aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/RISCV/RISCVTargetTransformInfo.h
blob: 2bde679c184bcf044746a743dcc5cfbd679cd809 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines a TargetTransformInfo::Concept conforming object specific
/// to the RISC-V target machine. It uses the target's detailed information to
/// provide more precise answers to certain TTI queries, while letting the
/// target independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H

#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
#include <optional>

namespace llvm {

class RISCVTTIImpl : public BasicTTIImplBase<RISCVTTIImpl> {
  using BaseT = BasicTTIImplBase<RISCVTTIImpl>;
  using TTI = TargetTransformInfo;

  friend BaseT;

  const RISCVSubtarget *ST;
  const RISCVTargetLowering *TLI;

  const RISCVSubtarget *getST() const { return ST; }
  const RISCVTargetLowering *getTLI() const { return TLI; }

  /// This function returns an estimate for VL to be used in VL based terms
  /// of the cost model.  For fixed length vectors, this is simply the
  /// vector length.  For scalable vectors, we return results consistent
  /// with getVScaleForTuning under the assumption that clients are also
  /// using that when comparing costs between scalar and vector representation.
  /// This does unfortunately mean that we can both undershoot and overshot
  /// the true cost significantly if getVScaleForTuning is wildly off for the
  /// actual target hardware.
  unsigned getEstimatedVLFor(VectorType *Ty);

  /// Return the cost of LMUL. The larger the LMUL, the higher the cost.
  InstructionCost getLMULCost(MVT VT);

public:
  explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
      : BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
        TLI(ST->getTargetLowering()) {}

  /// Return the cost of materializing an immediate for a value operand of
  /// a store instruction.
  InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo,
                                  TTI::TargetCostKind CostKind);

  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
                                TTI::TargetCostKind CostKind);
  InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                    const APInt &Imm, Type *Ty,
                                    TTI::TargetCostKind CostKind,
                                    Instruction *Inst = nullptr);
  InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                      const APInt &Imm, Type *Ty,
                                      TTI::TargetCostKind CostKind);

  TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth);

  bool shouldExpandReduction(const IntrinsicInst *II) const;
  bool supportsScalableVectors() const { return ST->hasVInstructions(); }
  bool enableScalableVectorization() const { return ST->hasVInstructions(); }
  PredicationStyle emitGetActiveLaneMask() const {
    return ST->hasVInstructions() ? PredicationStyle::Data
                                  : PredicationStyle::None;
  }
  std::optional<unsigned> getMaxVScale() const;
  std::optional<unsigned> getVScaleForTuning() const;

  TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const;

  unsigned getRegUsageForType(Type *Ty);

  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;

  bool preferEpilogueVectorization() const {
    // Epilogue vectorization is usually unprofitable - tail folding or
    // a smaller VF would have been better.  This a blunt hammer - we
    // should re-examine this once vectorization is better tuned.
    return false;
  }

  InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
                                        Align Alignment, unsigned AddressSpace,
                                        TTI::TargetCostKind CostKind);

  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                               TTI::UnrollingPreferences &UP,
                               OptimizationRemarkEmitter *ORE);

  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                             TTI::PeelingPreferences &PP);

  unsigned getMinVectorRegisterBitWidth() const {
    return ST->useRVVForFixedLengthVectors() ? 16 : 0;
  }

  InstructionCost getSpliceCost(VectorType *Tp, int Index);
  InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
                                 ArrayRef<int> Mask,
                                 TTI::TargetCostKind CostKind, int Index,
                                 VectorType *SubTp,
                                 ArrayRef<const Value *> Args = std::nullopt);

  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                        TTI::TargetCostKind CostKind);

  InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                                         const Value *Ptr, bool VariableMask,
                                         Align Alignment,
                                         TTI::TargetCostKind CostKind,
                                         const Instruction *I);

  InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                   TTI::CastContextHint CCH,
                                   TTI::TargetCostKind CostKind,
                                   const Instruction *I = nullptr);

  InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
                                         bool IsUnsigned,
                                         TTI::TargetCostKind CostKind);

  InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
                                             std::optional<FastMathFlags> FMF,
                                             TTI::TargetCostKind CostKind);

  InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
                                           Type *ResTy, VectorType *ValTy,
                                           std::optional<FastMathFlags> FMF,
                                           TTI::TargetCostKind CostKind);

  InstructionCost
  getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
                  unsigned AddressSpace, TTI::TargetCostKind CostKind,
                  TTI::OperandValueInfo OpdInfo = {TTI::OK_AnyValue, TTI::OP_None},
                  const Instruction *I = nullptr);

  InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                                     CmpInst::Predicate VecPred,
                                     TTI::TargetCostKind CostKind,
                                     const Instruction *I = nullptr);

  using BaseT::getVectorInstrCost;
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
                                     TTI::TargetCostKind CostKind,
                                     unsigned Index, Value *Op0, Value *Op1);

  InstructionCost getArithmeticInstrCost(
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
      TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
      TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
      ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
      const Instruction *CxtI = nullptr);

  bool isElementTypeLegalForScalableVector(Type *Ty) const {
    return TLI->isLegalElementTypeForRVV(Ty);
  }

  bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
    if (!ST->hasVInstructions())
      return false;

    // Only support fixed vectors if we know the minimum vector size.
    if (isa<FixedVectorType>(DataType) && !ST->useRVVForFixedLengthVectors())
      return false;

    // Don't allow elements larger than the ELEN.
    // FIXME: How to limit for scalable vectors?
    if (isa<FixedVectorType>(DataType) &&
        DataType->getScalarSizeInBits() > ST->getELEN())
      return false;

    if (Alignment <
        DL.getTypeStoreSize(DataType->getScalarType()).getFixedValue())
      return false;

    return TLI->isLegalElementTypeForRVV(DataType->getScalarType());
  }

  bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
    return isLegalMaskedLoadStore(DataType, Alignment);
  }
  bool isLegalMaskedStore(Type *DataType, Align Alignment) {
    return isLegalMaskedLoadStore(DataType, Alignment);
  }

  bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) {
    if (!ST->hasVInstructions())
      return false;

    // Only support fixed vectors if we know the minimum vector size.
    if (isa<FixedVectorType>(DataType) && !ST->useRVVForFixedLengthVectors())
      return false;

    // Don't allow elements larger than the ELEN.
    // FIXME: How to limit for scalable vectors?
    if (isa<FixedVectorType>(DataType) &&
        DataType->getScalarSizeInBits() > ST->getELEN())
      return false;

    if (Alignment <
        DL.getTypeStoreSize(DataType->getScalarType()).getFixedValue())
      return false;

    return TLI->isLegalElementTypeForRVV(DataType->getScalarType());
  }

  bool isLegalMaskedGather(Type *DataType, Align Alignment) {
    return isLegalMaskedGatherScatter(DataType, Alignment);
  }
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
    return isLegalMaskedGatherScatter(DataType, Alignment);
  }

  bool forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
    // Scalarize masked gather for RV64 if EEW=64 indices aren't supported.
    return ST->is64Bit() && !ST->hasVInstructionsI64();
  }

  bool forceScalarizeMaskedScatter(VectorType *VTy, Align Alignment) {
    // Scalarize masked scatter for RV64 if EEW=64 indices aren't supported.
    return ST->is64Bit() && !ST->hasVInstructionsI64();
  }

  /// \returns How the target needs this vector-predicated operation to be
  /// transformed.
  TargetTransformInfo::VPLegalization
  getVPLegalizationStrategy(const VPIntrinsic &PI) const {
    using VPLegalization = TargetTransformInfo::VPLegalization;
    if (!ST->hasVInstructions() ||
        (PI.getIntrinsicID() == Intrinsic::vp_reduce_mul &&
         cast<VectorType>(PI.getArgOperand(1)->getType())
                 ->getElementType()
                 ->getIntegerBitWidth() != 1))
      return VPLegalization(VPLegalization::Discard, VPLegalization::Convert);
    return VPLegalization(VPLegalization::Legal, VPLegalization::Legal);
  }

  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
                                   ElementCount VF) const {
    if (!VF.isScalable())
      return true;

    Type *Ty = RdxDesc.getRecurrenceType();
    if (!TLI->isLegalElementTypeForRVV(Ty))
      return false;

    switch (RdxDesc.getRecurrenceKind()) {
    case RecurKind::Add:
    case RecurKind::FAdd:
    case RecurKind::And:
    case RecurKind::Or:
    case RecurKind::Xor:
    case RecurKind::SMin:
    case RecurKind::SMax:
    case RecurKind::UMin:
    case RecurKind::UMax:
    case RecurKind::FMin:
    case RecurKind::FMax:
    case RecurKind::SelectICmp:
    case RecurKind::SelectFCmp:
    case RecurKind::FMulAdd:
      return true;
    default:
      return false;
    }
  }

  unsigned getMaxInterleaveFactor(unsigned VF) {
    // If the loop will not be vectorized, don't interleave the loop.
    // Let regular unroll to unroll the loop.
    return VF == 1 ? 1 : ST->getMaxInterleaveFactor();
  }

  enum RISCVRegisterClass { GPRRC, FPRRC, VRRC };
  unsigned getNumberOfRegisters(unsigned ClassID) const {
    switch (ClassID) {
    case RISCVRegisterClass::GPRRC:
      // 31 = 32 GPR - x0 (zero register)
      // FIXME: Should we exclude fixed registers like SP, TP or GP?
      return 31;
    case RISCVRegisterClass::FPRRC:
      if (ST->hasStdExtF())
        return 32;
      return 0;
    case RISCVRegisterClass::VRRC:
      // Although there are 32 vector registers, v0 is special in that it is the
      // only register that can be used to hold a mask.
      // FIXME: Should we conservatively return 31 as the number of usable
      // vector registers?
      return ST->hasVInstructions() ? 32 : 0;
    }
    llvm_unreachable("unknown register class");
  }

  unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
    if (Vector)
      return RISCVRegisterClass::VRRC;
    if (!Ty)
      return RISCVRegisterClass::GPRRC;

    Type *ScalarTy = Ty->getScalarType();
    if ((ScalarTy->isHalfTy() && ST->hasStdExtZfhOrZfhmin()) ||
        (ScalarTy->isFloatTy() && ST->hasStdExtF()) ||
        (ScalarTy->isDoubleTy() && ST->hasStdExtD())) {
      return RISCVRegisterClass::FPRRC;
    }

    return RISCVRegisterClass::GPRRC;
  }

  const char *getRegisterClassName(unsigned ClassID) const {
    switch (ClassID) {
    case RISCVRegisterClass::GPRRC:
      return "RISCV::GPRRC";
    case RISCVRegisterClass::FPRRC:
      return "RISCV::FPRRC";
    case RISCVRegisterClass::VRRC:
      return "RISCV::VRRC";
    }
    llvm_unreachable("unknown register class");
  }

  bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
                     const TargetTransformInfo::LSRCost &C2);
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H