aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp
blob: 6c46673c36bf0fb9bf0862709dd86b10987a1862 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
//=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a pass that removes irreducible control flow.
/// Irreducible control flow means multiple-entry loops, which this pass
/// transforms to have a single entry.
///
/// Note that LLVM has a generic pass that lowers irreducible control flow, but
/// it linearizes control flow, turning diamonds into two triangles, which is
/// both unnecessary and undesirable for WebAssembly.
///
/// The big picture: We recursively process each "region", defined as a group
/// of blocks with a single entry and no branches back to that entry. A region
/// may be the entire function body, or the inner part of a loop, i.e., the
/// loop's body without branches back to the loop entry. In each region we fix
/// up multi-entry loops by adding a new block that can dispatch to each of the
/// loop entries, based on the value of a label "helper" variable, and we
/// replace direct branches to the entries with assignments to the label
/// variable and a branch to the dispatch block. Then the dispatch block is the
/// single entry in the loop containing the previous multiple entries. After
/// ensuring all the loops in a region are reducible, we recurse into them. The
/// total time complexity of this pass is:
///
///   O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
///     NumLoops * NumLoops)
///
/// This pass is similar to what the Relooper [1] does. Both identify looping
/// code that requires multiple entries, and resolve it in a similar way (in
/// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
/// also that like the Relooper, we implement a "minimal" intervention: we only
/// use the "label" helper for the blocks we absolutely must and no others. We
/// also prioritize code size and do not duplicate code in order to resolve
/// irreducibility. The graph algorithms for finding loops and entries and so
/// forth are also similar to the Relooper. The main differences between this
/// pass and the Relooper are:
///
///  * We just care about irreducibility, so we just look at loops.
///  * The Relooper emits structured control flow (with ifs etc.), while we
///    emit a CFG.
///
/// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
/// Proceedings of the ACM international conference companion on Object oriented
/// programming systems languages and applications companion (SPLASH '11). ACM,
/// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
/// http://doi.acm.org/10.1145/2048147.2048224
///
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "WebAssembly.h"
#include "WebAssemblySubtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/Debug.h"
using namespace llvm;

#define DEBUG_TYPE "wasm-fix-irreducible-control-flow"

namespace {

using BlockVector = SmallVector<MachineBasicBlock *, 4>;
using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;

static BlockVector getSortedEntries(const BlockSet &Entries) {
  BlockVector SortedEntries(Entries.begin(), Entries.end());
  llvm::sort(SortedEntries,
             [](const MachineBasicBlock *A, const MachineBasicBlock *B) {
               auto ANum = A->getNumber();
               auto BNum = B->getNumber();
               return ANum < BNum;
             });
  return SortedEntries;
}

// Calculates reachability in a region. Ignores branches to blocks outside of
// the region, and ignores branches to the region entry (for the case where
// the region is the inner part of a loop).
class ReachabilityGraph {
public:
  ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
      : Entry(Entry), Blocks(Blocks) {
#ifndef NDEBUG
    // The region must have a single entry.
    for (auto *MBB : Blocks) {
      if (MBB != Entry) {
        for (auto *Pred : MBB->predecessors()) {
          assert(inRegion(Pred));
        }
      }
    }
#endif
    calculate();
  }

  bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
    assert(inRegion(From) && inRegion(To));
    auto I = Reachable.find(From);
    if (I == Reachable.end())
      return false;
    return I->second.count(To);
  }

  // "Loopers" are blocks that are in a loop. We detect these by finding blocks
  // that can reach themselves.
  const BlockSet &getLoopers() const { return Loopers; }

  // Get all blocks that are loop entries.
  const BlockSet &getLoopEntries() const { return LoopEntries; }

  // Get all blocks that enter a particular loop from outside.
  const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
    assert(inRegion(LoopEntry));
    auto I = LoopEnterers.find(LoopEntry);
    assert(I != LoopEnterers.end());
    return I->second;
  }

private:
  MachineBasicBlock *Entry;
  const BlockSet &Blocks;

  BlockSet Loopers, LoopEntries;
  DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;

  bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }

  // Maps a block to all the other blocks it can reach.
  DenseMap<MachineBasicBlock *, BlockSet> Reachable;

  void calculate() {
    // Reachability computation work list. Contains pairs of recent additions
    // (A, B) where we just added a link A => B.
    using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
    SmallVector<BlockPair, 4> WorkList;

    // Add all relevant direct branches.
    for (auto *MBB : Blocks) {
      for (auto *Succ : MBB->successors()) {
        if (Succ != Entry && inRegion(Succ)) {
          Reachable[MBB].insert(Succ);
          WorkList.emplace_back(MBB, Succ);
        }
      }
    }

    while (!WorkList.empty()) {
      MachineBasicBlock *MBB, *Succ;
      std::tie(MBB, Succ) = WorkList.pop_back_val();
      assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
      if (MBB != Entry) {
        // We recently added MBB => Succ, and that means we may have enabled
        // Pred => MBB => Succ.
        for (auto *Pred : MBB->predecessors()) {
          if (Reachable[Pred].insert(Succ).second) {
            WorkList.emplace_back(Pred, Succ);
          }
        }
      }
    }

    // Blocks that can return to themselves are in a loop.
    for (auto *MBB : Blocks) {
      if (canReach(MBB, MBB)) {
        Loopers.insert(MBB);
      }
    }
    assert(!Loopers.count(Entry));

    // Find the loop entries - loopers reachable from blocks not in that loop -
    // and those outside blocks that reach them, the "loop enterers".
    for (auto *Looper : Loopers) {
      for (auto *Pred : Looper->predecessors()) {
        // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
        // otherwise, it is a block that enters into the loop.
        if (!canReach(Looper, Pred)) {
          LoopEntries.insert(Looper);
          LoopEnterers[Looper].insert(Pred);
        }
      }
    }
  }
};

// Finds the blocks in a single-entry loop, given the loop entry and the
// list of blocks that enter the loop.
class LoopBlocks {
public:
  LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
      : Entry(Entry), Enterers(Enterers) {
    calculate();
  }

  BlockSet &getBlocks() { return Blocks; }

private:
  MachineBasicBlock *Entry;
  const BlockSet &Enterers;

  BlockSet Blocks;

  void calculate() {
    // Going backwards from the loop entry, if we ignore the blocks entering
    // from outside, we will traverse all the blocks in the loop.
    BlockVector WorkList;
    BlockSet AddedToWorkList;
    Blocks.insert(Entry);
    for (auto *Pred : Entry->predecessors()) {
      if (!Enterers.count(Pred)) {
        WorkList.push_back(Pred);
        AddedToWorkList.insert(Pred);
      }
    }

    while (!WorkList.empty()) {
      auto *MBB = WorkList.pop_back_val();
      assert(!Enterers.count(MBB));
      if (Blocks.insert(MBB).second) {
        for (auto *Pred : MBB->predecessors()) {
          if (AddedToWorkList.insert(Pred).second)
            WorkList.push_back(Pred);
        }
      }
    }
  }
};

class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
  StringRef getPassName() const override {
    return "WebAssembly Fix Irreducible Control Flow";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
                     MachineFunction &MF);

  void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
                           MachineFunction &MF, const ReachabilityGraph &Graph);

public:
  static char ID; // Pass identification, replacement for typeid
  WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
};

bool WebAssemblyFixIrreducibleControlFlow::processRegion(
    MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
  bool Changed = false;
  // Remove irreducibility before processing child loops, which may take
  // multiple iterations.
  while (true) {
    ReachabilityGraph Graph(Entry, Blocks);

    bool FoundIrreducibility = false;

    for (auto *LoopEntry : getSortedEntries(Graph.getLoopEntries())) {
      // Find mutual entries - all entries which can reach this one, and
      // are reached by it (that always includes LoopEntry itself). All mutual
      // entries must be in the same loop, so if we have more than one, then we
      // have irreducible control flow.
      //
      // (Note that we need to sort the entries here, as otherwise the order can
      // matter: being mutual is a symmetric relationship, and each set of
      // mutuals will be handled properly no matter which we see first. However,
      // there can be multiple disjoint sets of mutuals, and which we process
      // first changes the output.)
      //
      // Note that irreducibility may involve inner loops, e.g. imagine A
      // starts one loop, and it has B inside it which starts an inner loop.
      // If we add a branch from all the way on the outside to B, then in a
      // sense B is no longer an "inner" loop, semantically speaking. We will
      // fix that irreducibility by adding a block that dispatches to either
      // either A or B, so B will no longer be an inner loop in our output.
      // (A fancier approach might try to keep it as such.)
      //
      // Note that we still need to recurse into inner loops later, to handle
      // the case where the irreducibility is entirely nested - we would not
      // be able to identify that at this point, since the enclosing loop is
      // a group of blocks all of whom can reach each other. (We'll see the
      // irreducibility after removing branches to the top of that enclosing
      // loop.)
      BlockSet MutualLoopEntries;
      MutualLoopEntries.insert(LoopEntry);
      for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
        if (OtherLoopEntry != LoopEntry &&
            Graph.canReach(LoopEntry, OtherLoopEntry) &&
            Graph.canReach(OtherLoopEntry, LoopEntry)) {
          MutualLoopEntries.insert(OtherLoopEntry);
        }
      }

      if (MutualLoopEntries.size() > 1) {
        makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
        FoundIrreducibility = true;
        Changed = true;
        break;
      }
    }
    // Only go on to actually process the inner loops when we are done
    // removing irreducible control flow and changing the graph. Modifying
    // the graph as we go is possible, and that might let us avoid looking at
    // the already-fixed loops again if we are careful, but all that is
    // complex and bug-prone. Since irreducible loops are rare, just starting
    // another iteration is best.
    if (FoundIrreducibility) {
      continue;
    }

    for (auto *LoopEntry : Graph.getLoopEntries()) {
      LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
      // Each of these calls to processRegion may change the graph, but are
      // guaranteed not to interfere with each other. The only changes we make
      // to the graph are to add blocks on the way to a loop entry. As the
      // loops are disjoint, that means we may only alter branches that exit
      // another loop, which are ignored when recursing into that other loop
      // anyhow.
      if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
        Changed = true;
      }
    }

    return Changed;
  }
}

// Given a set of entries to a single loop, create a single entry for that
// loop by creating a dispatch block for them, routing control flow using
// a helper variable. Also updates Blocks with any new blocks created, so
// that we properly track all the blocks in the region. But this does not update
// ReachabilityGraph; this will be updated in the caller of this function as
// needed.
void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
    BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
    const ReachabilityGraph &Graph) {
  assert(Entries.size() >= 2);

  // Sort the entries to ensure a deterministic build.
  BlockVector SortedEntries = getSortedEntries(Entries);

#ifndef NDEBUG
  for (auto *Block : SortedEntries)
    assert(Block->getNumber() != -1);
  if (SortedEntries.size() > 1) {
    for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
         ++I) {
      auto ANum = (*I)->getNumber();
      auto BNum = (*(std::next(I)))->getNumber();
      assert(ANum != BNum);
    }
  }
#endif

  // Create a dispatch block which will contain a jump table to the entries.
  MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
  MF.insert(MF.end(), Dispatch);
  Blocks.insert(Dispatch);

  // Add the jump table.
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  MachineInstrBuilder MIB =
      BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));

  // Add the register which will be used to tell the jump table which block to
  // jump to.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
  MIB.addReg(Reg);

  // Compute the indices in the superheader, one for each bad block, and
  // add them as successors.
  DenseMap<MachineBasicBlock *, unsigned> Indices;
  for (auto *Entry : SortedEntries) {
    auto Pair = Indices.insert(std::make_pair(Entry, 0));
    assert(Pair.second);

    unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
    Pair.first->second = Index;

    MIB.addMBB(Entry);
    Dispatch->addSuccessor(Entry);
  }

  // Rewrite the problematic successors for every block that wants to reach
  // the bad blocks. For simplicity, we just introduce a new block for every
  // edge we need to rewrite. (Fancier things are possible.)

  BlockVector AllPreds;
  for (auto *Entry : SortedEntries) {
    for (auto *Pred : Entry->predecessors()) {
      if (Pred != Dispatch) {
        AllPreds.push_back(Pred);
      }
    }
  }

  // This set stores predecessors within this loop.
  DenseSet<MachineBasicBlock *> InLoop;
  for (auto *Pred : AllPreds) {
    for (auto *Entry : Pred->successors()) {
      if (!Entries.count(Entry))
        continue;
      if (Graph.canReach(Entry, Pred)) {
        InLoop.insert(Pred);
        break;
      }
    }
  }

  // Record if each entry has a layout predecessor. This map stores
  // <<loop entry, Predecessor is within the loop?>, layout predecessor>
  DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
      EntryToLayoutPred;
  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    for (auto *Entry : Pred->successors())
      if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
        EntryToLayoutPred[{Entry, PredInLoop}] = Pred;
  }

  // We need to create at most two routing blocks per entry: one for
  // predecessors outside the loop and one for predecessors inside the loop.
  // This map stores
  // <<loop entry, Predecessor is within the loop?>, routing block>
  DenseMap<PointerIntPair<MachineBasicBlock *, 1, bool>, MachineBasicBlock *>
      Map;
  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    for (auto *Entry : Pred->successors()) {
      if (!Entries.count(Entry) || Map.count({Entry, PredInLoop}))
        continue;
      // If there exists a layout predecessor of this entry and this predecessor
      // is not that, we rather create a routing block after that layout
      // predecessor to save a branch.
      if (auto *OtherPred = EntryToLayoutPred.lookup({Entry, PredInLoop}))
        if (OtherPred != Pred)
          continue;

      // This is a successor we need to rewrite.
      MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
      MF.insert(Pred->isLayoutSuccessor(Entry)
                    ? MachineFunction::iterator(Entry)
                    : MF.end(),
                Routing);
      Blocks.insert(Routing);

      // Set the jump table's register of the index of the block we wish to
      // jump to, and jump to the jump table.
      BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
          .addImm(Indices[Entry]);
      BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
      Routing->addSuccessor(Dispatch);
      Map[{Entry, PredInLoop}] = Routing;
    }
  }

  for (auto *Pred : AllPreds) {
    bool PredInLoop = InLoop.count(Pred);
    // Remap the terminator operands and the successor list.
    for (MachineInstr &Term : Pred->terminators())
      for (auto &Op : Term.explicit_uses())
        if (Op.isMBB() && Indices.count(Op.getMBB()))
          Op.setMBB(Map[{Op.getMBB(), PredInLoop}]);

    for (auto *Succ : Pred->successors()) {
      if (!Entries.count(Succ))
        continue;
      auto *Routing = Map[{Succ, PredInLoop}];
      Pred->replaceSuccessor(Succ, Routing);
    }
  }

  // Create a fake default label, because br_table requires one.
  MIB.addMBB(MIB.getInstr()
                 ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
                 .getMBB());
}

} // end anonymous namespace

char WebAssemblyFixIrreducibleControlFlow::ID = 0;
INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
                "Removes irreducible control flow", false, false)

FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
  return new WebAssemblyFixIrreducibleControlFlow();
}

// Test whether the given register has an ARGUMENT def.
static bool hasArgumentDef(unsigned Reg, const MachineRegisterInfo &MRI) {
  for (const auto &Def : MRI.def_instructions(Reg))
    if (WebAssembly::isArgument(Def.getOpcode()))
      return true;
  return false;
}

// Add a register definition with IMPLICIT_DEFs for every register to cover for
// register uses that don't have defs in every possible path.
// TODO: This is fairly heavy-handed; find a better approach.
static void addImplicitDefs(MachineFunction &MF) {
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  MachineBasicBlock &Entry = *MF.begin();
  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I < E; ++I) {
    Register Reg = Register::index2VirtReg(I);

    // Skip unused registers.
    if (MRI.use_nodbg_empty(Reg))
      continue;

    // Skip registers that have an ARGUMENT definition.
    if (hasArgumentDef(Reg, MRI))
      continue;

    BuildMI(Entry, Entry.begin(), DebugLoc(),
            TII.get(WebAssembly::IMPLICIT_DEF), Reg);
  }

  // Move ARGUMENT_* instructions to the top of the entry block, so that their
  // liveness reflects the fact that these really are live-in values.
  for (MachineInstr &MI : llvm::make_early_inc_range(Entry)) {
    if (WebAssembly::isArgument(MI.getOpcode())) {
      MI.removeFromParent();
      Entry.insert(Entry.begin(), &MI);
    }
  }
}

bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
    MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
                       "********** Function: "
                    << MF.getName() << '\n');

  // Start the recursive process on the entire function body.
  BlockSet AllBlocks;
  for (auto &MBB : MF) {
    AllBlocks.insert(&MBB);
  }

  if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
    // We rewrote part of the function; recompute relevant things.
    MF.RenumberBlocks();
    // Now we've inserted dispatch blocks, some register uses can have incoming
    // paths without a def. For example, before this pass register %a was
    // defined in BB1 and used in BB2, and there was only one path from BB1 and
    // BB2. But if this pass inserts a dispatch block having multiple
    // predecessors between the two BBs, now there are paths to BB2 without
    // visiting BB1, and %a's use in BB2 is not dominated by its def. Adding
    // IMPLICIT_DEFs to all regs is one simple way to fix it.
    addImplicitDefs(MF);
    return true;
  }

  return false;
}