aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
blob: 4b24f7fdb118cbaad3f93e645cc9df8d2c273d9b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a register stacking pass.
///
/// This pass reorders instructions to put register uses and defs in an order
/// such that they form single-use expression trees. Registers fitting this form
/// are then marked as "stackified", meaning references to them are replaced by
/// "push" and "pop" from the value stack.
///
/// This is primarily a code size optimization, since temporary values on the
/// value stack don't need to be named.
///
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
#include "Utils/WebAssemblyUtilities.h"
#include "WebAssembly.h"
#include "WebAssemblyDebugValueManager.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySubtarget.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
using namespace llvm;

#define DEBUG_TYPE "wasm-reg-stackify"

namespace {
class WebAssemblyRegStackify final : public MachineFunctionPass {
  StringRef getPassName() const override {
    return "WebAssembly Register Stackify";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<LiveIntervals>();
    AU.addPreserved<MachineBlockFrequencyInfo>();
    AU.addPreserved<SlotIndexes>();
    AU.addPreserved<LiveIntervals>();
    AU.addPreservedID(LiveVariablesID);
    AU.addPreserved<MachineDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

public:
  static char ID; // Pass identification, replacement for typeid
  WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
};
} // end anonymous namespace

char WebAssemblyRegStackify::ID = 0;
INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
                "Reorder instructions to use the WebAssembly value stack",
                false, false)

FunctionPass *llvm::createWebAssemblyRegStackify() {
  return new WebAssemblyRegStackify();
}

// Decorate the given instruction with implicit operands that enforce the
// expression stack ordering constraints for an instruction which is on
// the expression stack.
static void imposeStackOrdering(MachineInstr *MI) {
  // Write the opaque VALUE_STACK register.
  if (!MI->definesRegister(WebAssembly::VALUE_STACK))
    MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
                                             /*isDef=*/true,
                                             /*isImp=*/true));

  // Also read the opaque VALUE_STACK register.
  if (!MI->readsRegister(WebAssembly::VALUE_STACK))
    MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
                                             /*isDef=*/false,
                                             /*isImp=*/true));
}

// Convert an IMPLICIT_DEF instruction into an instruction which defines
// a constant zero value.
static void convertImplicitDefToConstZero(MachineInstr *MI,
                                          MachineRegisterInfo &MRI,
                                          const TargetInstrInfo *TII,
                                          MachineFunction &MF,
                                          LiveIntervals &LIS) {
  assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);

  const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
  if (RegClass == &WebAssembly::I32RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_I32));
    MI->addOperand(MachineOperand::CreateImm(0));
  } else if (RegClass == &WebAssembly::I64RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_I64));
    MI->addOperand(MachineOperand::CreateImm(0));
  } else if (RegClass == &WebAssembly::F32RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_F32));
    auto *Val = cast<ConstantFP>(Constant::getNullValue(
        Type::getFloatTy(MF.getFunction().getContext())));
    MI->addOperand(MachineOperand::CreateFPImm(Val));
  } else if (RegClass == &WebAssembly::F64RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_F64));
    auto *Val = cast<ConstantFP>(Constant::getNullValue(
        Type::getDoubleTy(MF.getFunction().getContext())));
    MI->addOperand(MachineOperand::CreateFPImm(Val));
  } else if (RegClass == &WebAssembly::V128RegClass) {
    MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
    MI->addOperand(MachineOperand::CreateImm(0));
    MI->addOperand(MachineOperand::CreateImm(0));
  } else {
    llvm_unreachable("Unexpected reg class");
  }
}

// Determine whether a call to the callee referenced by
// MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
// effects.
static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
                        bool &Effects, bool &StackPointer) {
  // All calls can use the stack pointer.
  StackPointer = true;

  const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
  if (MO.isGlobal()) {
    const Constant *GV = MO.getGlobal();
    if (const auto *GA = dyn_cast<GlobalAlias>(GV))
      if (!GA->isInterposable())
        GV = GA->getAliasee();

    if (const auto *F = dyn_cast<Function>(GV)) {
      if (!F->doesNotThrow())
        Effects = true;
      if (F->doesNotAccessMemory())
        return;
      if (F->onlyReadsMemory()) {
        Read = true;
        return;
      }
    }
  }

  // Assume the worst.
  Write = true;
  Read = true;
  Effects = true;
}

// Determine whether MI reads memory, writes memory, has side effects,
// and/or uses the stack pointer value.
static void query(const MachineInstr &MI, bool &Read, bool &Write,
                  bool &Effects, bool &StackPointer) {
  assert(!MI.isTerminator());

  if (MI.isDebugInstr() || MI.isPosition())
    return;

  // Check for loads.
  if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
    Read = true;

  // Check for stores.
  if (MI.mayStore()) {
    Write = true;
  } else if (MI.hasOrderedMemoryRef()) {
    switch (MI.getOpcode()) {
    case WebAssembly::DIV_S_I32:
    case WebAssembly::DIV_S_I64:
    case WebAssembly::REM_S_I32:
    case WebAssembly::REM_S_I64:
    case WebAssembly::DIV_U_I32:
    case WebAssembly::DIV_U_I64:
    case WebAssembly::REM_U_I32:
    case WebAssembly::REM_U_I64:
    case WebAssembly::I32_TRUNC_S_F32:
    case WebAssembly::I64_TRUNC_S_F32:
    case WebAssembly::I32_TRUNC_S_F64:
    case WebAssembly::I64_TRUNC_S_F64:
    case WebAssembly::I32_TRUNC_U_F32:
    case WebAssembly::I64_TRUNC_U_F32:
    case WebAssembly::I32_TRUNC_U_F64:
    case WebAssembly::I64_TRUNC_U_F64:
      // These instruction have hasUnmodeledSideEffects() returning true
      // because they trap on overflow and invalid so they can't be arbitrarily
      // moved, however hasOrderedMemoryRef() interprets this plus their lack
      // of memoperands as having a potential unknown memory reference.
      break;
    default:
      // Record volatile accesses, unless it's a call, as calls are handled
      // specially below.
      if (!MI.isCall()) {
        Write = true;
        Effects = true;
      }
      break;
    }
  }

  // Check for side effects.
  if (MI.hasUnmodeledSideEffects()) {
    switch (MI.getOpcode()) {
    case WebAssembly::DIV_S_I32:
    case WebAssembly::DIV_S_I64:
    case WebAssembly::REM_S_I32:
    case WebAssembly::REM_S_I64:
    case WebAssembly::DIV_U_I32:
    case WebAssembly::DIV_U_I64:
    case WebAssembly::REM_U_I32:
    case WebAssembly::REM_U_I64:
    case WebAssembly::I32_TRUNC_S_F32:
    case WebAssembly::I64_TRUNC_S_F32:
    case WebAssembly::I32_TRUNC_S_F64:
    case WebAssembly::I64_TRUNC_S_F64:
    case WebAssembly::I32_TRUNC_U_F32:
    case WebAssembly::I64_TRUNC_U_F32:
    case WebAssembly::I32_TRUNC_U_F64:
    case WebAssembly::I64_TRUNC_U_F64:
      // These instructions have hasUnmodeledSideEffects() returning true
      // because they trap on overflow and invalid so they can't be arbitrarily
      // moved, however in the specific case of register stackifying, it is safe
      // to move them because overflow and invalid are Undefined Behavior.
      break;
    default:
      Effects = true;
      break;
    }
  }

  // Check for writes to __stack_pointer global.
  if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
       MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
      strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
    StackPointer = true;

  // Analyze calls.
  if (MI.isCall()) {
    queryCallee(MI, Read, Write, Effects, StackPointer);
  }
}

// Test whether Def is safe and profitable to rematerialize.
static bool shouldRematerialize(const MachineInstr &Def,
                                const WebAssemblyInstrInfo *TII) {
  return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
}

// Identify the definition for this register at this point. This is a
// generalization of MachineRegisterInfo::getUniqueVRegDef that uses
// LiveIntervals to handle complex cases.
static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
                                const MachineRegisterInfo &MRI,
                                const LiveIntervals &LIS) {
  // Most registers are in SSA form here so we try a quick MRI query first.
  if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
    return Def;

  // MRI doesn't know what the Def is. Try asking LIS.
  if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
          LIS.getInstructionIndex(*Insert)))
    return LIS.getInstructionFromIndex(ValNo->def);

  return nullptr;
}

// Test whether Reg, as defined at Def, has exactly one use. This is a
// generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
// to handle complex cases.
static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
                      MachineDominatorTree &MDT, LiveIntervals &LIS) {
  // Most registers are in SSA form here so we try a quick MRI query first.
  if (MRI.hasOneUse(Reg))
    return true;

  bool HasOne = false;
  const LiveInterval &LI = LIS.getInterval(Reg);
  const VNInfo *DefVNI =
      LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
  assert(DefVNI);
  for (auto &I : MRI.use_nodbg_operands(Reg)) {
    const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
    if (Result.valueIn() == DefVNI) {
      if (!Result.isKill())
        return false;
      if (HasOne)
        return false;
      HasOne = true;
    }
  }
  return HasOne;
}

// Test whether it's safe to move Def to just before Insert.
// TODO: Compute memory dependencies in a way that doesn't require always
// walking the block.
// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
// more precise.
static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
                         const MachineInstr *Insert,
                         const WebAssemblyFunctionInfo &MFI,
                         const MachineRegisterInfo &MRI) {
  const MachineInstr *DefI = Def->getParent();
  const MachineInstr *UseI = Use->getParent();
  assert(DefI->getParent() == Insert->getParent());
  assert(UseI->getParent() == Insert->getParent());

  // The first def of a multivalue instruction can be stackified by moving,
  // since the later defs can always be placed into locals if necessary. Later
  // defs can only be stackified if all previous defs are already stackified
  // since ExplicitLocals will not know how to place a def in a local if a
  // subsequent def is stackified. But only one def can be stackified by moving
  // the instruction, so it must be the first one.
  //
  // TODO: This could be loosened to be the first *live* def, but care would
  // have to be taken to ensure the drops of the initial dead defs can be
  // placed. This would require checking that no previous defs are used in the
  // same instruction as subsequent defs.
  if (Def != DefI->defs().begin())
    return false;

  // If any subsequent def is used prior to the current value by the same
  // instruction in which the current value is used, we cannot
  // stackify. Stackifying in this case would require that def moving below the
  // current def in the stack, which cannot be achieved, even with locals.
  // Also ensure we don't sink the def past any other prior uses.
  for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
    auto I = std::next(MachineBasicBlock::const_iterator(DefI));
    auto E = std::next(MachineBasicBlock::const_iterator(UseI));
    for (; I != E; ++I) {
      for (const auto &PriorUse : I->uses()) {
        if (&PriorUse == Use)
          break;
        if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
          return false;
      }
    }
  }

  // If moving is a semantic nop, it is always allowed
  const MachineBasicBlock *MBB = DefI->getParent();
  auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
  for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
    ;
  if (NextI == Insert)
    return true;

  // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
  // move.
  if (WebAssembly::isCatch(DefI->getOpcode()))
    return false;

  // Check for register dependencies.
  SmallVector<unsigned, 4> MutableRegisters;
  for (const MachineOperand &MO : DefI->operands()) {
    if (!MO.isReg() || MO.isUndef())
      continue;
    Register Reg = MO.getReg();

    // If the register is dead here and at Insert, ignore it.
    if (MO.isDead() && Insert->definesRegister(Reg) &&
        !Insert->readsRegister(Reg))
      continue;

    if (Reg.isPhysical()) {
      // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
      // from moving down, and we've already checked for that.
      if (Reg == WebAssembly::ARGUMENTS)
        continue;
      // If the physical register is never modified, ignore it.
      if (!MRI.isPhysRegModified(Reg))
        continue;
      // Otherwise, it's a physical register with unknown liveness.
      return false;
    }

    // If one of the operands isn't in SSA form, it has different values at
    // different times, and we need to make sure we don't move our use across
    // a different def.
    if (!MO.isDef() && !MRI.hasOneDef(Reg))
      MutableRegisters.push_back(Reg);
  }

  bool Read = false, Write = false, Effects = false, StackPointer = false;
  query(*DefI, Read, Write, Effects, StackPointer);

  // If the instruction does not access memory and has no side effects, it has
  // no additional dependencies.
  bool HasMutableRegisters = !MutableRegisters.empty();
  if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
    return true;

  // Scan through the intervening instructions between DefI and Insert.
  MachineBasicBlock::const_iterator D(DefI), I(Insert);
  for (--I; I != D; --I) {
    bool InterveningRead = false;
    bool InterveningWrite = false;
    bool InterveningEffects = false;
    bool InterveningStackPointer = false;
    query(*I, InterveningRead, InterveningWrite, InterveningEffects,
          InterveningStackPointer);
    if (Effects && InterveningEffects)
      return false;
    if (Read && InterveningWrite)
      return false;
    if (Write && (InterveningRead || InterveningWrite))
      return false;
    if (StackPointer && InterveningStackPointer)
      return false;

    for (unsigned Reg : MutableRegisters)
      for (const MachineOperand &MO : I->operands())
        if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
          return false;
  }

  return true;
}

/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
                                     const MachineBasicBlock &MBB,
                                     const MachineRegisterInfo &MRI,
                                     const MachineDominatorTree &MDT,
                                     LiveIntervals &LIS,
                                     WebAssemblyFunctionInfo &MFI) {
  const LiveInterval &LI = LIS.getInterval(Reg);

  const MachineInstr *OneUseInst = OneUse.getParent();
  VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));

  for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
    if (&Use == &OneUse)
      continue;

    const MachineInstr *UseInst = Use.getParent();
    VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));

    if (UseVNI != OneUseVNI)
      continue;

    if (UseInst == OneUseInst) {
      // Another use in the same instruction. We need to ensure that the one
      // selected use happens "before" it.
      if (&OneUse > &Use)
        return false;
    } else {
      // Test that the use is dominated by the one selected use.
      while (!MDT.dominates(OneUseInst, UseInst)) {
        // Actually, dominating is over-conservative. Test that the use would
        // happen after the one selected use in the stack evaluation order.
        //
        // This is needed as a consequence of using implicit local.gets for
        // uses and implicit local.sets for defs.
        if (UseInst->getDesc().getNumDefs() == 0)
          return false;
        const MachineOperand &MO = UseInst->getOperand(0);
        if (!MO.isReg())
          return false;
        Register DefReg = MO.getReg();
        if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg))
          return false;
        assert(MRI.hasOneNonDBGUse(DefReg));
        const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
        const MachineInstr *NewUseInst = NewUse.getParent();
        if (NewUseInst == OneUseInst) {
          if (&OneUse > &NewUse)
            return false;
          break;
        }
        UseInst = NewUseInst;
      }
    }
  }
  return true;
}

/// Get the appropriate tee opcode for the given register class.
static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
  if (RC == &WebAssembly::I32RegClass)
    return WebAssembly::TEE_I32;
  if (RC == &WebAssembly::I64RegClass)
    return WebAssembly::TEE_I64;
  if (RC == &WebAssembly::F32RegClass)
    return WebAssembly::TEE_F32;
  if (RC == &WebAssembly::F64RegClass)
    return WebAssembly::TEE_F64;
  if (RC == &WebAssembly::V128RegClass)
    return WebAssembly::TEE_V128;
  if (RC == &WebAssembly::EXTERNREFRegClass)
    return WebAssembly::TEE_EXTERNREF;
  if (RC == &WebAssembly::FUNCREFRegClass)
    return WebAssembly::TEE_FUNCREF;
  llvm_unreachable("Unexpected register class");
}

// Shrink LI to its uses, cleaning up LI.
static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
  if (LIS.shrinkToUses(&LI)) {
    SmallVector<LiveInterval *, 4> SplitLIs;
    LIS.splitSeparateComponents(LI, SplitLIs);
  }
}

/// A single-use def in the same block with no intervening memory or register
/// dependencies; move the def down and nest it with the current instruction.
static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
                                      MachineInstr *Def, MachineBasicBlock &MBB,
                                      MachineInstr *Insert, LiveIntervals &LIS,
                                      WebAssemblyFunctionInfo &MFI,
                                      MachineRegisterInfo &MRI) {
  LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());

  WebAssemblyDebugValueManager DefDIs(Def);
  MBB.splice(Insert, &MBB, Def);
  DefDIs.move(Insert);
  LIS.handleMove(*Def);

  if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
    // No one else is using this register for anything so we can just stackify
    // it in place.
    MFI.stackifyVReg(MRI, Reg);
  } else {
    // The register may have unrelated uses or defs; create a new register for
    // just our one def and use so that we can stackify it.
    Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
    Def->getOperand(0).setReg(NewReg);
    Op.setReg(NewReg);

    // Tell LiveIntervals about the new register.
    LIS.createAndComputeVirtRegInterval(NewReg);

    // Tell LiveIntervals about the changes to the old register.
    LiveInterval &LI = LIS.getInterval(Reg);
    LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
                     LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
                     /*RemoveDeadValNo=*/true);

    MFI.stackifyVReg(MRI, NewReg);

    DefDIs.updateReg(NewReg);

    LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
  }

  imposeStackOrdering(Def);
  return Def;
}

/// A trivially cloneable instruction; clone it and nest the new copy with the
/// current instruction.
static MachineInstr *rematerializeCheapDef(
    unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
    MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
    WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
    const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
  LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
  LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());

  WebAssemblyDebugValueManager DefDIs(&Def);

  Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
  TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
  Op.setReg(NewReg);
  MachineInstr *Clone = &*std::prev(Insert);
  LIS.InsertMachineInstrInMaps(*Clone);
  LIS.createAndComputeVirtRegInterval(NewReg);
  MFI.stackifyVReg(MRI, NewReg);
  imposeStackOrdering(Clone);

  LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());

  // Shrink the interval.
  bool IsDead = MRI.use_empty(Reg);
  if (!IsDead) {
    LiveInterval &LI = LIS.getInterval(Reg);
    shrinkToUses(LI, LIS);
    IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
  }

  // If that was the last use of the original, delete the original.
  // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
  if (IsDead) {
    LLVM_DEBUG(dbgs() << " - Deleting original\n");
    SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
    LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
    LIS.removeInterval(Reg);
    LIS.RemoveMachineInstrFromMaps(Def);
    Def.eraseFromParent();

    DefDIs.move(&*Insert);
    DefDIs.updateReg(NewReg);
  } else {
    DefDIs.clone(&*Insert, NewReg);
  }

  return Clone;
}

/// A multiple-use def in the same block with no intervening memory or register
/// dependencies; move the def down, nest it with the current instruction, and
/// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
/// this:
///
///    Reg = INST ...        // Def
///    INST ..., Reg, ...    // Insert
///    INST ..., Reg, ...
///    INST ..., Reg, ...
///
/// to this:
///
///    DefReg = INST ...     // Def (to become the new Insert)
///    TeeReg, Reg = TEE_... DefReg
///    INST ..., TeeReg, ... // Insert
///    INST ..., Reg, ...
///    INST ..., Reg, ...
///
/// with DefReg and TeeReg stackified. This eliminates a local.get from the
/// resulting code.
static MachineInstr *moveAndTeeForMultiUse(
    unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
    MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
    MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
  LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());

  WebAssemblyDebugValueManager DefDIs(Def);

  // Move Def into place.
  MBB.splice(Insert, &MBB, Def);
  LIS.handleMove(*Def);

  // Create the Tee and attach the registers.
  const auto *RegClass = MRI.getRegClass(Reg);
  Register TeeReg = MRI.createVirtualRegister(RegClass);
  Register DefReg = MRI.createVirtualRegister(RegClass);
  MachineOperand &DefMO = Def->getOperand(0);
  MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
                              TII->get(getTeeOpcode(RegClass)), TeeReg)
                          .addReg(Reg, RegState::Define)
                          .addReg(DefReg, getUndefRegState(DefMO.isDead()));
  Op.setReg(TeeReg);
  DefMO.setReg(DefReg);
  SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
  SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();

  DefDIs.move(Insert);

  // Tell LiveIntervals we moved the original vreg def from Def to Tee.
  LiveInterval &LI = LIS.getInterval(Reg);
  LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
  VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
  I->start = TeeIdx;
  ValNo->def = TeeIdx;
  shrinkToUses(LI, LIS);

  // Finish stackifying the new regs.
  LIS.createAndComputeVirtRegInterval(TeeReg);
  LIS.createAndComputeVirtRegInterval(DefReg);
  MFI.stackifyVReg(MRI, DefReg);
  MFI.stackifyVReg(MRI, TeeReg);
  imposeStackOrdering(Def);
  imposeStackOrdering(Tee);

  DefDIs.clone(Tee, DefReg);
  DefDIs.clone(Insert, TeeReg);

  LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
  LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
  return Def;
}

namespace {
/// A stack for walking the tree of instructions being built, visiting the
/// MachineOperands in DFS order.
class TreeWalkerState {
  using mop_iterator = MachineInstr::mop_iterator;
  using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
  using RangeTy = iterator_range<mop_reverse_iterator>;
  SmallVector<RangeTy, 4> Worklist;

public:
  explicit TreeWalkerState(MachineInstr *Insert) {
    const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
    if (!Range.empty())
      Worklist.push_back(reverse(Range));
  }

  bool done() const { return Worklist.empty(); }

  MachineOperand &pop() {
    RangeTy &Range = Worklist.back();
    MachineOperand &Op = *Range.begin();
    Range = drop_begin(Range);
    if (Range.empty())
      Worklist.pop_back();
    assert((Worklist.empty() || !Worklist.back().empty()) &&
           "Empty ranges shouldn't remain in the worklist");
    return Op;
  }

  /// Push Instr's operands onto the stack to be visited.
  void pushOperands(MachineInstr *Instr) {
    const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
    if (!Range.empty())
      Worklist.push_back(reverse(Range));
  }

  /// Some of Instr's operands are on the top of the stack; remove them and
  /// re-insert them starting from the beginning (because we've commuted them).
  void resetTopOperands(MachineInstr *Instr) {
    assert(hasRemainingOperands(Instr) &&
           "Reseting operands should only be done when the instruction has "
           "an operand still on the stack");
    Worklist.back() = reverse(Instr->explicit_uses());
  }

  /// Test whether Instr has operands remaining to be visited at the top of
  /// the stack.
  bool hasRemainingOperands(const MachineInstr *Instr) const {
    if (Worklist.empty())
      return false;
    const RangeTy &Range = Worklist.back();
    return !Range.empty() && Range.begin()->getParent() == Instr;
  }

  /// Test whether the given register is present on the stack, indicating an
  /// operand in the tree that we haven't visited yet. Moving a definition of
  /// Reg to a point in the tree after that would change its value.
  ///
  /// This is needed as a consequence of using implicit local.gets for
  /// uses and implicit local.sets for defs.
  bool isOnStack(unsigned Reg) const {
    for (const RangeTy &Range : Worklist)
      for (const MachineOperand &MO : Range)
        if (MO.isReg() && MO.getReg() == Reg)
          return true;
    return false;
  }
};

/// State to keep track of whether commuting is in flight or whether it's been
/// tried for the current instruction and didn't work.
class CommutingState {
  /// There are effectively three states: the initial state where we haven't
  /// started commuting anything and we don't know anything yet, the tentative
  /// state where we've commuted the operands of the current instruction and are
  /// revisiting it, and the declined state where we've reverted the operands
  /// back to their original order and will no longer commute it further.
  bool TentativelyCommuting = false;
  bool Declined = false;

  /// During the tentative state, these hold the operand indices of the commuted
  /// operands.
  unsigned Operand0, Operand1;

public:
  /// Stackification for an operand was not successful due to ordering
  /// constraints. If possible, and if we haven't already tried it and declined
  /// it, commute Insert's operands and prepare to revisit it.
  void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
                    const WebAssemblyInstrInfo *TII) {
    if (TentativelyCommuting) {
      assert(!Declined &&
             "Don't decline commuting until you've finished trying it");
      // Commuting didn't help. Revert it.
      TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
      TentativelyCommuting = false;
      Declined = true;
    } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
      Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
      Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
      if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
        // Tentatively commute the operands and try again.
        TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
        TreeWalker.resetTopOperands(Insert);
        TentativelyCommuting = true;
        Declined = false;
      }
    }
  }

  /// Stackification for some operand was successful. Reset to the default
  /// state.
  void reset() {
    TentativelyCommuting = false;
    Declined = false;
  }
};
} // end anonymous namespace

bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
                       "********** Function: "
                    << MF.getName() << '\n');

  bool Changed = false;
  MachineRegisterInfo &MRI = MF.getRegInfo();
  WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
  const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
  auto &MDT = getAnalysis<MachineDominatorTree>();
  auto &LIS = getAnalysis<LiveIntervals>();

  // Walk the instructions from the bottom up. Currently we don't look past
  // block boundaries, and the blocks aren't ordered so the block visitation
  // order isn't significant, but we may want to change this in the future.
  for (MachineBasicBlock &MBB : MF) {
    // Don't use a range-based for loop, because we modify the list as we're
    // iterating over it and the end iterator may change.
    for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
      MachineInstr *Insert = &*MII;
      // Don't nest anything inside an inline asm, because we don't have
      // constraints for $push inputs.
      if (Insert->isInlineAsm())
        continue;

      // Ignore debugging intrinsics.
      if (Insert->isDebugValue())
        continue;

      // Iterate through the inputs in reverse order, since we'll be pulling
      // operands off the stack in LIFO order.
      CommutingState Commuting;
      TreeWalkerState TreeWalker(Insert);
      while (!TreeWalker.done()) {
        MachineOperand &Use = TreeWalker.pop();

        // We're only interested in explicit virtual register operands.
        if (!Use.isReg())
          continue;

        Register Reg = Use.getReg();
        assert(Use.isUse() && "explicit_uses() should only iterate over uses");
        assert(!Use.isImplicit() &&
               "explicit_uses() should only iterate over explicit operands");
        if (Reg.isPhysical())
          continue;

        // Identify the definition for this register at this point.
        MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
        if (!DefI)
          continue;

        // Don't nest an INLINE_ASM def into anything, because we don't have
        // constraints for $pop outputs.
        if (DefI->isInlineAsm())
          continue;

        // Argument instructions represent live-in registers and not real
        // instructions.
        if (WebAssembly::isArgument(DefI->getOpcode()))
          continue;

        MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
        assert(Def != nullptr);

        // Decide which strategy to take. Prefer to move a single-use value
        // over cloning it, and prefer cloning over introducing a tee.
        // For moving, we require the def to be in the same block as the use;
        // this makes things simpler (LiveIntervals' handleMove function only
        // supports intra-block moves) and it's MachineSink's job to catch all
        // the sinking opportunities anyway.
        bool SameBlock = DefI->getParent() == &MBB;
        bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
                       !TreeWalker.isOnStack(Reg);
        if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
          Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);

          // If we are removing the frame base reg completely, remove the debug
          // info as well.
          // TODO: Encode this properly as a stackified value.
          if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
            MFI.clearFrameBaseVreg();
        } else if (shouldRematerialize(*DefI, TII)) {
          Insert =
              rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
                                    LIS, MFI, MRI, TII, TRI);
        } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
                                                       LIS, MFI)) {
          Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
                                         MRI, TII);
        } else {
          // We failed to stackify the operand. If the problem was ordering
          // constraints, Commuting may be able to help.
          if (!CanMove && SameBlock)
            Commuting.maybeCommute(Insert, TreeWalker, TII);
          // Proceed to the next operand.
          continue;
        }

        // Stackifying a multivalue def may unlock in-place stackification of
        // subsequent defs. TODO: Handle the case where the consecutive uses are
        // not all in the same instruction.
        auto *SubsequentDef = Insert->defs().begin();
        auto *SubsequentUse = &Use;
        while (SubsequentDef != Insert->defs().end() &&
               SubsequentUse != Use.getParent()->uses().end()) {
          if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
            break;
          Register DefReg = SubsequentDef->getReg();
          Register UseReg = SubsequentUse->getReg();
          // TODO: This single-use restriction could be relaxed by using tees
          if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
            break;
          MFI.stackifyVReg(MRI, DefReg);
          ++SubsequentDef;
          ++SubsequentUse;
        }

        // If the instruction we just stackified is an IMPLICIT_DEF, convert it
        // to a constant 0 so that the def is explicit, and the push/pop
        // correspondence is maintained.
        if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
          convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);

        // We stackified an operand. Add the defining instruction's operands to
        // the worklist stack now to continue to build an ever deeper tree.
        Commuting.reset();
        TreeWalker.pushOperands(Insert);
      }

      // If we stackified any operands, skip over the tree to start looking for
      // the next instruction we can build a tree on.
      if (Insert != &*MII) {
        imposeStackOrdering(&*MII);
        MII = MachineBasicBlock::iterator(Insert).getReverse();
        Changed = true;
      }
    }
  }

  // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
  // that it never looks like a use-before-def.
  if (Changed) {
    MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
    for (MachineBasicBlock &MBB : MF)
      MBB.addLiveIn(WebAssembly::VALUE_STACK);
  }

#ifndef NDEBUG
  // Verify that pushes and pops are performed in LIFO order.
  SmallVector<unsigned, 0> Stack;
  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      if (MI.isDebugInstr())
        continue;
      for (MachineOperand &MO : reverse(MI.explicit_uses())) {
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();
        if (MFI.isVRegStackified(Reg))
          assert(Stack.pop_back_val() == Reg &&
                 "Register stack pop should be paired with a push");
      }
      for (MachineOperand &MO : MI.defs()) {
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();
        if (MFI.isVRegStackified(Reg))
          Stack.push_back(MO.getReg());
      }
    }
    // TODO: Generalize this code to support keeping values on the stack across
    // basic block boundaries.
    assert(Stack.empty() &&
           "Register stack pushes and pops should be balanced");
  }
#endif

  return Changed;
}