaxable.clear();
if (FirstChangedFragment) {
// Make sure the offsets for any fragments in the effected range get
// updated. Note that this (conservatively) invalidates the offsets of
// those following, but this is not required.
Layout.invalidateFragmentsFrom(FirstChangedFragment);
}
// BoundaryAlign explicitly tracks it's size (unlike align)
if (F.getKind() == MCFragment::FT_BoundaryAlign)
cast<MCBoundaryAlignFragment>(F).setSize(RemainingSize);
#ifndef NDEBUG
const uint64_t FinalOffset = Layout.getFragmentOffset(&F);
const uint64_t FinalSize = Asm.computeFragmentSize(Layout, F);
assert(OrigOffset + OrigSize == FinalOffset + FinalSize &&
"can't move start of next fragment!");
assert(FinalSize == RemainingSize && "inconsistent size computation?");
#endif
// If we're looking at a boundary align, make sure we don't try to pad
// its target instructions for some following directive. Doing so would
// break the alignment of the current boundary align.
if (auto *BF = dyn_cast<MCBoundaryAlignFragment>(&F)) {
const MCFragment *LastFragment = BF->getLastFragment();
if (!LastFragment)
continue;
while (&*I != LastFragment)
++I;
}
}
}
// The layout is done. Mark every fragment as valid.
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
MCSection &Section = *Layout.getSectionOrder()[i];
Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
Asm.computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
}
}
unsigned X86AsmBackend::getMaximumNopSize(const MCSubtargetInfo &STI) const {
if (STI.hasFeature(X86::Is16Bit))
return 4;
if (!STI.hasFeature(X86::FeatureNOPL) && !STI.hasFeature(X86::Is64Bit))
return 1;
if (STI.getFeatureBits()[X86::TuningFast7ByteNOP])
return 7;
if (STI.getFeatureBits()[X86::TuningFast15ByteNOP])
return 15;
if (STI.getFeatureBits()[X86::TuningFast11ByteNOP])
return 11;
// FIXME: handle 32-bit mode
// 15-bytes is the longest single NOP instruction, but 10-bytes is
// commonly the longest that can be efficiently decoded.
return 10;
}
/// Write a sequence of optimal nops to the output, covering \p Count
/// bytes.
/// \return - true on success, false on failure
bool X86AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const {
static const char Nops32Bit[10][11] = {
// nop
"\x90",
// xchg %ax,%ax
"\x66\x90",
// nopl (%[re]ax)
"\x0f\x1f\x00",
// nopl 0(%[re]ax)
"\x0f\x1f\x40\x00",
// nopl 0(%[re]ax,%[re]ax,1)
"\x0f\x1f\x44\x00\x00",
// nopw 0(%[re]ax,%[re]ax,1)
"\x66\x0f\x1f\x44\x00\x00",
// nopl 0L(%[re]ax)
"\x0f\x1f\x80\x00\x00\x00\x00",
// nopl 0L(%[re]ax,%[re]ax,1)
"\x0f\x1f\x84\x00\x00\x00\x00\x00",
// nopw 0L(%[re]ax,%[re]ax,1)
"\x66\x0f\x1f\x84\x00\x00\x00\x00\x00",
// nopw %cs:0L(%[re]ax,%[re]ax,1)
"\x66\x2e\x0f\x1f\x84\x00\x00\x00\x00\x00",
};
// 16-bit mode uses different nop patterns than 32-bit.
static const char Nops16Bit[4][11] = {
// nop
"\x90",
// xchg %eax,%eax
"\x66\x90",
// lea 0(%si),%si
"\x8d\x74\x00",
// lea 0w(%si),%si
"\x8d\xb4\x00\x00",
};
const char(*Nops)[11] =
STI->getFeatureBits()[X86::Is16Bit] ? Nops16Bit : Nops32Bit;
uint64_t MaxNopLength = (uint64_t)getMaximumNopSize(*STI);
// Emit as many MaxNopLength NOPs as needed, then emit a NOP of the remaining
// length.
do {
const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
for (uint8_t i = 0; i < Prefixes; i++)
OS << '\x66';
const uint8_t Rest = ThisNopLength - Prefixes;
if (Rest != 0)
OS.write(Nops[Rest - 1], Rest);
Count -= ThisNopLength;
} while (Count != 0);
return true;
}
/* *** */
namespace {
class ELFX86AsmBackend : public X86AsmBackend {
public:
uint8_t OSABI;
ELFX86AsmBackend(const Target &T, uint8_t OSABI, const MCSubtargetInfo &STI)
: X86AsmBackend(T, STI), OSABI(OSABI) {}
};
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_32AsmBackend(const Target &T, uint8_t OSABI,
const MCSubtargetInfo &STI)
: ELFX86AsmBackend(T, OSABI, STI) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI, ELF::EM_386);
}
};
class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI,
const MCSubtargetInfo &STI)
: ELFX86AsmBackend(T, OSABI, STI) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
ELF::EM_X86_64);
}
};
class ELFX86_IAMCUAsmBackend : public ELFX86AsmBackend {
public:
ELFX86_IAMCUAsmBackend(const Target &T, uint8_t OSABI,
const MCSubtargetInfo &STI)
: ELFX86AsmBackend(T, OSABI, STI) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createX86ELFObjectWriter(/*IsELF64*/ false, OSABI,
ELF::EM_IAMCU);
}
};
class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_64AsmBackend(const Target &T, uint8_t OSABI,
const MCSubtargetInfo &STI)
: ELFX86AsmBackend(T, OSABI, STI) {}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createX86ELFObjectWriter(/*IsELF64*/ true, OSABI, ELF::EM_X86_64);
}
};
class WindowsX86AsmBackend : public X86AsmBackend {
bool Is64Bit;
public:
WindowsX86AsmBackend(const Target &T, bool is64Bit,
const MCSubtargetInfo &STI)
: X86AsmBackend(T, STI)
, Is64Bit(is64Bit) {
}
std::optional<MCFixupKind> getFixupKind(StringRef Name) const override {
return StringSwitch<std::optional<MCFixupKind>>(Name)
.Case("dir32", FK_Data_4)
.Case("secrel32", FK_SecRel_4)
.Case("secidx", FK_SecRel_2)
.Default(MCAsmBackend::getFixupKind(Name));
}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
return createX86WinCOFFObjectWriter(Is64Bit);
}
};
namespace CU {
/// Compact unwind encoding values.
enum CompactUnwindEncodings {
/// [RE]BP based frame where [RE]BP is pused on the stack immediately after
/// the return address, then [RE]SP is moved to [RE]BP.
UNWIND_MODE_BP_FRAME = 0x01000000,
/// A frameless function with a small constant stack size.
UNWIND_MODE_STACK_IMMD = 0x02000000,
/// A frameless function with a large constant stack size.
UNWIND_MODE_STACK_IND = 0x03000000,
/// No compact unwind encoding is available.
UNWIND_MODE_DWARF = 0x04000000,
/// Mask for encoding the frame registers.
UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
/// Mask for encoding the frameless registers.
UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
};
} // namespace CU
class DarwinX86AsmBackend : public X86AsmBackend {
const MCRegisterInfo &MRI;
/// Number of registers that can be saved in a compact unwind encoding.
enum { CU_NUM_SAVED_REGS = 6 };
mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
Triple TT;
bool Is64Bit;
unsigned OffsetSize; ///< Offset of a "push" instruction.
unsigned MoveInstrSize; ///< Size of a "move" instruction.
unsigned StackDivide; ///< Amount to adjust stack size by.
protected:
/// Size of a "push" instruction for the given register.
unsigned PushInstrSize(unsigned Reg) const {
switch (Reg) {
case X86::EBX:
case X86::ECX:
case X86::EDX:
case X86::EDI:
case X86::ESI:
case X86::EBP:
case X86::RBX:
case X86::RBP:
return 1;
case X86::R12:
case X86::R13:
case X86::R14:
case X86::R15:
return 2;
}
return 1;
}
private:
/// Get the compact unwind number for a given register. The number
/// corresponds to the enum lists in compact_unwind_encoding.h.
int getCompactUnwindRegNum(unsigned Reg) const {
static const MCPhysReg CU32BitRegs[7] = {
X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
};
static const MCPhysReg CU64BitRegs[] = {
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
};
const MCPhysReg *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
if (*CURegs == Reg)
return Idx;
return -1;
}
/// Return the registers encoded for a compact encoding with a frame
/// pointer.
uint32_t encodeCompactUnwindRegistersWithFrame() const {
// Encode the registers in the order they were saved --- 3-bits per
// register. The list of saved registers is assumed to be in reverse
// order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
uint32_t RegEnc = 0;
for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
unsigned Reg = SavedRegs[i];
if (Reg == 0) break;
int CURegNum = getCompactUnwindRegNum(Reg);
if (CURegNum == -1) return ~0U;
// Encode the 3-bit register number in order, skipping over 3-bits for
// each register.
RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
}
assert((RegEnc & 0x3FFFF) == RegEnc &&
"Invalid compact register encoding!");
return RegEnc;
}
/// Create the permutation encoding used with frameless stacks. It is
/// passed the number of registers to be saved and an array of the registers
/// saved.
uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
// The saved registers are numbered from 1 to 6. In order to encode the
// order in which they were saved, we re-number them according to their
// place in the register order. The re-numbering is relative to the last
// re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
// that order:
//
// Orig Re-Num
// ---- ------
// 6 6
// 2 2
// 4 3
// 5 3
//
for (unsigned i = 0; i < RegCount; ++i) {
int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
if (CUReg == -1) return ~0U;
SavedRegs[i] = CUReg;
}
// Reverse the list.
std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
uint32_t RenumRegs[CU_NUM_SAVED_REGS];
for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
unsigned Countless = 0;
for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
if (SavedRegs[j] < SavedRegs[i])
++Countless;
RenumRegs[i] = SavedRegs[i] - Countless - 1;
}
// Take the renumbered values and encode them into a 10-bit number.
uint32_t permutationEncoding = 0;
switch (RegCount) {
case 6:
permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
+ 6 * RenumRegs[2] + 2 * RenumRegs[3]
+ RenumRegs[4];
break;
case 5:
permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
+ 6 * RenumRegs[3] + 2 * RenumRegs[4]
+ RenumRegs[5];
break;
case 4:
permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
+ 3 * RenumRegs[4] + RenumRegs[5];
break;
case 3:
permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
+ RenumRegs[5];
break;
case 2:
permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
break;
case 1:
permutationEncoding |= RenumRegs[5];
break;
}
assert((permutationEncoding & 0x3FF) == permutationEncoding &&
"Invalid compact register encoding!");
return permutationEncoding;
}
public:
DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI)
: X86AsmBackend(T, STI), MRI(MRI), TT(STI.getTargetTriple()),
Is64Bit(TT.isArch64Bit()) {
memset(SavedRegs, 0, sizeof(SavedRegs));
OffsetSize = Is64Bit ? 8 : 4;
MoveInstrSize = Is64Bit ? 3 : 2;
StackDivide = Is64Bit ? 8 : 4;
}
std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const override {
uint32_t CPUType = cantFail(MachO::getCPUType(TT));
uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TT));
return createX86MachObjectWriter(Is64Bit, CPUType, CPUSubType);
}
/// Implementation of algorithm to generate the compact unwind encoding
/// for the CFI instructions.
uint32_t
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const override {
if (Instrs.empty()) return 0;
// Reset the saved registers.
unsigned SavedRegIdx = 0;
memset(SavedRegs, 0, sizeof(SavedRegs));
bool HasFP = false;
// Encode that we are using EBP/RBP as the frame pointer.
uint32_t CompactUnwindEncoding = 0;
unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
unsigned InstrOffset = 0;
unsigned StackAdjust = 0;
unsigned StackSize = 0;
int MinAbsOffset = std::numeric_limits<int>::max();
for (const MCCFIInstruction &Inst : Instrs) {
switch (Inst.getOperation()) {
default:
// Any other CFI directives indicate a frame that we aren't prepared
// to represent via compact unwind, so just bail out.
return CU::UNWIND_MODE_DWARF;
case MCCFIInstruction::OpDefCfaRegister: {
// Defines a frame pointer. E.g.
//
// movq %rsp, %rbp
// L0:
// .cfi_def_cfa_register %rbp
//
HasFP = true;
// If the frame pointer is other than esp/rsp, we do not have a way to
// generate a compact unwinding representation, so bail out.
if (*MRI.getLLVMRegNum(Inst.getRegister(), true) !=
(Is64Bit ? X86::RBP : X86::EBP))
return CU::UNWIND_MODE_DWARF;
// Reset the counts.
memset(SavedRegs, 0, sizeof(SavedRegs));
StackAdjust = 0;
SavedRegIdx = 0;
MinAbsOffset = std::numeric_limits<int>::max();
InstrOffset += MoveInstrSize;
break;
}
case MCCFIInstruction::OpDefCfaOffset: {
// Defines a new offset for the CFA. E.g.
//
// With frame:
//
// pushq %rbp
// L0:
// .cfi_def_cfa_offset 16
//
// Without frame:
//
// subq $72, %rsp
// L0:
// .cfi_def_cfa_offset 80
//
StackSize = Inst.getOffset() / StackDivide;
break;
}
case MCCFIInstruction::OpOffset: {
// Defines a "push" of a callee-saved register. E.g.
//
// pushq %r15
// pushq %r14
// pushq %rbx
// L0:
// subq $120, %rsp
// L1:
// .cfi_offset %rbx, -40
// .cfi_offset %r14, -32
// .cfi_offset %r15, -24
//
if (SavedRegIdx == CU_NUM_SAVED_REGS)
// If there are too many saved registers, we cannot use a compact
// unwind encoding.
return CU::UNWIND_MODE_DWARF;
unsigned Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
SavedRegs[SavedRegIdx++] = Reg;
StackAdjust += OffsetSize;
MinAbsOffset = std::min(MinAbsOffset, abs(Inst.getOffset()));
InstrOffset += PushInstrSize(Reg);
break;
}
}
}
StackAdjust /= StackDivide;
if (HasFP) {
if ((StackAdjust & 0xFF) != StackAdjust)
// Offset was too big for a compact unwind encoding.
return CU::UNWIND_MODE_DWARF;
// We don't attempt to track a real StackAdjust, so if the saved registers
// aren't adjacent to rbp we can't cope.
if (SavedRegIdx != 0 && MinAbsOffset != 3 * (int)OffsetSize)
return CU::UNWIND_MODE_DWARF;
// Get the encoding of the saved registers when we have a frame pointer.
uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
} else {
SubtractInstrIdx += InstrOffset;
++StackAdjust;
if ((StackSize & 0xFF) == StackSize) {
// Frameless stack with a small stack size.
CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
// Encode the stack size.
CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
} else {
if ((StackAdjust & 0x7) != StackAdjust)
// The extra stack adjustments are too big for us to handle.
return CU::UNWIND_MODE_DWARF;
// Frameless stack with an offset too large for us to encode compactly.
CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
// Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
// instruction.
CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
// Encode any extra stack adjustments (done via push instructions).
CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
}
// Encode the number of registers saved. (Reverse the list first.)
std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
// Get the encoding of the saved registers when we don't have a frame
// pointer.
uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
// Encode the register encoding.
CompactUnwindEncoding |=
RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
}
return CompactUnwindEncoding;
}
};
} // end anonymous namespace
MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TheTriple = STI.getTargetTriple();
if (TheTriple.isOSBinFormatMachO())
return new DarwinX86AsmBackend(T, MRI, STI);
if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
return new WindowsX86AsmBackend(T, false, STI);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
if (TheTriple.isOSIAMCU())
return new ELFX86_IAMCUAsmBackend(T, OSABI, STI);
return new ELFX86_32AsmBackend(T, OSABI, STI);
}
MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TheTriple = STI.getTargetTriple();
if (TheTriple.isOSBinFormatMachO())
return new DarwinX86AsmBackend(T, MRI, STI);
if (TheTriple.isOSWindows() && TheTriple.isOSBinFormatCOFF())
return new WindowsX86AsmBackend(T, true, STI);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
if (TheTriple.isX32())
return new ELFX86_X32AsmBackend(T, OSABI, STI);
return new ELFX86_64AsmBackend(T, OSABI, STI);
}
|