1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
//==========-- ImmutableGraph.h - A fast DAG implementation ---------=========//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Description: ImmutableGraph is a fast DAG implementation that cannot be
/// modified, except by creating a new ImmutableGraph. ImmutableGraph is
/// implemented as two arrays: one containing nodes, and one containing edges.
/// The advantages to this implementation are two-fold:
/// 1. Iteration and traversal operations benefit from cache locality.
/// 2. Operations on sets of nodes/edges are efficient, and representations of
/// those sets in memory are compact. For instance, a set of edges is
/// implemented as a bit vector, wherein each bit corresponds to one edge in
/// the edge array. This implies a lower bound of 64x spatial improvement
/// over, e.g., an llvm::DenseSet or llvm::SmallSet. It also means that
/// insert/erase/contains operations complete in negligible constant time:
/// insert and erase require one load and one store, and contains requires
/// just one load.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
#define LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <iterator>
#include <utility>
#include <vector>
namespace llvm {
template <typename NodeValueT, typename EdgeValueT> class ImmutableGraph {
using Traits = GraphTraits<ImmutableGraph<NodeValueT, EdgeValueT> *>;
template <typename> friend class ImmutableGraphBuilder;
public:
using node_value_type = NodeValueT;
using edge_value_type = EdgeValueT;
using size_type = int;
class Node;
class Edge {
friend class ImmutableGraph;
template <typename> friend class ImmutableGraphBuilder;
const Node *Dest;
edge_value_type Value;
public:
const Node *getDest() const { return Dest; };
const edge_value_type &getValue() const { return Value; }
};
class Node {
friend class ImmutableGraph;
template <typename> friend class ImmutableGraphBuilder;
const Edge *Edges;
node_value_type Value;
public:
const node_value_type &getValue() const { return Value; }
const Edge *edges_begin() const { return Edges; }
// Nodes are allocated sequentially. Edges for a node are stored together.
// The end of this Node's edges is the beginning of the next node's edges.
// An extra node was allocated to hold the end pointer for the last real
// node.
const Edge *edges_end() const { return (this + 1)->Edges; }
ArrayRef<Edge> edges() const {
return ArrayRef(edges_begin(), edges_end());
}
};
protected:
ImmutableGraph(std::unique_ptr<Node[]> Nodes, std::unique_ptr<Edge[]> Edges,
size_type NodesSize, size_type EdgesSize)
: Nodes(std::move(Nodes)), Edges(std::move(Edges)), NodesSize(NodesSize),
EdgesSize(EdgesSize) {}
ImmutableGraph(const ImmutableGraph &) = delete;
ImmutableGraph(ImmutableGraph &&) = delete;
ImmutableGraph &operator=(const ImmutableGraph &) = delete;
ImmutableGraph &operator=(ImmutableGraph &&) = delete;
public:
ArrayRef<Node> nodes() const { return ArrayRef(Nodes.get(), NodesSize); }
const Node *nodes_begin() const { return nodes().begin(); }
const Node *nodes_end() const { return nodes().end(); }
ArrayRef<Edge> edges() const { return ArrayRef(Edges.get(), EdgesSize); }
const Edge *edges_begin() const { return edges().begin(); }
const Edge *edges_end() const { return edges().end(); }
size_type nodes_size() const { return NodesSize; }
size_type edges_size() const { return EdgesSize; }
// Node N must belong to this ImmutableGraph.
size_type getNodeIndex(const Node &N) const {
return std::distance(nodes_begin(), &N);
}
// Edge E must belong to this ImmutableGraph.
size_type getEdgeIndex(const Edge &E) const {
return std::distance(edges_begin(), &E);
}
// FIXME: Could NodeSet and EdgeSet be templated to share code?
class NodeSet {
const ImmutableGraph &G;
BitVector V;
public:
NodeSet(const ImmutableGraph &G, bool ContainsAll = false)
: G{G}, V{static_cast<unsigned>(G.nodes_size()), ContainsAll} {}
bool insert(const Node &N) {
size_type Idx = G.getNodeIndex(N);
bool AlreadyExists = V.test(Idx);
V.set(Idx);
return !AlreadyExists;
}
void erase(const Node &N) {
size_type Idx = G.getNodeIndex(N);
V.reset(Idx);
}
bool contains(const Node &N) const {
size_type Idx = G.getNodeIndex(N);
return V.test(Idx);
}
void clear() { V.reset(); }
size_type empty() const { return V.none(); }
/// Return the number of elements in the set
size_type count() const { return V.count(); }
/// Return the size of the set's domain
size_type size() const { return V.size(); }
/// Set union
NodeSet &operator|=(const NodeSet &RHS) {
assert(&this->G == &RHS.G);
V |= RHS.V;
return *this;
}
/// Set intersection
NodeSet &operator&=(const NodeSet &RHS) {
assert(&this->G == &RHS.G);
V &= RHS.V;
return *this;
}
/// Set disjoint union
NodeSet &operator^=(const NodeSet &RHS) {
assert(&this->G == &RHS.G);
V ^= RHS.V;
return *this;
}
using index_iterator = typename BitVector::const_set_bits_iterator;
index_iterator index_begin() const { return V.set_bits_begin(); }
index_iterator index_end() const { return V.set_bits_end(); }
void set(size_type Idx) { V.set(Idx); }
void reset(size_type Idx) { V.reset(Idx); }
class iterator {
const NodeSet &Set;
size_type Current;
void advance() {
assert(Current != -1);
Current = Set.V.find_next(Current);
}
public:
iterator(const NodeSet &Set, size_type Begin)
: Set{Set}, Current{Begin} {}
iterator operator++(int) {
iterator Tmp = *this;
advance();
return Tmp;
}
iterator &operator++() {
advance();
return *this;
}
Node *operator*() const {
assert(Current != -1);
return Set.G.nodes_begin() + Current;
}
bool operator==(const iterator &other) const {
assert(&this->Set == &other.Set);
return this->Current == other.Current;
}
bool operator!=(const iterator &other) const { return !(*this == other); }
};
iterator begin() const { return iterator{*this, V.find_first()}; }
iterator end() const { return iterator{*this, -1}; }
};
class EdgeSet {
const ImmutableGraph &G;
BitVector V;
public:
EdgeSet(const ImmutableGraph &G, bool ContainsAll = false)
: G{G}, V{static_cast<unsigned>(G.edges_size()), ContainsAll} {}
bool insert(const Edge &E) {
size_type Idx = G.getEdgeIndex(E);
bool AlreadyExists = V.test(Idx);
V.set(Idx);
return !AlreadyExists;
}
void erase(const Edge &E) {
size_type Idx = G.getEdgeIndex(E);
V.reset(Idx);
}
bool contains(const Edge &E) const {
size_type Idx = G.getEdgeIndex(E);
return V.test(Idx);
}
void clear() { V.reset(); }
bool empty() const { return V.none(); }
/// Return the number of elements in the set
size_type count() const { return V.count(); }
/// Return the size of the set's domain
size_type size() const { return V.size(); }
/// Set union
EdgeSet &operator|=(const EdgeSet &RHS) {
assert(&this->G == &RHS.G);
V |= RHS.V;
return *this;
}
/// Set intersection
EdgeSet &operator&=(const EdgeSet &RHS) {
assert(&this->G == &RHS.G);
V &= RHS.V;
return *this;
}
/// Set disjoint union
EdgeSet &operator^=(const EdgeSet &RHS) {
assert(&this->G == &RHS.G);
V ^= RHS.V;
return *this;
}
using index_iterator = typename BitVector::const_set_bits_iterator;
index_iterator index_begin() const { return V.set_bits_begin(); }
index_iterator index_end() const { return V.set_bits_end(); }
void set(size_type Idx) { V.set(Idx); }
void reset(size_type Idx) { V.reset(Idx); }
class iterator {
const EdgeSet &Set;
size_type Current;
void advance() {
assert(Current != -1);
Current = Set.V.find_next(Current);
}
public:
iterator(const EdgeSet &Set, size_type Begin)
: Set{Set}, Current{Begin} {}
iterator operator++(int) {
iterator Tmp = *this;
advance();
return Tmp;
}
iterator &operator++() {
advance();
return *this;
}
Edge *operator*() const {
assert(Current != -1);
return Set.G.edges_begin() + Current;
}
bool operator==(const iterator &other) const {
assert(&this->Set == &other.Set);
return this->Current == other.Current;
}
bool operator!=(const iterator &other) const { return !(*this == other); }
};
iterator begin() const { return iterator{*this, V.find_first()}; }
iterator end() const { return iterator{*this, -1}; }
};
private:
std::unique_ptr<Node[]> Nodes;
std::unique_ptr<Edge[]> Edges;
size_type NodesSize;
size_type EdgesSize;
};
template <typename GraphT> class ImmutableGraphBuilder {
using node_value_type = typename GraphT::node_value_type;
using edge_value_type = typename GraphT::edge_value_type;
static_assert(
std::is_base_of<ImmutableGraph<node_value_type, edge_value_type>,
GraphT>::value,
"Template argument to ImmutableGraphBuilder must derive from "
"ImmutableGraph<>");
using size_type = typename GraphT::size_type;
using NodeSet = typename GraphT::NodeSet;
using Node = typename GraphT::Node;
using EdgeSet = typename GraphT::EdgeSet;
using Edge = typename GraphT::Edge;
using BuilderEdge = std::pair<edge_value_type, size_type>;
using EdgeList = std::vector<BuilderEdge>;
using BuilderVertex = std::pair<node_value_type, EdgeList>;
using VertexVec = std::vector<BuilderVertex>;
public:
using BuilderNodeRef = size_type;
BuilderNodeRef addVertex(const node_value_type &V) {
auto I = AdjList.emplace(AdjList.end(), V, EdgeList{});
return std::distance(AdjList.begin(), I);
}
void addEdge(const edge_value_type &E, BuilderNodeRef From,
BuilderNodeRef To) {
AdjList[From].second.emplace_back(E, To);
}
bool empty() const { return AdjList.empty(); }
template <typename... ArgT> std::unique_ptr<GraphT> get(ArgT &&... Args) {
size_type VertexSize = AdjList.size(), EdgeSize = 0;
for (const auto &V : AdjList) {
EdgeSize += V.second.size();
}
auto VertexArray =
std::make_unique<Node[]>(VertexSize + 1 /* terminator node */);
auto EdgeArray = std::make_unique<Edge[]>(EdgeSize);
size_type VI = 0, EI = 0;
for (; VI < VertexSize; ++VI) {
VertexArray[VI].Value = std::move(AdjList[VI].first);
VertexArray[VI].Edges = &EdgeArray[EI];
auto NumEdges = static_cast<size_type>(AdjList[VI].second.size());
for (size_type VEI = 0; VEI < NumEdges; ++VEI, ++EI) {
auto &E = AdjList[VI].second[VEI];
EdgeArray[EI].Value = std::move(E.first);
EdgeArray[EI].Dest = &VertexArray[E.second];
}
}
assert(VI == VertexSize && EI == EdgeSize && "ImmutableGraph malformed");
VertexArray[VI].Edges = &EdgeArray[EdgeSize]; // terminator node
return std::make_unique<GraphT>(std::move(VertexArray),
std::move(EdgeArray), VertexSize, EdgeSize,
std::forward<ArgT>(Args)...);
}
template <typename... ArgT>
static std::unique_ptr<GraphT> trim(const GraphT &G, const NodeSet &TrimNodes,
const EdgeSet &TrimEdges,
ArgT &&... Args) {
size_type NewVertexSize = G.nodes_size() - TrimNodes.count();
size_type NewEdgeSize = G.edges_size() - TrimEdges.count();
auto NewVertexArray =
std::make_unique<Node[]>(NewVertexSize + 1 /* terminator node */);
auto NewEdgeArray = std::make_unique<Edge[]>(NewEdgeSize);
// Walk the nodes and determine the new index for each node.
size_type NewNodeIndex = 0;
std::vector<size_type> RemappedNodeIndex(G.nodes_size());
for (const Node &N : G.nodes()) {
if (TrimNodes.contains(N))
continue;
RemappedNodeIndex[G.getNodeIndex(N)] = NewNodeIndex++;
}
assert(NewNodeIndex == NewVertexSize &&
"Should have assigned NewVertexSize indices");
size_type VertexI = 0, EdgeI = 0;
for (const Node &N : G.nodes()) {
if (TrimNodes.contains(N))
continue;
NewVertexArray[VertexI].Value = N.getValue();
NewVertexArray[VertexI].Edges = &NewEdgeArray[EdgeI];
for (const Edge &E : N.edges()) {
if (TrimEdges.contains(E))
continue;
NewEdgeArray[EdgeI].Value = E.getValue();
size_type DestIdx = G.getNodeIndex(*E.getDest());
size_type NewIdx = RemappedNodeIndex[DestIdx];
assert(NewIdx < NewVertexSize);
NewEdgeArray[EdgeI].Dest = &NewVertexArray[NewIdx];
++EdgeI;
}
++VertexI;
}
assert(VertexI == NewVertexSize && EdgeI == NewEdgeSize &&
"Gadget graph malformed");
NewVertexArray[VertexI].Edges = &NewEdgeArray[NewEdgeSize]; // terminator
return std::make_unique<GraphT>(std::move(NewVertexArray),
std::move(NewEdgeArray), NewVertexSize,
NewEdgeSize, std::forward<ArgT>(Args)...);
}
private:
VertexVec AdjList;
};
template <typename NodeValueT, typename EdgeValueT>
struct GraphTraits<ImmutableGraph<NodeValueT, EdgeValueT> *> {
using GraphT = ImmutableGraph<NodeValueT, EdgeValueT>;
using NodeRef = typename GraphT::Node const *;
using EdgeRef = typename GraphT::Edge const &;
static NodeRef edge_dest(EdgeRef E) { return E.getDest(); }
using ChildIteratorType =
mapped_iterator<typename GraphT::Edge const *, decltype(&edge_dest)>;
static NodeRef getEntryNode(GraphT *G) { return G->nodes_begin(); }
static ChildIteratorType child_begin(NodeRef N) {
return {N->edges_begin(), &edge_dest};
}
static ChildIteratorType child_end(NodeRef N) {
return {N->edges_end(), &edge_dest};
}
static NodeRef getNode(typename GraphT::Node const &N) { return NodeRef{&N}; }
using nodes_iterator =
mapped_iterator<typename GraphT::Node const *, decltype(&getNode)>;
static nodes_iterator nodes_begin(GraphT *G) {
return {G->nodes_begin(), &getNode};
}
static nodes_iterator nodes_end(GraphT *G) {
return {G->nodes_end(), &getNode};
}
using ChildEdgeIteratorType = typename GraphT::Edge const *;
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
return N->edges_begin();
}
static ChildEdgeIteratorType child_edge_end(NodeRef N) {
return N->edges_end();
}
static typename GraphT::size_type size(GraphT *G) { return G->nodes_size(); }
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
|