1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
|
//===-- RISCVRegisterInfo.td - RISC-V Register defs --------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Declarations that describe the RISC-V register files
//===----------------------------------------------------------------------===//
let Namespace = "RISCV" in {
class RISCVReg<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
let HWEncoding{4-0} = Enc;
let AltNames = alt;
}
class RISCVReg16<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
let HWEncoding{4-0} = Enc;
let AltNames = alt;
}
def sub_16 : SubRegIndex<16>;
class RISCVReg32<RISCVReg16 subreg> : Register<""> {
let HWEncoding{4-0} = subreg.HWEncoding{4-0};
let SubRegs = [subreg];
let SubRegIndices = [sub_16];
let AsmName = subreg.AsmName;
let AltNames = subreg.AltNames;
}
// Because RISCVReg64 register have AsmName and AltNames that alias with their
// 16/32-bit sub-register, RISCVAsmParser will need to coerce a register number
// from a RISCVReg16/RISCVReg32 to the equivalent RISCVReg64 when appropriate.
def sub_32 : SubRegIndex<32>;
class RISCVReg64<RISCVReg32 subreg> : Register<""> {
let HWEncoding{4-0} = subreg.HWEncoding{4-0};
let SubRegs = [subreg];
let SubRegIndices = [sub_32];
let AsmName = subreg.AsmName;
let AltNames = subreg.AltNames;
}
class RISCVRegWithSubRegs<bits<5> Enc, string n, list<Register> subregs,
list<string> alt = []>
: RegisterWithSubRegs<n, subregs> {
let HWEncoding{4-0} = Enc;
let AltNames = alt;
}
def ABIRegAltName : RegAltNameIndex;
def sub_vrm4_0 : SubRegIndex<256>;
def sub_vrm4_1 : SubRegIndex<256, 256>;
def sub_vrm2_0 : SubRegIndex<128>;
def sub_vrm2_1 : SubRegIndex<128, 128>;
def sub_vrm2_2 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_0>;
def sub_vrm2_3 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_1>;
def sub_vrm1_0 : SubRegIndex<64>;
def sub_vrm1_1 : SubRegIndex<64, 64>;
def sub_vrm1_2 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_0>;
def sub_vrm1_3 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_1>;
def sub_vrm1_4 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_0>;
def sub_vrm1_5 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_1>;
def sub_vrm1_6 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_0>;
def sub_vrm1_7 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_1>;
def sub_32_hi : SubRegIndex<32, 32>;
} // Namespace = "RISCV"
// Integer registers
// CostPerUse is set higher for registers that may not be compressible as they
// are not part of GPRC, the most restrictive register class used by the
// compressed instruction set. This will influence the greedy register
// allocator to reduce the use of registers that can't be encoded in 16 bit
// instructions.
let RegAltNameIndices = [ABIRegAltName] in {
let isConstant = true in
def X0 : RISCVReg<0, "x0", ["zero"]>, DwarfRegNum<[0]>;
let CostPerUse = [0, 1] in {
def X1 : RISCVReg<1, "x1", ["ra"]>, DwarfRegNum<[1]>;
def X2 : RISCVReg<2, "x2", ["sp"]>, DwarfRegNum<[2]>;
def X3 : RISCVReg<3, "x3", ["gp"]>, DwarfRegNum<[3]>;
def X4 : RISCVReg<4, "x4", ["tp"]>, DwarfRegNum<[4]>;
def X5 : RISCVReg<5, "x5", ["t0"]>, DwarfRegNum<[5]>;
def X6 : RISCVReg<6, "x6", ["t1"]>, DwarfRegNum<[6]>;
def X7 : RISCVReg<7, "x7", ["t2"]>, DwarfRegNum<[7]>;
}
def X8 : RISCVReg<8, "x8", ["s0", "fp"]>, DwarfRegNum<[8]>;
def X9 : RISCVReg<9, "x9", ["s1"]>, DwarfRegNum<[9]>;
def X10 : RISCVReg<10,"x10", ["a0"]>, DwarfRegNum<[10]>;
def X11 : RISCVReg<11,"x11", ["a1"]>, DwarfRegNum<[11]>;
def X12 : RISCVReg<12,"x12", ["a2"]>, DwarfRegNum<[12]>;
def X13 : RISCVReg<13,"x13", ["a3"]>, DwarfRegNum<[13]>;
def X14 : RISCVReg<14,"x14", ["a4"]>, DwarfRegNum<[14]>;
def X15 : RISCVReg<15,"x15", ["a5"]>, DwarfRegNum<[15]>;
let CostPerUse = [0, 1] in {
def X16 : RISCVReg<16,"x16", ["a6"]>, DwarfRegNum<[16]>;
def X17 : RISCVReg<17,"x17", ["a7"]>, DwarfRegNum<[17]>;
def X18 : RISCVReg<18,"x18", ["s2"]>, DwarfRegNum<[18]>;
def X19 : RISCVReg<19,"x19", ["s3"]>, DwarfRegNum<[19]>;
def X20 : RISCVReg<20,"x20", ["s4"]>, DwarfRegNum<[20]>;
def X21 : RISCVReg<21,"x21", ["s5"]>, DwarfRegNum<[21]>;
def X22 : RISCVReg<22,"x22", ["s6"]>, DwarfRegNum<[22]>;
def X23 : RISCVReg<23,"x23", ["s7"]>, DwarfRegNum<[23]>;
def X24 : RISCVReg<24,"x24", ["s8"]>, DwarfRegNum<[24]>;
def X25 : RISCVReg<25,"x25", ["s9"]>, DwarfRegNum<[25]>;
def X26 : RISCVReg<26,"x26", ["s10"]>, DwarfRegNum<[26]>;
def X27 : RISCVReg<27,"x27", ["s11"]>, DwarfRegNum<[27]>;
def X28 : RISCVReg<28,"x28", ["t3"]>, DwarfRegNum<[28]>;
def X29 : RISCVReg<29,"x29", ["t4"]>, DwarfRegNum<[29]>;
def X30 : RISCVReg<30,"x30", ["t5"]>, DwarfRegNum<[30]>;
def X31 : RISCVReg<31,"x31", ["t6"]>, DwarfRegNum<[31]>;
}
}
def XLenVT : ValueTypeByHwMode<[RV32, RV64],
[i32, i64]>;
def XLenRI : RegInfoByHwMode<
[RV32, RV64],
[RegInfo<32,32,32>, RegInfo<64,64,64>]>;
// The order of registers represents the preferred allocation sequence.
// Registers are listed in the order caller-save, callee-save, specials.
def GPR : RegisterClass<"RISCV", [XLenVT], 32, (add
(sequence "X%u", 10, 17),
(sequence "X%u", 5, 7),
(sequence "X%u", 28, 31),
(sequence "X%u", 8, 9),
(sequence "X%u", 18, 27),
(sequence "X%u", 0, 4)
)> {
let RegInfos = XLenRI;
}
def GPRX0 : RegisterClass<"RISCV", [XLenVT], 32, (add X0)> {
let RegInfos = XLenRI;
}
def GPRNoX0 : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, X0)> {
let RegInfos = XLenRI;
}
def GPRNoX0X2 : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, X0, X2)> {
let RegInfos = XLenRI;
}
// Don't use X1 or X5 for JALR since that is a hint to pop the return address
// stack on some microarchitectures. Also remove the reserved registers X0, X2,
// X3, and X4 as it reduces the number of register classes that get synthesized
// by tablegen.
def GPRJALR : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, (sequence "X%u", 0, 5))> {
let RegInfos = XLenRI;
}
def GPRC : RegisterClass<"RISCV", [XLenVT], 32, (add
(sequence "X%u", 10, 15),
(sequence "X%u", 8, 9)
)> {
let RegInfos = XLenRI;
}
// For indirect tail calls, we can't use callee-saved registers, as they are
// restored to the saved value before the tail call, which would clobber a call
// address. We shouldn't use x5 since that is a hint for to pop the return
// address stack on some microarchitectures.
def GPRTC : RegisterClass<"RISCV", [XLenVT], 32, (add
(sequence "X%u", 6, 7),
(sequence "X%u", 10, 17),
(sequence "X%u", 28, 31)
)> {
let RegInfos = XLenRI;
}
def SP : RegisterClass<"RISCV", [XLenVT], 32, (add X2)> {
let RegInfos = XLenRI;
}
// Floating point registers
let RegAltNameIndices = [ABIRegAltName] in {
def F0_H : RISCVReg16<0, "f0", ["ft0"]>, DwarfRegNum<[32]>;
def F1_H : RISCVReg16<1, "f1", ["ft1"]>, DwarfRegNum<[33]>;
def F2_H : RISCVReg16<2, "f2", ["ft2"]>, DwarfRegNum<[34]>;
def F3_H : RISCVReg16<3, "f3", ["ft3"]>, DwarfRegNum<[35]>;
def F4_H : RISCVReg16<4, "f4", ["ft4"]>, DwarfRegNum<[36]>;
def F5_H : RISCVReg16<5, "f5", ["ft5"]>, DwarfRegNum<[37]>;
def F6_H : RISCVReg16<6, "f6", ["ft6"]>, DwarfRegNum<[38]>;
def F7_H : RISCVReg16<7, "f7", ["ft7"]>, DwarfRegNum<[39]>;
def F8_H : RISCVReg16<8, "f8", ["fs0"]>, DwarfRegNum<[40]>;
def F9_H : RISCVReg16<9, "f9", ["fs1"]>, DwarfRegNum<[41]>;
def F10_H : RISCVReg16<10,"f10", ["fa0"]>, DwarfRegNum<[42]>;
def F11_H : RISCVReg16<11,"f11", ["fa1"]>, DwarfRegNum<[43]>;
def F12_H : RISCVReg16<12,"f12", ["fa2"]>, DwarfRegNum<[44]>;
def F13_H : RISCVReg16<13,"f13", ["fa3"]>, DwarfRegNum<[45]>;
def F14_H : RISCVReg16<14,"f14", ["fa4"]>, DwarfRegNum<[46]>;
def F15_H : RISCVReg16<15,"f15", ["fa5"]>, DwarfRegNum<[47]>;
def F16_H : RISCVReg16<16,"f16", ["fa6"]>, DwarfRegNum<[48]>;
def F17_H : RISCVReg16<17,"f17", ["fa7"]>, DwarfRegNum<[49]>;
def F18_H : RISCVReg16<18,"f18", ["fs2"]>, DwarfRegNum<[50]>;
def F19_H : RISCVReg16<19,"f19", ["fs3"]>, DwarfRegNum<[51]>;
def F20_H : RISCVReg16<20,"f20", ["fs4"]>, DwarfRegNum<[52]>;
def F21_H : RISCVReg16<21,"f21", ["fs5"]>, DwarfRegNum<[53]>;
def F22_H : RISCVReg16<22,"f22", ["fs6"]>, DwarfRegNum<[54]>;
def F23_H : RISCVReg16<23,"f23", ["fs7"]>, DwarfRegNum<[55]>;
def F24_H : RISCVReg16<24,"f24", ["fs8"]>, DwarfRegNum<[56]>;
def F25_H : RISCVReg16<25,"f25", ["fs9"]>, DwarfRegNum<[57]>;
def F26_H : RISCVReg16<26,"f26", ["fs10"]>, DwarfRegNum<[58]>;
def F27_H : RISCVReg16<27,"f27", ["fs11"]>, DwarfRegNum<[59]>;
def F28_H : RISCVReg16<28,"f28", ["ft8"]>, DwarfRegNum<[60]>;
def F29_H : RISCVReg16<29,"f29", ["ft9"]>, DwarfRegNum<[61]>;
def F30_H : RISCVReg16<30,"f30", ["ft10"]>, DwarfRegNum<[62]>;
def F31_H : RISCVReg16<31,"f31", ["ft11"]>, DwarfRegNum<[63]>;
foreach Index = 0-31 in {
def F#Index#_F : RISCVReg32<!cast<RISCVReg16>("F"#Index#"_H")>,
DwarfRegNum<[!add(Index, 32)]>;
}
foreach Index = 0-31 in {
def F#Index#_D : RISCVReg64<!cast<RISCVReg32>("F"#Index#"_F")>,
DwarfRegNum<[!add(Index, 32)]>;
}
}
// The order of registers represents the preferred allocation sequence,
// meaning caller-save regs are listed before callee-save.
def FPR16 : RegisterClass<"RISCV", [f16], 16, (add
(sequence "F%u_H", 0, 7),
(sequence "F%u_H", 10, 17),
(sequence "F%u_H", 28, 31),
(sequence "F%u_H", 8, 9),
(sequence "F%u_H", 18, 27)
)>;
def FPR32 : RegisterClass<"RISCV", [f32], 32, (add
(sequence "F%u_F", 0, 7),
(sequence "F%u_F", 10, 17),
(sequence "F%u_F", 28, 31),
(sequence "F%u_F", 8, 9),
(sequence "F%u_F", 18, 27)
)>;
def FPR32C : RegisterClass<"RISCV", [f32], 32, (add
(sequence "F%u_F", 10, 15),
(sequence "F%u_F", 8, 9)
)>;
// The order of registers represents the preferred allocation sequence,
// meaning caller-save regs are listed before callee-save.
def FPR64 : RegisterClass<"RISCV", [f64], 64, (add
(sequence "F%u_D", 0, 7),
(sequence "F%u_D", 10, 17),
(sequence "F%u_D", 28, 31),
(sequence "F%u_D", 8, 9),
(sequence "F%u_D", 18, 27)
)>;
def FPR64C : RegisterClass<"RISCV", [f64], 64, (add
(sequence "F%u_D", 10, 15),
(sequence "F%u_D", 8, 9)
)>;
// Vector type mapping to LLVM types.
//
// The V vector extension requires that VLEN >= 128 and <= 65536.
// Additionally, the only supported ELEN values are 32 and 64,
// thus `vscale` can be defined as VLEN/64,
// allowing the same types with either ELEN value.
//
// MF8 MF4 MF2 M1 M2 M4 M8
// i64* N/A N/A N/A nxv1i64 nxv2i64 nxv4i64 nxv8i64
// i32 N/A N/A nxv1i32 nxv2i32 nxv4i32 nxv8i32 nxv16i32
// i16 N/A nxv1i16 nxv2i16 nxv4i16 nxv8i16 nxv16i16 nxv32i16
// i8 nxv1i8 nxv2i8 nxv4i8 nxv8i8 nxv16i8 nxv32i8 nxv64i8
// double* N/A N/A N/A nxv1f64 nxv2f64 nxv4f64 nxv8f64
// float N/A N/A nxv1f32 nxv2f32 nxv4f32 nxv8f32 nxv16f32
// half N/A nxv1f16 nxv2f16 nxv4f16 nxv8f16 nxv16f16 nxv32f16
// * ELEN=64
defvar vint8mf8_t = nxv1i8;
defvar vint8mf4_t = nxv2i8;
defvar vint8mf2_t = nxv4i8;
defvar vint8m1_t = nxv8i8;
defvar vint8m2_t = nxv16i8;
defvar vint8m4_t = nxv32i8;
defvar vint8m8_t = nxv64i8;
defvar vint16mf4_t = nxv1i16;
defvar vint16mf2_t = nxv2i16;
defvar vint16m1_t = nxv4i16;
defvar vint16m2_t = nxv8i16;
defvar vint16m4_t = nxv16i16;
defvar vint16m8_t = nxv32i16;
defvar vint32mf2_t = nxv1i32;
defvar vint32m1_t = nxv2i32;
defvar vint32m2_t = nxv4i32;
defvar vint32m4_t = nxv8i32;
defvar vint32m8_t = nxv16i32;
defvar vint64m1_t = nxv1i64;
defvar vint64m2_t = nxv2i64;
defvar vint64m4_t = nxv4i64;
defvar vint64m8_t = nxv8i64;
defvar vfloat16mf4_t = nxv1f16;
defvar vfloat16mf2_t = nxv2f16;
defvar vfloat16m1_t = nxv4f16;
defvar vfloat16m2_t = nxv8f16;
defvar vfloat16m4_t = nxv16f16;
defvar vfloat16m8_t = nxv32f16;
defvar vfloat32mf2_t = nxv1f32;
defvar vfloat32m1_t = nxv2f32;
defvar vfloat32m2_t = nxv4f32;
defvar vfloat32m4_t = nxv8f32;
defvar vfloat32m8_t = nxv16f32;
defvar vfloat64m1_t = nxv1f64;
defvar vfloat64m2_t = nxv2f64;
defvar vfloat64m4_t = nxv4f64;
defvar vfloat64m8_t = nxv8f64;
defvar vbool1_t = nxv64i1;
defvar vbool2_t = nxv32i1;
defvar vbool4_t = nxv16i1;
defvar vbool8_t = nxv8i1;
defvar vbool16_t = nxv4i1;
defvar vbool32_t = nxv2i1;
defvar vbool64_t = nxv1i1;
// There is no need to define register classes for fractional LMUL.
def LMULList {
list<int> m = [1, 2, 4, 8];
}
//===----------------------------------------------------------------------===//
// Utility classes for segment load/store.
//===----------------------------------------------------------------------===//
// The set of legal NF for LMUL = lmul.
// LMUL == 1, NF = 2, 3, 4, 5, 6, 7, 8
// LMUL == 2, NF = 2, 3, 4
// LMUL == 4, NF = 2
class NFList<int lmul> {
list<int> L = !cond(!eq(lmul, 1): [2, 3, 4, 5, 6, 7, 8],
!eq(lmul, 2): [2, 3, 4],
!eq(lmul, 4): [2],
!eq(lmul, 8): []);
}
// Generate [start, end) SubRegIndex list.
class SubRegSet<int nf, int lmul> {
list<SubRegIndex> L = !foldl([]<SubRegIndex>,
[0, 1, 2, 3, 4, 5, 6, 7],
AccList, i,
!listconcat(AccList,
!if(!lt(i, nf),
[!cast<SubRegIndex>("sub_vrm" # lmul # "_" # i)],
[])));
}
// Collect the valid indexes into 'R' under NF and LMUL values from TUPLE_INDEX.
// When NF = 2, the valid TUPLE_INDEX is 0 and 1.
// For example, when LMUL = 4, the potential valid indexes is
// [8, 12, 16, 20, 24, 28, 4]. However, not all these indexes are valid under
// NF = 2. For example, 28 is not valid under LMUL = 4, NF = 2 and TUPLE_INDEX = 0.
// The filter is
// (tuple_index + i) x lmul <= (tuple_index x lmul) + 32 - (nf x lmul)
//
// Use START = 0, LMUL = 4 and NF = 2 as the example,
// i x 4 <= 24
// The class will return [8, 12, 16, 20, 24, 4].
// Use START = 1, LMUL = 4 and NF = 2 as the example,
// (1 + i) x 4 <= 28
// The class will return [12, 16, 20, 24, 28, 8].
//
class IndexSet<int tuple_index, int nf, int lmul, bit isV0 = false> {
list<int> R =
!foldl([]<int>,
!if(isV0, [0],
!cond(
!eq(lmul, 1):
[8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
1, 2, 3, 4, 5, 6, 7],
!eq(lmul, 2):
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3],
!eq(lmul, 4):
[2, 3, 4, 5, 6, 7, 1])),
L, i,
!listconcat(L,
!if(!le(!mul(!add(i, tuple_index), lmul),
!sub(!add(32, !mul(tuple_index, lmul)), !mul(nf, lmul))),
[!mul(!add(i, tuple_index), lmul)], [])));
}
// This class returns a list of vector register collections.
// For example, for NF = 2 and LMUL = 4,
// it will return
// ([ V8M4, V12M4, V16M4, V20M4, V24M4, V4M4],
// [V12M4, V16M4, V20M4, V24M4, V28M4, V8M4])
//
class VRegList<list<dag> LIn, int start, int nf, int lmul, bit isV0> {
list<dag> L =
!if(!ge(start, nf),
LIn,
!listconcat(
[!dag(add,
!foreach(i, IndexSet<start, nf, lmul, isV0>.R,
!cast<Register>("V" # i # !cond(!eq(lmul, 2): "M2",
!eq(lmul, 4): "M4",
true: ""))),
!listsplat("",
!size(IndexSet<start, nf, lmul, isV0>.R)))],
VRegList<LIn, !add(start, 1), nf, lmul, isV0>.L));
}
// Vector registers
let RegAltNameIndices = [ABIRegAltName] in {
foreach Index = 0-31 in {
def V#Index : RISCVReg<Index, "v"#Index, ["v"#Index]>, DwarfRegNum<[!add(Index, 96)]>;
}
foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30] in {
def V#Index#M2 : RISCVRegWithSubRegs<Index, "v"#Index,
[!cast<Register>("V"#Index),
!cast<Register>("V"#!add(Index, 1))],
["v"#Index]>,
DwarfRegAlias<!cast<Register>("V"#Index)> {
let SubRegIndices = [sub_vrm1_0, sub_vrm1_1];
}
}
foreach Index = [0, 4, 8, 12, 16, 20, 24, 28] in {
def V#Index#M4 : RISCVRegWithSubRegs<Index, "v"#Index,
[!cast<Register>("V"#Index#"M2"),
!cast<Register>("V"#!add(Index, 2)#"M2")],
["v"#Index]>,
DwarfRegAlias<!cast<Register>("V"#Index)> {
let SubRegIndices = [sub_vrm2_0, sub_vrm2_1];
}
}
foreach Index = [0, 8, 16, 24] in {
def V#Index#M8 : RISCVRegWithSubRegs<Index, "v"#Index,
[!cast<Register>("V"#Index#"M4"),
!cast<Register>("V"#!add(Index, 4)#"M4")],
["v"#Index]>,
DwarfRegAlias<!cast<Register>("V"#Index)> {
let SubRegIndices = [sub_vrm4_0, sub_vrm4_1];
}
}
def VTYPE : RISCVReg<0, "vtype", ["vtype"]>;
def VL : RISCVReg<0, "vl", ["vl"]>;
def VXSAT : RISCVReg<0, "vxsat", ["vxsat"]>;
def VXRM : RISCVReg<0, "vxrm", ["vxrm"]>;
let isConstant = true in
def VLENB : RISCVReg<0, "vlenb", ["vlenb"]>,
DwarfRegNum<[!add(4096, SysRegVLENB.Encoding)]>;
}
def VCSR : RegisterClass<"RISCV", [XLenVT], 32,
(add VTYPE, VL, VLENB)> {
let RegInfos = XLenRI;
}
foreach m = [1, 2, 4] in {
foreach n = NFList<m>.L in {
def "VN" # n # "M" # m # "NoV0": RegisterTuples<
SubRegSet<n, m>.L,
VRegList<[], 0, n, m, false>.L>;
def "VN" # n # "M" # m # "V0" : RegisterTuples<
SubRegSet<n, m>.L,
VRegList<[], 0, n, m, true>.L>;
}
}
class VReg<list<ValueType> regTypes, dag regList, int Vlmul>
: RegisterClass<"RISCV",
regTypes,
64, // The maximum supported ELEN is 64.
regList> {
int VLMul = Vlmul;
int Size = !mul(Vlmul, 64);
}
defvar VMaskVTs = [vbool1_t, vbool2_t, vbool4_t, vbool8_t, vbool16_t,
vbool32_t, vbool64_t];
defvar VM1VTs = [vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t,
vfloat16m1_t, vfloat32m1_t, vfloat64m1_t,
vint8mf2_t, vint8mf4_t, vint8mf8_t,
vint16mf2_t, vint16mf4_t, vint32mf2_t,
vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t];
defvar VM2VTs = [vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t,
vfloat16m2_t, vfloat32m2_t, vfloat64m2_t];
defvar VM4VTs = [vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t,
vfloat16m4_t, vfloat32m4_t, vfloat64m4_t];
defvar VM8VTs = [vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t,
vfloat16m8_t, vfloat32m8_t, vfloat64m8_t];
def VR : VReg<!listconcat(VM1VTs, VMaskVTs),
(add (sequence "V%u", 8, 31),
(sequence "V%u", 0, 7)), 1>;
def VRNoV0 : VReg<!listconcat(VM1VTs, VMaskVTs),
(add (sequence "V%u", 8, 31),
(sequence "V%u", 1, 7)), 1>;
def VRM2 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
(sequence "V%uM2", 0, 7, 2)), 2>;
def VRM2NoV0 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
(sequence "V%uM2", 2, 7, 2)), 2>;
def VRM4 : VReg<VM4VTs,
(add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V0M4, V4M4), 4>;
def VRM4NoV0 : VReg<VM4VTs,
(add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V4M4), 4>;
def VRM8 : VReg<VM8VTs, (add V8M8, V16M8, V24M8, V0M8), 8>;
def VRM8NoV0 : VReg<VM8VTs, (add V8M8, V16M8, V24M8), 8>;
def VMV0 : RegisterClass<"RISCV", VMaskVTs, 64, (add V0)> {
let Size = 64;
}
let RegInfos = XLenRI in {
def GPRF16 : RegisterClass<"RISCV", [f16], 16, (add GPR)>;
def GPRF32 : RegisterClass<"RISCV", [f32], 32, (add GPR)>;
def GPRF64 : RegisterClass<"RISCV", [f64], 64, (add GPR)>;
} // RegInfos = XLenRI
let RegAltNameIndices = [ABIRegAltName] in {
foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28, 30] in {
defvar Reg = !cast<Register>("X"#Index);
def X#Index#_PD : RISCVRegWithSubRegs<Index, Reg.AsmName,
[!cast<Register>("X"#Index),
!cast<Register>("X"#!add(Index, 1))],
Reg.AltNames> {
let SubRegIndices = [sub_32, sub_32_hi];
}
}
}
let RegInfos = RegInfoByHwMode<[RV64], [RegInfo<64, 64, 64>]> in
def GPRPF64 : RegisterClass<"RISCV", [f64], 64, (add
X10_PD, X12_PD, X14_PD, X16_PD,
X6_PD,
X28_PD, X30_PD,
X8_PD,
X18_PD, X20_PD, X22_PD, X24_PD, X26_PD,
X0_PD, X2_PD, X4_PD
)>;
// The register class is added for inline assembly for vector mask types.
def VM : VReg<VMaskVTs,
(add (sequence "V%u", 8, 31),
(sequence "V%u", 0, 7)), 1>;
foreach m = LMULList.m in {
foreach nf = NFList<m>.L in {
def "VRN" # nf # "M" # m # "NoV0": VReg<[untyped],
(add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0")),
!mul(nf, m)>;
def "VRN" # nf # "M" # m: VReg<[untyped],
(add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0"),
!cast<RegisterTuples>("VN" # nf # "M" # m # "V0")),
!mul(nf, m)>;
}
}
// Special registers
def FFLAGS : RISCVReg<0, "fflags">;
def FRM : RISCVReg<0, "frm">;
// Any type register. Used for .insn directives when we don't know what the
// register types could be.
// NOTE: The alignment and size are bogus values. The Size needs to be non-zero
// or tablegen will use "untyped" to determine the size which will assert.
let isAllocatable = 0 in
def AnyReg : RegisterClass<"RISCV", [untyped], 32,
(add (sequence "X%u", 0, 31),
(sequence "F%u_D", 0, 31),
(sequence "V%u", 0, 31))> {
let Size = 32;
}
|