1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
|
//===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISCV ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the RISCV target.
//
//===----------------------------------------------------------------------===//
#include "RISCVISelDAGToDAG.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "RISCVISelLowering.h"
#include "RISCVMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "riscv-isel"
#define PASS_NAME "RISCV DAG->DAG Pattern Instruction Selection"
namespace llvm::RISCV {
#define GET_RISCVVSSEGTable_IMPL
#define GET_RISCVVLSEGTable_IMPL
#define GET_RISCVVLXSEGTable_IMPL
#define GET_RISCVVSXSEGTable_IMPL
#define GET_RISCVVLETable_IMPL
#define GET_RISCVVSETable_IMPL
#define GET_RISCVVLXTable_IMPL
#define GET_RISCVVSXTable_IMPL
#define GET_RISCVMaskedPseudosTable_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace llvm::RISCV
static unsigned getLastNonGlueOrChainOpIdx(const SDNode *Node) {
assert(Node->getNumOperands() > 0 && "Node with no operands");
unsigned LastOpIdx = Node->getNumOperands() - 1;
if (Node->getOperand(LastOpIdx).getValueType() == MVT::Glue)
--LastOpIdx;
if (Node->getOperand(LastOpIdx).getValueType() == MVT::Other)
--LastOpIdx;
return LastOpIdx;
}
static unsigned getVecPolicyOpIdx(const SDNode *Node, const MCInstrDesc &MCID) {
assert(RISCVII::hasVecPolicyOp(MCID.TSFlags));
(void)MCID;
return getLastNonGlueOrChainOpIdx(Node);
}
void RISCVDAGToDAGISel::PreprocessISelDAG() {
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
if (N->use_empty())
continue;
SDValue Result;
switch (N->getOpcode()) {
case ISD::SPLAT_VECTOR: {
// Convert integer SPLAT_VECTOR to VMV_V_X_VL and floating-point
// SPLAT_VECTOR to VFMV_V_F_VL to reduce isel burden.
MVT VT = N->getSimpleValueType(0);
unsigned Opc =
VT.isInteger() ? RISCVISD::VMV_V_X_VL : RISCVISD::VFMV_V_F_VL;
SDLoc DL(N);
SDValue VL = CurDAG->getRegister(RISCV::X0, Subtarget->getXLenVT());
Result = CurDAG->getNode(Opc, DL, VT, CurDAG->getUNDEF(VT),
N->getOperand(0), VL);
break;
}
case RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL: {
// Lower SPLAT_VECTOR_SPLIT_I64 to two scalar stores and a stride 0 vector
// load. Done after lowering and combining so that we have a chance to
// optimize this to VMV_V_X_VL when the upper bits aren't needed.
assert(N->getNumOperands() == 4 && "Unexpected number of operands");
MVT VT = N->getSimpleValueType(0);
SDValue Passthru = N->getOperand(0);
SDValue Lo = N->getOperand(1);
SDValue Hi = N->getOperand(2);
SDValue VL = N->getOperand(3);
assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() &&
Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 &&
"Unexpected VTs!");
MachineFunction &MF = CurDAG->getMachineFunction();
RISCVMachineFunctionInfo *FuncInfo =
MF.getInfo<RISCVMachineFunctionInfo>();
SDLoc DL(N);
// We use the same frame index we use for moving two i32s into 64-bit FPR.
// This is an analogous operation.
int FI = FuncInfo->getMoveF64FrameIndex(MF);
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
SDValue StackSlot =
CurDAG->getFrameIndex(FI, TLI.getPointerTy(CurDAG->getDataLayout()));
SDValue Chain = CurDAG->getEntryNode();
Lo = CurDAG->getStore(Chain, DL, Lo, StackSlot, MPI, Align(8));
SDValue OffsetSlot =
CurDAG->getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL);
Hi = CurDAG->getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4),
Align(8));
Chain = CurDAG->getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
SDVTList VTs = CurDAG->getVTList({VT, MVT::Other});
SDValue IntID =
CurDAG->getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64);
SDValue Ops[] = {Chain,
IntID,
Passthru,
StackSlot,
CurDAG->getRegister(RISCV::X0, MVT::i64),
VL};
Result = CurDAG->getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
MVT::i64, MPI, Align(8),
MachineMemOperand::MOLoad);
break;
}
}
if (Result) {
LLVM_DEBUG(dbgs() << "RISCV DAG preprocessing replacing:\nOld: ");
LLVM_DEBUG(N->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\nNew: ");
LLVM_DEBUG(Result->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
MadeChange = true;
}
}
if (MadeChange)
CurDAG->RemoveDeadNodes();
}
void RISCVDAGToDAGISel::PostprocessISelDAG() {
HandleSDNode Dummy(CurDAG->getRoot());
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
bool MadeChange = false;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
// Skip dead nodes and any non-machine opcodes.
if (N->use_empty() || !N->isMachineOpcode())
continue;
MadeChange |= doPeepholeSExtW(N);
MadeChange |= doPeepholeMaskedRVV(N);
}
CurDAG->setRoot(Dummy.getValue());
MadeChange |= doPeepholeMergeVVMFold();
if (MadeChange)
CurDAG->RemoveDeadNodes();
}
static SDNode *selectImmSeq(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT,
RISCVMatInt::InstSeq &Seq) {
SDNode *Result = nullptr;
SDValue SrcReg = CurDAG->getRegister(RISCV::X0, VT);
for (RISCVMatInt::Inst &Inst : Seq) {
SDValue SDImm = CurDAG->getTargetConstant(Inst.getImm(), DL, VT);
switch (Inst.getOpndKind()) {
case RISCVMatInt::Imm:
Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SDImm);
break;
case RISCVMatInt::RegX0:
Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SrcReg,
CurDAG->getRegister(RISCV::X0, VT));
break;
case RISCVMatInt::RegReg:
Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SrcReg, SrcReg);
break;
case RISCVMatInt::RegImm:
Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SrcReg, SDImm);
break;
}
// Only the first instruction has X0 as its source.
SrcReg = SDValue(Result, 0);
}
return Result;
}
static SDNode *selectImm(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT,
int64_t Imm, const RISCVSubtarget &Subtarget) {
RISCVMatInt::InstSeq Seq =
RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
return selectImmSeq(CurDAG, DL, VT, Seq);
}
static SDValue createTuple(SelectionDAG &CurDAG, ArrayRef<SDValue> Regs,
unsigned NF, RISCVII::VLMUL LMUL) {
static const unsigned M1TupleRegClassIDs[] = {
RISCV::VRN2M1RegClassID, RISCV::VRN3M1RegClassID, RISCV::VRN4M1RegClassID,
RISCV::VRN5M1RegClassID, RISCV::VRN6M1RegClassID, RISCV::VRN7M1RegClassID,
RISCV::VRN8M1RegClassID};
static const unsigned M2TupleRegClassIDs[] = {RISCV::VRN2M2RegClassID,
RISCV::VRN3M2RegClassID,
RISCV::VRN4M2RegClassID};
assert(Regs.size() >= 2 && Regs.size() <= 8);
unsigned RegClassID;
unsigned SubReg0;
switch (LMUL) {
default:
llvm_unreachable("Invalid LMUL.");
case RISCVII::VLMUL::LMUL_F8:
case RISCVII::VLMUL::LMUL_F4:
case RISCVII::VLMUL::LMUL_F2:
case RISCVII::VLMUL::LMUL_1:
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
"Unexpected subreg numbering");
SubReg0 = RISCV::sub_vrm1_0;
RegClassID = M1TupleRegClassIDs[NF - 2];
break;
case RISCVII::VLMUL::LMUL_2:
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
"Unexpected subreg numbering");
SubReg0 = RISCV::sub_vrm2_0;
RegClassID = M2TupleRegClassIDs[NF - 2];
break;
case RISCVII::VLMUL::LMUL_4:
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
"Unexpected subreg numbering");
SubReg0 = RISCV::sub_vrm4_0;
RegClassID = RISCV::VRN2M4RegClassID;
break;
}
SDLoc DL(Regs[0]);
SmallVector<SDValue, 8> Ops;
Ops.push_back(CurDAG.getTargetConstant(RegClassID, DL, MVT::i32));
for (unsigned I = 0; I < Regs.size(); ++I) {
Ops.push_back(Regs[I]);
Ops.push_back(CurDAG.getTargetConstant(SubReg0 + I, DL, MVT::i32));
}
SDNode *N =
CurDAG.getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
return SDValue(N, 0);
}
void RISCVDAGToDAGISel::addVectorLoadStoreOperands(
SDNode *Node, unsigned Log2SEW, const SDLoc &DL, unsigned CurOp,
bool IsMasked, bool IsStridedOrIndexed, SmallVectorImpl<SDValue> &Operands,
bool IsLoad, MVT *IndexVT) {
SDValue Chain = Node->getOperand(0);
SDValue Glue;
Operands.push_back(Node->getOperand(CurOp++)); // Base pointer.
if (IsStridedOrIndexed) {
Operands.push_back(Node->getOperand(CurOp++)); // Index.
if (IndexVT)
*IndexVT = Operands.back()->getSimpleValueType(0);
}
if (IsMasked) {
// Mask needs to be copied to V0.
SDValue Mask = Node->getOperand(CurOp++);
Chain = CurDAG->getCopyToReg(Chain, DL, RISCV::V0, Mask, SDValue());
Glue = Chain.getValue(1);
Operands.push_back(CurDAG->getRegister(RISCV::V0, Mask.getValueType()));
}
SDValue VL;
selectVLOp(Node->getOperand(CurOp++), VL);
Operands.push_back(VL);
MVT XLenVT = Subtarget->getXLenVT();
SDValue SEWOp = CurDAG->getTargetConstant(Log2SEW, DL, XLenVT);
Operands.push_back(SEWOp);
// Masked load has the tail policy argument.
if (IsMasked && IsLoad) {
// Policy must be a constant.
uint64_t Policy = Node->getConstantOperandVal(CurOp++);
SDValue PolicyOp = CurDAG->getTargetConstant(Policy, DL, XLenVT);
Operands.push_back(PolicyOp);
}
Operands.push_back(Chain); // Chain.
if (Glue)
Operands.push_back(Glue);
}
static bool isAllUndef(ArrayRef<SDValue> Values) {
return llvm::all_of(Values, [](SDValue V) { return V->isUndef(); });
}
void RISCVDAGToDAGISel::selectVLSEG(SDNode *Node, bool IsMasked,
bool IsStrided) {
SDLoc DL(Node);
unsigned NF = Node->getNumValues() - 1;
MVT VT = Node->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
unsigned CurOp = 2;
SmallVector<SDValue, 8> Operands;
SmallVector<SDValue, 8> Regs(Node->op_begin() + CurOp,
Node->op_begin() + CurOp + NF);
bool IsTU = IsMasked || !isAllUndef(Regs);
if (IsTU) {
SDValue Merge = createTuple(*CurDAG, Regs, NF, LMUL);
Operands.push_back(Merge);
}
CurOp += NF;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided,
Operands, /*IsLoad=*/true);
const RISCV::VLSEGPseudo *P =
RISCV::getVLSEGPseudo(NF, IsMasked, IsTU, IsStrided, /*FF*/ false, Log2SEW,
static_cast<unsigned>(LMUL));
MachineSDNode *Load =
CurDAG->getMachineNode(P->Pseudo, DL, MVT::Untyped, MVT::Other, Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()});
SDValue SuperReg = SDValue(Load, 0);
for (unsigned I = 0; I < NF; ++I) {
unsigned SubRegIdx = RISCVTargetLowering::getSubregIndexByMVT(VT, I);
ReplaceUses(SDValue(Node, I),
CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, SuperReg));
}
ReplaceUses(SDValue(Node, NF), SDValue(Load, 1));
CurDAG->RemoveDeadNode(Node);
}
void RISCVDAGToDAGISel::selectVLSEGFF(SDNode *Node, bool IsMasked) {
SDLoc DL(Node);
unsigned NF = Node->getNumValues() - 2; // Do not count VL and Chain.
MVT VT = Node->getSimpleValueType(0);
MVT XLenVT = Subtarget->getXLenVT();
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
unsigned CurOp = 2;
SmallVector<SDValue, 7> Operands;
SmallVector<SDValue, 8> Regs(Node->op_begin() + CurOp,
Node->op_begin() + CurOp + NF);
bool IsTU = IsMasked || !isAllUndef(Regs);
if (IsTU) {
SDValue MaskedOff = createTuple(*CurDAG, Regs, NF, LMUL);
Operands.push_back(MaskedOff);
}
CurOp += NF;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked,
/*IsStridedOrIndexed*/ false, Operands,
/*IsLoad=*/true);
const RISCV::VLSEGPseudo *P =
RISCV::getVLSEGPseudo(NF, IsMasked, IsTU, /*Strided*/ false, /*FF*/ true,
Log2SEW, static_cast<unsigned>(LMUL));
MachineSDNode *Load = CurDAG->getMachineNode(P->Pseudo, DL, MVT::Untyped,
XLenVT, MVT::Other, Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()});
SDValue SuperReg = SDValue(Load, 0);
for (unsigned I = 0; I < NF; ++I) {
unsigned SubRegIdx = RISCVTargetLowering::getSubregIndexByMVT(VT, I);
ReplaceUses(SDValue(Node, I),
CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, SuperReg));
}
ReplaceUses(SDValue(Node, NF), SDValue(Load, 1)); // VL
ReplaceUses(SDValue(Node, NF + 1), SDValue(Load, 2)); // Chain
CurDAG->RemoveDeadNode(Node);
}
void RISCVDAGToDAGISel::selectVLXSEG(SDNode *Node, bool IsMasked,
bool IsOrdered) {
SDLoc DL(Node);
unsigned NF = Node->getNumValues() - 1;
MVT VT = Node->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
unsigned CurOp = 2;
SmallVector<SDValue, 8> Operands;
SmallVector<SDValue, 8> Regs(Node->op_begin() + CurOp,
Node->op_begin() + CurOp + NF);
bool IsTU = IsMasked || !isAllUndef(Regs);
if (IsTU) {
SDValue MaskedOff = createTuple(*CurDAG, Regs, NF, LMUL);
Operands.push_back(MaskedOff);
}
CurOp += NF;
MVT IndexVT;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked,
/*IsStridedOrIndexed*/ true, Operands,
/*IsLoad=*/true, &IndexVT);
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
"Element count mismatch");
RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT);
unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits());
if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) {
report_fatal_error("The V extension does not support EEW=64 for index "
"values when XLEN=32");
}
const RISCV::VLXSEGPseudo *P = RISCV::getVLXSEGPseudo(
NF, IsMasked, IsTU, IsOrdered, IndexLog2EEW, static_cast<unsigned>(LMUL),
static_cast<unsigned>(IndexLMUL));
MachineSDNode *Load =
CurDAG->getMachineNode(P->Pseudo, DL, MVT::Untyped, MVT::Other, Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()});
SDValue SuperReg = SDValue(Load, 0);
for (unsigned I = 0; I < NF; ++I) {
unsigned SubRegIdx = RISCVTargetLowering::getSubregIndexByMVT(VT, I);
ReplaceUses(SDValue(Node, I),
CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, SuperReg));
}
ReplaceUses(SDValue(Node, NF), SDValue(Load, 1));
CurDAG->RemoveDeadNode(Node);
}
void RISCVDAGToDAGISel::selectVSSEG(SDNode *Node, bool IsMasked,
bool IsStrided) {
SDLoc DL(Node);
unsigned NF = Node->getNumOperands() - 4;
if (IsStrided)
NF--;
if (IsMasked)
NF--;
MVT VT = Node->getOperand(2)->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
SmallVector<SDValue, 8> Regs(Node->op_begin() + 2, Node->op_begin() + 2 + NF);
SDValue StoreVal = createTuple(*CurDAG, Regs, NF, LMUL);
SmallVector<SDValue, 8> Operands;
Operands.push_back(StoreVal);
unsigned CurOp = 2 + NF;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided,
Operands);
const RISCV::VSSEGPseudo *P = RISCV::getVSSEGPseudo(
NF, IsMasked, IsStrided, Log2SEW, static_cast<unsigned>(LMUL));
MachineSDNode *Store =
CurDAG->getMachineNode(P->Pseudo, DL, Node->getValueType(0), Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()});
ReplaceNode(Node, Store);
}
void RISCVDAGToDAGISel::selectVSXSEG(SDNode *Node, bool IsMasked,
bool IsOrdered) {
SDLoc DL(Node);
unsigned NF = Node->getNumOperands() - 5;
if (IsMasked)
--NF;
MVT VT = Node->getOperand(2)->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
SmallVector<SDValue, 8> Regs(Node->op_begin() + 2, Node->op_begin() + 2 + NF);
SDValue StoreVal = createTuple(*CurDAG, Regs, NF, LMUL);
SmallVector<SDValue, 8> Operands;
Operands.push_back(StoreVal);
unsigned CurOp = 2 + NF;
MVT IndexVT;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked,
/*IsStridedOrIndexed*/ true, Operands,
/*IsLoad=*/false, &IndexVT);
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
"Element count mismatch");
RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT);
unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits());
if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) {
report_fatal_error("The V extension does not support EEW=64 for index "
"values when XLEN=32");
}
const RISCV::VSXSEGPseudo *P = RISCV::getVSXSEGPseudo(
NF, IsMasked, IsOrdered, IndexLog2EEW, static_cast<unsigned>(LMUL),
static_cast<unsigned>(IndexLMUL));
MachineSDNode *Store =
CurDAG->getMachineNode(P->Pseudo, DL, Node->getValueType(0), Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()});
ReplaceNode(Node, Store);
}
void RISCVDAGToDAGISel::selectVSETVLI(SDNode *Node) {
if (!Subtarget->hasVInstructions())
return;
assert((Node->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Node->getOpcode() == ISD::INTRINSIC_WO_CHAIN) &&
"Unexpected opcode");
SDLoc DL(Node);
MVT XLenVT = Subtarget->getXLenVT();
bool HasChain = Node->getOpcode() == ISD::INTRINSIC_W_CHAIN;
unsigned IntNoOffset = HasChain ? 1 : 0;
unsigned IntNo = Node->getConstantOperandVal(IntNoOffset);
assert((IntNo == Intrinsic::riscv_vsetvli ||
IntNo == Intrinsic::riscv_vsetvlimax ||
IntNo == Intrinsic::riscv_vsetvli_opt ||
IntNo == Intrinsic::riscv_vsetvlimax_opt) &&
"Unexpected vsetvli intrinsic");
bool VLMax = IntNo == Intrinsic::riscv_vsetvlimax ||
IntNo == Intrinsic::riscv_vsetvlimax_opt;
unsigned Offset = IntNoOffset + (VLMax ? 1 : 2);
assert(Node->getNumOperands() == Offset + 2 &&
"Unexpected number of operands");
unsigned SEW =
RISCVVType::decodeVSEW(Node->getConstantOperandVal(Offset) & 0x7);
RISCVII::VLMUL VLMul = static_cast<RISCVII::VLMUL>(
Node->getConstantOperandVal(Offset + 1) & 0x7);
unsigned VTypeI = RISCVVType::encodeVTYPE(VLMul, SEW, /*TailAgnostic*/ true,
/*MaskAgnostic*/ false);
SDValue VTypeIOp = CurDAG->getTargetConstant(VTypeI, DL, XLenVT);
SmallVector<EVT, 2> VTs = {XLenVT};
if (HasChain)
VTs.push_back(MVT::Other);
SDValue VLOperand;
unsigned Opcode = RISCV::PseudoVSETVLI;
if (VLMax) {
VLOperand = CurDAG->getRegister(RISCV::X0, XLenVT);
Opcode = RISCV::PseudoVSETVLIX0;
} else {
VLOperand = Node->getOperand(IntNoOffset + 1);
if (auto *C = dyn_cast<ConstantSDNode>(VLOperand)) {
uint64_t AVL = C->getZExtValue();
if (isUInt<5>(AVL)) {
SDValue VLImm = CurDAG->getTargetConstant(AVL, DL, XLenVT);
SmallVector<SDValue, 3> Ops = {VLImm, VTypeIOp};
if (HasChain)
Ops.push_back(Node->getOperand(0));
ReplaceNode(
Node, CurDAG->getMachineNode(RISCV::PseudoVSETIVLI, DL, VTs, Ops));
return;
}
}
}
SmallVector<SDValue, 3> Ops = {VLOperand, VTypeIOp};
if (HasChain)
Ops.push_back(Node->getOperand(0));
ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, VTs, Ops));
}
bool RISCVDAGToDAGISel::tryShrinkShlLogicImm(SDNode *Node) {
MVT VT = Node->getSimpleValueType(0);
unsigned Opcode = Node->getOpcode();
assert((Opcode == ISD::AND || Opcode == ISD::OR || Opcode == ISD::XOR) &&
"Unexpected opcode");
SDLoc DL(Node);
// For operations of the form (x << C1) op C2, check if we can use
// ANDI/ORI/XORI by transforming it into (x op (C2>>C1)) << C1.
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
if (!Cst)
return false;
int64_t Val = Cst->getSExtValue();
// Check if immediate can already use ANDI/ORI/XORI.
if (isInt<12>(Val))
return false;
SDValue Shift = N0;
// If Val is simm32 and we have a sext_inreg from i32, then the binop
// produces at least 33 sign bits. We can peek through the sext_inreg and use
// a SLLIW at the end.
bool SignExt = false;
if (isInt<32>(Val) && N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
N0.hasOneUse() && cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32) {
SignExt = true;
Shift = N0.getOperand(0);
}
if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
return false;
ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
if (!ShlCst)
return false;
uint64_t ShAmt = ShlCst->getZExtValue();
// Make sure that we don't change the operation by removing bits.
// This only matters for OR and XOR, AND is unaffected.
uint64_t RemovedBitsMask = maskTrailingOnes<uint64_t>(ShAmt);
if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
return false;
int64_t ShiftedVal = Val >> ShAmt;
if (!isInt<12>(ShiftedVal))
return false;
// If we peeked through a sext_inreg, make sure the shift is valid for SLLIW.
if (SignExt && ShAmt >= 32)
return false;
// Ok, we can reorder to get a smaller immediate.
unsigned BinOpc;
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::AND: BinOpc = RISCV::ANDI; break;
case ISD::OR: BinOpc = RISCV::ORI; break;
case ISD::XOR: BinOpc = RISCV::XORI; break;
}
unsigned ShOpc = SignExt ? RISCV::SLLIW : RISCV::SLLI;
SDNode *BinOp =
CurDAG->getMachineNode(BinOpc, DL, VT, Shift.getOperand(0),
CurDAG->getTargetConstant(ShiftedVal, DL, VT));
SDNode *SLLI =
CurDAG->getMachineNode(ShOpc, DL, VT, SDValue(BinOp, 0),
CurDAG->getTargetConstant(ShAmt, DL, VT));
ReplaceNode(Node, SLLI);
return true;
}
void RISCVDAGToDAGISel::Select(SDNode *Node) {
// If we have a custom node, we have already selected.
if (Node->isMachineOpcode()) {
LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
Node->setNodeId(-1);
return;
}
// Instruction Selection not handled by the auto-generated tablegen selection
// should be handled here.
unsigned Opcode = Node->getOpcode();
MVT XLenVT = Subtarget->getXLenVT();
SDLoc DL(Node);
MVT VT = Node->getSimpleValueType(0);
switch (Opcode) {
case ISD::Constant: {
auto *ConstNode = cast<ConstantSDNode>(Node);
if (VT == XLenVT && ConstNode->isZero()) {
SDValue New =
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, RISCV::X0, XLenVT);
ReplaceNode(Node, New.getNode());
return;
}
int64_t Imm = ConstNode->getSExtValue();
// If the upper XLen-16 bits are not used, try to convert this to a simm12
// by sign extending bit 15.
if (isUInt<16>(Imm) && isInt<12>(SignExtend64<16>(Imm)) &&
hasAllHUsers(Node))
Imm = SignExtend64<16>(Imm);
// If the upper 32-bits are not used try to convert this into a simm32 by
// sign extending bit 32.
if (!isInt<32>(Imm) && isUInt<32>(Imm) && hasAllWUsers(Node))
Imm = SignExtend64<32>(Imm);
ReplaceNode(Node, selectImm(CurDAG, DL, VT, Imm, *Subtarget));
return;
}
case ISD::SHL: {
auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1));
if (!N1C)
break;
SDValue N0 = Node->getOperand(0);
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
!isa<ConstantSDNode>(N0.getOperand(1)))
break;
unsigned ShAmt = N1C->getZExtValue();
uint64_t Mask = N0.getConstantOperandVal(1);
// Optimize (shl (and X, C2), C) -> (slli (srliw X, C3), C3+C) where C2 has
// 32 leading zeros and C3 trailing zeros.
if (ShAmt <= 32 && isShiftedMask_64(Mask)) {
unsigned XLen = Subtarget->getXLen();
unsigned LeadingZeros = XLen - llvm::bit_width(Mask);
unsigned TrailingZeros = countTrailingZeros(Mask);
if (TrailingZeros > 0 && LeadingZeros == 32) {
SDNode *SRLIW = CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, N0->getOperand(0),
CurDAG->getTargetConstant(TrailingZeros, DL, VT));
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, SDValue(SRLIW, 0),
CurDAG->getTargetConstant(TrailingZeros + ShAmt, DL, VT));
ReplaceNode(Node, SLLI);
return;
}
}
break;
}
case ISD::SRL: {
auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1));
if (!N1C)
break;
SDValue N0 = Node->getOperand(0);
if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(N0.getOperand(1)))
break;
unsigned ShAmt = N1C->getZExtValue();
uint64_t Mask = N0.getConstantOperandVal(1);
// Optimize (srl (and X, C2), C) -> (slli (srliw X, C3), C3-C) where C2 has
// 32 leading zeros and C3 trailing zeros.
if (isShiftedMask_64(Mask) && N0.hasOneUse()) {
unsigned XLen = Subtarget->getXLen();
unsigned LeadingZeros = XLen - llvm::bit_width(Mask);
unsigned TrailingZeros = countTrailingZeros(Mask);
if (LeadingZeros == 32 && TrailingZeros > ShAmt) {
SDNode *SRLIW = CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, N0->getOperand(0),
CurDAG->getTargetConstant(TrailingZeros, DL, VT));
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, SDValue(SRLIW, 0),
CurDAG->getTargetConstant(TrailingZeros - ShAmt, DL, VT));
ReplaceNode(Node, SLLI);
return;
}
}
// Optimize (srl (and X, C2), C) ->
// (srli (slli X, (XLen-C3), (XLen-C3) + C)
// Where C2 is a mask with C3 trailing ones.
// Taking into account that the C2 may have had lower bits unset by
// SimplifyDemandedBits. This avoids materializing the C2 immediate.
// This pattern occurs when type legalizing right shifts for types with
// less than XLen bits.
Mask |= maskTrailingOnes<uint64_t>(ShAmt);
if (!isMask_64(Mask))
break;
unsigned TrailingOnes = countTrailingOnes(Mask);
if (ShAmt >= TrailingOnes)
break;
// If the mask has 32 trailing ones, use SRLIW.
if (TrailingOnes == 32) {
SDNode *SRLIW =
CurDAG->getMachineNode(RISCV::SRLIW, DL, VT, N0->getOperand(0),
CurDAG->getTargetConstant(ShAmt, DL, VT));
ReplaceNode(Node, SRLIW);
return;
}
// Only do the remaining transforms if the shift has one use.
if (!N0.hasOneUse())
break;
// If C2 is (1 << ShAmt) use bexti if possible.
if (Subtarget->hasStdExtZbs() && ShAmt + 1 == TrailingOnes) {
SDNode *BEXTI =
CurDAG->getMachineNode(RISCV::BEXTI, DL, VT, N0->getOperand(0),
CurDAG->getTargetConstant(ShAmt, DL, VT));
ReplaceNode(Node, BEXTI);
return;
}
unsigned LShAmt = Subtarget->getXLen() - TrailingOnes;
SDNode *SLLI =
CurDAG->getMachineNode(RISCV::SLLI, DL, VT, N0->getOperand(0),
CurDAG->getTargetConstant(LShAmt, DL, VT));
SDNode *SRLI = CurDAG->getMachineNode(
RISCV::SRLI, DL, VT, SDValue(SLLI, 0),
CurDAG->getTargetConstant(LShAmt + ShAmt, DL, VT));
ReplaceNode(Node, SRLI);
return;
}
case ISD::SRA: {
// Optimize (sra (sext_inreg X, i16), C) ->
// (srai (slli X, (XLen-16), (XLen-16) + C)
// And (sra (sext_inreg X, i8), C) ->
// (srai (slli X, (XLen-8), (XLen-8) + C)
// This can occur when Zbb is enabled, which makes sext_inreg i16/i8 legal.
// This transform matches the code we get without Zbb. The shifts are more
// compressible, and this can help expose CSE opportunities in the sdiv by
// constant optimization.
auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1));
if (!N1C)
break;
SDValue N0 = Node->getOperand(0);
if (N0.getOpcode() != ISD::SIGN_EXTEND_INREG || !N0.hasOneUse())
break;
unsigned ShAmt = N1C->getZExtValue();
unsigned ExtSize =
cast<VTSDNode>(N0.getOperand(1))->getVT().getSizeInBits();
// ExtSize of 32 should use sraiw via tablegen pattern.
if (ExtSize >= 32 || ShAmt >= ExtSize)
break;
unsigned LShAmt = Subtarget->getXLen() - ExtSize;
SDNode *SLLI =
CurDAG->getMachineNode(RISCV::SLLI, DL, VT, N0->getOperand(0),
CurDAG->getTargetConstant(LShAmt, DL, VT));
SDNode *SRAI = CurDAG->getMachineNode(
RISCV::SRAI, DL, VT, SDValue(SLLI, 0),
CurDAG->getTargetConstant(LShAmt + ShAmt, DL, VT));
ReplaceNode(Node, SRAI);
return;
}
case ISD::OR:
case ISD::XOR:
if (tryShrinkShlLogicImm(Node))
return;
break;
case ISD::AND: {
auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1));
if (!N1C)
break;
SDValue N0 = Node->getOperand(0);
bool LeftShift = N0.getOpcode() == ISD::SHL;
if (LeftShift || N0.getOpcode() == ISD::SRL) {
auto *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C)
break;
unsigned C2 = C->getZExtValue();
unsigned XLen = Subtarget->getXLen();
assert((C2 > 0 && C2 < XLen) && "Unexpected shift amount!");
uint64_t C1 = N1C->getZExtValue();
// Keep track of whether this is a c.andi. If we can't use c.andi, the
// shift pair might offer more compression opportunities.
// TODO: We could check for C extension here, but we don't have many lit
// tests with the C extension enabled so not checking gets better
// coverage.
// TODO: What if ANDI faster than shift?
bool IsCANDI = isInt<6>(N1C->getSExtValue());
// Clear irrelevant bits in the mask.
if (LeftShift)
C1 &= maskTrailingZeros<uint64_t>(C2);
else
C1 &= maskTrailingOnes<uint64_t>(XLen - C2);
// Some transforms should only be done if the shift has a single use or
// the AND would become (srli (slli X, 32), 32)
bool OneUseOrZExtW = N0.hasOneUse() || C1 == UINT64_C(0xFFFFFFFF);
SDValue X = N0.getOperand(0);
// Turn (and (srl x, c2) c1) -> (srli (slli x, c3-c2), c3) if c1 is a mask
// with c3 leading zeros.
if (!LeftShift && isMask_64(C1)) {
unsigned Leading = XLen - llvm::bit_width(C1);
if (C2 < Leading) {
// If the number of leading zeros is C2+32 this can be SRLIW.
if (C2 + 32 == Leading) {
SDNode *SRLIW = CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, X, CurDAG->getTargetConstant(C2, DL, VT));
ReplaceNode(Node, SRLIW);
return;
}
// (and (srl (sexti32 Y), c2), c1) -> (srliw (sraiw Y, 31), c3 - 32)
// if c1 is a mask with c3 leading zeros and c2 >= 32 and c3-c2==1.
//
// This pattern occurs when (i32 (srl (sra 31), c3 - 32)) is type
// legalized and goes through DAG combine.
if (C2 >= 32 && (Leading - C2) == 1 && N0.hasOneUse() &&
X.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(X.getOperand(1))->getVT() == MVT::i32) {
SDNode *SRAIW =
CurDAG->getMachineNode(RISCV::SRAIW, DL, VT, X.getOperand(0),
CurDAG->getTargetConstant(31, DL, VT));
SDNode *SRLIW = CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, SDValue(SRAIW, 0),
CurDAG->getTargetConstant(Leading - 32, DL, VT));
ReplaceNode(Node, SRLIW);
return;
}
// (srli (slli x, c3-c2), c3).
// Skip if we could use (zext.w (sraiw X, C2)).
bool Skip = Subtarget->hasStdExtZba() && Leading == 32 &&
X.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(X.getOperand(1))->getVT() == MVT::i32;
// Also Skip if we can use bexti.
Skip |= Subtarget->hasStdExtZbs() && Leading == XLen - 1;
if (OneUseOrZExtW && !Skip) {
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, X,
CurDAG->getTargetConstant(Leading - C2, DL, VT));
SDNode *SRLI = CurDAG->getMachineNode(
RISCV::SRLI, DL, VT, SDValue(SLLI, 0),
CurDAG->getTargetConstant(Leading, DL, VT));
ReplaceNode(Node, SRLI);
return;
}
}
}
// Turn (and (shl x, c2), c1) -> (srli (slli c2+c3), c3) if c1 is a mask
// shifted by c2 bits with c3 leading zeros.
if (LeftShift && isShiftedMask_64(C1)) {
unsigned Leading = XLen - llvm::bit_width(C1);
if (C2 + Leading < XLen &&
C1 == (maskTrailingOnes<uint64_t>(XLen - (C2 + Leading)) << C2)) {
// Use slli.uw when possible.
if ((XLen - (C2 + Leading)) == 32 && Subtarget->hasStdExtZba()) {
SDNode *SLLI_UW =
CurDAG->getMachineNode(RISCV::SLLI_UW, DL, VT, X,
CurDAG->getTargetConstant(C2, DL, VT));
ReplaceNode(Node, SLLI_UW);
return;
}
// (srli (slli c2+c3), c3)
if (OneUseOrZExtW && !IsCANDI) {
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, X,
CurDAG->getTargetConstant(C2 + Leading, DL, VT));
SDNode *SRLI = CurDAG->getMachineNode(
RISCV::SRLI, DL, VT, SDValue(SLLI, 0),
CurDAG->getTargetConstant(Leading, DL, VT));
ReplaceNode(Node, SRLI);
return;
}
}
}
// Turn (and (shr x, c2), c1) -> (slli (srli x, c2+c3), c3) if c1 is a
// shifted mask with c2 leading zeros and c3 trailing zeros.
if (!LeftShift && isShiftedMask_64(C1)) {
unsigned Leading = XLen - llvm::bit_width(C1);
unsigned Trailing = countTrailingZeros(C1);
if (Leading == C2 && C2 + Trailing < XLen && OneUseOrZExtW &&
!IsCANDI) {
unsigned SrliOpc = RISCV::SRLI;
// If the input is zexti32 we should use SRLIW.
if (X.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(X.getOperand(1)) &&
X.getConstantOperandVal(1) == UINT64_C(0xFFFFFFFF)) {
SrliOpc = RISCV::SRLIW;
X = X.getOperand(0);
}
SDNode *SRLI = CurDAG->getMachineNode(
SrliOpc, DL, VT, X,
CurDAG->getTargetConstant(C2 + Trailing, DL, VT));
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, SDValue(SRLI, 0),
CurDAG->getTargetConstant(Trailing, DL, VT));
ReplaceNode(Node, SLLI);
return;
}
// If the leading zero count is C2+32, we can use SRLIW instead of SRLI.
if (Leading > 32 && (Leading - 32) == C2 && C2 + Trailing < 32 &&
OneUseOrZExtW && !IsCANDI) {
SDNode *SRLIW = CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, X,
CurDAG->getTargetConstant(C2 + Trailing, DL, VT));
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, SDValue(SRLIW, 0),
CurDAG->getTargetConstant(Trailing, DL, VT));
ReplaceNode(Node, SLLI);
return;
}
}
// Turn (and (shl x, c2), c1) -> (slli (srli x, c3-c2), c3) if c1 is a
// shifted mask with no leading zeros and c3 trailing zeros.
if (LeftShift && isShiftedMask_64(C1)) {
unsigned Leading = XLen - llvm::bit_width(C1);
unsigned Trailing = countTrailingZeros(C1);
if (Leading == 0 && C2 < Trailing && OneUseOrZExtW && !IsCANDI) {
SDNode *SRLI = CurDAG->getMachineNode(
RISCV::SRLI, DL, VT, X,
CurDAG->getTargetConstant(Trailing - C2, DL, VT));
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, SDValue(SRLI, 0),
CurDAG->getTargetConstant(Trailing, DL, VT));
ReplaceNode(Node, SLLI);
return;
}
// If we have (32-C2) leading zeros, we can use SRLIW instead of SRLI.
if (C2 < Trailing && Leading + C2 == 32 && OneUseOrZExtW && !IsCANDI) {
SDNode *SRLIW = CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, X,
CurDAG->getTargetConstant(Trailing - C2, DL, VT));
SDNode *SLLI = CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, SDValue(SRLIW, 0),
CurDAG->getTargetConstant(Trailing, DL, VT));
ReplaceNode(Node, SLLI);
return;
}
}
}
if (tryShrinkShlLogicImm(Node))
return;
break;
}
case ISD::MUL: {
// Special case for calculating (mul (and X, C2), C1) where the full product
// fits in XLen bits. We can shift X left by the number of leading zeros in
// C2 and shift C1 left by XLen-lzcnt(C2). This will ensure the final
// product has XLen trailing zeros, putting it in the output of MULHU. This
// can avoid materializing a constant in a register for C2.
// RHS should be a constant.
auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1));
if (!N1C || !N1C->hasOneUse())
break;
// LHS should be an AND with constant.
SDValue N0 = Node->getOperand(0);
if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(N0.getOperand(1)))
break;
uint64_t C2 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
// Constant should be a mask.
if (!isMask_64(C2))
break;
// If this can be an ANDI, ZEXT.H or ZEXT.W, don't do this if the ANDI/ZEXT
// has multiple users or the constant is a simm12. This prevents inserting
// a shift and still have uses of the AND/ZEXT. Shifting a simm12 will
// likely make it more costly to materialize. Otherwise, using a SLLI
// might allow it to be compressed.
bool IsANDIOrZExt =
isInt<12>(C2) ||
(C2 == UINT64_C(0xFFFF) && Subtarget->hasStdExtZbb()) ||
(C2 == UINT64_C(0xFFFFFFFF) && Subtarget->hasStdExtZba());
if (IsANDIOrZExt && (isInt<12>(N1C->getSExtValue()) || !N0.hasOneUse()))
break;
// We need to shift left the AND input and C1 by a total of XLen bits.
// How far left do we need to shift the AND input?
unsigned XLen = Subtarget->getXLen();
unsigned LeadingZeros = XLen - llvm::bit_width(C2);
// The constant gets shifted by the remaining amount unless that would
// shift bits out.
uint64_t C1 = N1C->getZExtValue();
unsigned ConstantShift = XLen - LeadingZeros;
if (ConstantShift > (XLen - llvm::bit_width(C1)))
break;
uint64_t ShiftedC1 = C1 << ConstantShift;
// If this RV32, we need to sign extend the constant.
if (XLen == 32)
ShiftedC1 = SignExtend64<32>(ShiftedC1);
// Create (mulhu (slli X, lzcnt(C2)), C1 << (XLen - lzcnt(C2))).
SDNode *Imm = selectImm(CurDAG, DL, VT, ShiftedC1, *Subtarget);
SDNode *SLLI =
CurDAG->getMachineNode(RISCV::SLLI, DL, VT, N0.getOperand(0),
CurDAG->getTargetConstant(LeadingZeros, DL, VT));
SDNode *MULHU = CurDAG->getMachineNode(RISCV::MULHU, DL, VT,
SDValue(SLLI, 0), SDValue(Imm, 0));
ReplaceNode(Node, MULHU);
return;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntNo = Node->getConstantOperandVal(0);
switch (IntNo) {
// By default we do not custom select any intrinsic.
default:
break;
case Intrinsic::riscv_vmsgeu:
case Intrinsic::riscv_vmsge: {
SDValue Src1 = Node->getOperand(1);
SDValue Src2 = Node->getOperand(2);
bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu;
bool IsCmpUnsignedZero = false;
// Only custom select scalar second operand.
if (Src2.getValueType() != XLenVT)
break;
// Small constants are handled with patterns.
if (auto *C = dyn_cast<ConstantSDNode>(Src2)) {
int64_t CVal = C->getSExtValue();
if (CVal >= -15 && CVal <= 16) {
if (!IsUnsigned || CVal != 0)
break;
IsCmpUnsignedZero = true;
}
}
MVT Src1VT = Src1.getSimpleValueType();
unsigned VMSLTOpcode, VMNANDOpcode, VMSetOpcode;
switch (RISCVTargetLowering::getLMUL(Src1VT)) {
default:
llvm_unreachable("Unexpected LMUL!");
#define CASE_VMSLT_VMNAND_VMSET_OPCODES(lmulenum, suffix, suffix_b) \
case RISCVII::VLMUL::lmulenum: \
VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \
: RISCV::PseudoVMSLT_VX_##suffix; \
VMNANDOpcode = RISCV::PseudoVMNAND_MM_##suffix; \
VMSetOpcode = RISCV::PseudoVMSET_M_##suffix_b; \
break;
CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_F8, MF8, B1)
CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_F4, MF4, B2)
CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_F2, MF2, B4)
CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_1, M1, B8)
CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_2, M2, B16)
CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_4, M4, B32)
CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_8, M8, B64)
#undef CASE_VMSLT_VMNAND_VMSET_OPCODES
}
SDValue SEW = CurDAG->getTargetConstant(
Log2_32(Src1VT.getScalarSizeInBits()), DL, XLenVT);
SDValue VL;
selectVLOp(Node->getOperand(3), VL);
// If vmsgeu with 0 immediate, expand it to vmset.
if (IsCmpUnsignedZero) {
ReplaceNode(Node, CurDAG->getMachineNode(VMSetOpcode, DL, VT, VL, SEW));
return;
}
// Expand to
// vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
SDValue Cmp = SDValue(
CurDAG->getMachineNode(VMSLTOpcode, DL, VT, {Src1, Src2, VL, SEW}),
0);
ReplaceNode(Node, CurDAG->getMachineNode(VMNANDOpcode, DL, VT,
{Cmp, Cmp, VL, SEW}));
return;
}
case Intrinsic::riscv_vmsgeu_mask:
case Intrinsic::riscv_vmsge_mask: {
SDValue Src1 = Node->getOperand(2);
SDValue Src2 = Node->getOperand(3);
bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu_mask;
bool IsCmpUnsignedZero = false;
// Only custom select scalar second operand.
if (Src2.getValueType() != XLenVT)
break;
// Small constants are handled with patterns.
if (auto *C = dyn_cast<ConstantSDNode>(Src2)) {
int64_t CVal = C->getSExtValue();
if (CVal >= -15 && CVal <= 16) {
if (!IsUnsigned || CVal != 0)
break;
IsCmpUnsignedZero = true;
}
}
MVT Src1VT = Src1.getSimpleValueType();
unsigned VMSLTOpcode, VMSLTMaskOpcode, VMXOROpcode, VMANDNOpcode,
VMOROpcode;
switch (RISCVTargetLowering::getLMUL(Src1VT)) {
default:
llvm_unreachable("Unexpected LMUL!");
#define CASE_VMSLT_OPCODES(lmulenum, suffix, suffix_b) \
case RISCVII::VLMUL::lmulenum: \
VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \
: RISCV::PseudoVMSLT_VX_##suffix; \
VMSLTMaskOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix##_MASK \
: RISCV::PseudoVMSLT_VX_##suffix##_MASK; \
break;
CASE_VMSLT_OPCODES(LMUL_F8, MF8, B1)
CASE_VMSLT_OPCODES(LMUL_F4, MF4, B2)
CASE_VMSLT_OPCODES(LMUL_F2, MF2, B4)
CASE_VMSLT_OPCODES(LMUL_1, M1, B8)
CASE_VMSLT_OPCODES(LMUL_2, M2, B16)
CASE_VMSLT_OPCODES(LMUL_4, M4, B32)
CASE_VMSLT_OPCODES(LMUL_8, M8, B64)
#undef CASE_VMSLT_OPCODES
}
// Mask operations use the LMUL from the mask type.
switch (RISCVTargetLowering::getLMUL(VT)) {
default:
llvm_unreachable("Unexpected LMUL!");
#define CASE_VMXOR_VMANDN_VMOR_OPCODES(lmulenum, suffix) \
case RISCVII::VLMUL::lmulenum: \
VMXOROpcode = RISCV::PseudoVMXOR_MM_##suffix; \
VMANDNOpcode = RISCV::PseudoVMANDN_MM_##suffix; \
VMOROpcode = RISCV::PseudoVMOR_MM_##suffix; \
break;
CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F8, MF8)
CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F4, MF4)
CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F2, MF2)
CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_1, M1)
CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_2, M2)
CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_4, M4)
CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_8, M8)
#undef CASE_VMXOR_VMANDN_VMOR_OPCODES
}
SDValue SEW = CurDAG->getTargetConstant(
Log2_32(Src1VT.getScalarSizeInBits()), DL, XLenVT);
SDValue MaskSEW = CurDAG->getTargetConstant(0, DL, XLenVT);
SDValue VL;
selectVLOp(Node->getOperand(5), VL);
SDValue MaskedOff = Node->getOperand(1);
SDValue Mask = Node->getOperand(4);
// If vmsgeu_mask with 0 immediate, expand it to vmor mask, maskedoff.
if (IsCmpUnsignedZero) {
// We don't need vmor if the MaskedOff and the Mask are the same
// value.
if (Mask == MaskedOff) {
ReplaceUses(Node, Mask.getNode());
return;
}
ReplaceNode(Node,
CurDAG->getMachineNode(VMOROpcode, DL, VT,
{Mask, MaskedOff, VL, MaskSEW}));
return;
}
// If the MaskedOff value and the Mask are the same value use
// vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt
// This avoids needing to copy v0 to vd before starting the next sequence.
if (Mask == MaskedOff) {
SDValue Cmp = SDValue(
CurDAG->getMachineNode(VMSLTOpcode, DL, VT, {Src1, Src2, VL, SEW}),
0);
ReplaceNode(Node, CurDAG->getMachineNode(VMANDNOpcode, DL, VT,
{Mask, Cmp, VL, MaskSEW}));
return;
}
// Mask needs to be copied to V0.
SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL,
RISCV::V0, Mask, SDValue());
SDValue Glue = Chain.getValue(1);
SDValue V0 = CurDAG->getRegister(RISCV::V0, VT);
// Otherwise use
// vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
// The result is mask undisturbed.
// We use the same instructions to emulate mask agnostic behavior, because
// the agnostic result can be either undisturbed or all 1.
SDValue Cmp = SDValue(
CurDAG->getMachineNode(VMSLTMaskOpcode, DL, VT,
{MaskedOff, Src1, Src2, V0, VL, SEW, Glue}),
0);
// vmxor.mm vd, vd, v0 is used to update active value.
ReplaceNode(Node, CurDAG->getMachineNode(VMXOROpcode, DL, VT,
{Cmp, Mask, VL, MaskSEW}));
return;
}
case Intrinsic::riscv_vsetvli_opt:
case Intrinsic::riscv_vsetvlimax_opt:
return selectVSETVLI(Node);
}
break;
}
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
switch (IntNo) {
// By default we do not custom select any intrinsic.
default:
break;
case Intrinsic::riscv_vsetvli:
case Intrinsic::riscv_vsetvlimax:
return selectVSETVLI(Node);
case Intrinsic::riscv_vlseg2:
case Intrinsic::riscv_vlseg3:
case Intrinsic::riscv_vlseg4:
case Intrinsic::riscv_vlseg5:
case Intrinsic::riscv_vlseg6:
case Intrinsic::riscv_vlseg7:
case Intrinsic::riscv_vlseg8: {
selectVLSEG(Node, /*IsMasked*/ false, /*IsStrided*/ false);
return;
}
case Intrinsic::riscv_vlseg2_mask:
case Intrinsic::riscv_vlseg3_mask:
case Intrinsic::riscv_vlseg4_mask:
case Intrinsic::riscv_vlseg5_mask:
case Intrinsic::riscv_vlseg6_mask:
case Intrinsic::riscv_vlseg7_mask:
case Intrinsic::riscv_vlseg8_mask: {
selectVLSEG(Node, /*IsMasked*/ true, /*IsStrided*/ false);
return;
}
case Intrinsic::riscv_vlsseg2:
case Intrinsic::riscv_vlsseg3:
case Intrinsic::riscv_vlsseg4:
case Intrinsic::riscv_vlsseg5:
case Intrinsic::riscv_vlsseg6:
case Intrinsic::riscv_vlsseg7:
case Intrinsic::riscv_vlsseg8: {
selectVLSEG(Node, /*IsMasked*/ false, /*IsStrided*/ true);
return;
}
case Intrinsic::riscv_vlsseg2_mask:
case Intrinsic::riscv_vlsseg3_mask:
case Intrinsic::riscv_vlsseg4_mask:
case Intrinsic::riscv_vlsseg5_mask:
case Intrinsic::riscv_vlsseg6_mask:
case Intrinsic::riscv_vlsseg7_mask:
case Intrinsic::riscv_vlsseg8_mask: {
selectVLSEG(Node, /*IsMasked*/ true, /*IsStrided*/ true);
return;
}
case Intrinsic::riscv_vloxseg2:
case Intrinsic::riscv_vloxseg3:
case Intrinsic::riscv_vloxseg4:
case Intrinsic::riscv_vloxseg5:
case Intrinsic::riscv_vloxseg6:
case Intrinsic::riscv_vloxseg7:
case Intrinsic::riscv_vloxseg8:
selectVLXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ true);
return;
case Intrinsic::riscv_vluxseg2:
case Intrinsic::riscv_vluxseg3:
case Intrinsic::riscv_vluxseg4:
case Intrinsic::riscv_vluxseg5:
case Intrinsic::riscv_vluxseg6:
case Intrinsic::riscv_vluxseg7:
case Intrinsic::riscv_vluxseg8:
selectVLXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ false);
return;
case Intrinsic::riscv_vloxseg2_mask:
case Intrinsic::riscv_vloxseg3_mask:
case Intrinsic::riscv_vloxseg4_mask:
case Intrinsic::riscv_vloxseg5_mask:
case Intrinsic::riscv_vloxseg6_mask:
case Intrinsic::riscv_vloxseg7_mask:
case Intrinsic::riscv_vloxseg8_mask:
selectVLXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ true);
return;
case Intrinsic::riscv_vluxseg2_mask:
case Intrinsic::riscv_vluxseg3_mask:
case Intrinsic::riscv_vluxseg4_mask:
case Intrinsic::riscv_vluxseg5_mask:
case Intrinsic::riscv_vluxseg6_mask:
case Intrinsic::riscv_vluxseg7_mask:
case Intrinsic::riscv_vluxseg8_mask:
selectVLXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ false);
return;
case Intrinsic::riscv_vlseg8ff:
case Intrinsic::riscv_vlseg7ff:
case Intrinsic::riscv_vlseg6ff:
case Intrinsic::riscv_vlseg5ff:
case Intrinsic::riscv_vlseg4ff:
case Intrinsic::riscv_vlseg3ff:
case Intrinsic::riscv_vlseg2ff: {
selectVLSEGFF(Node, /*IsMasked*/ false);
return;
}
case Intrinsic::riscv_vlseg8ff_mask:
case Intrinsic::riscv_vlseg7ff_mask:
case Intrinsic::riscv_vlseg6ff_mask:
case Intrinsic::riscv_vlseg5ff_mask:
case Intrinsic::riscv_vlseg4ff_mask:
case Intrinsic::riscv_vlseg3ff_mask:
case Intrinsic::riscv_vlseg2ff_mask: {
selectVLSEGFF(Node, /*IsMasked*/ true);
return;
}
case Intrinsic::riscv_vloxei:
case Intrinsic::riscv_vloxei_mask:
case Intrinsic::riscv_vluxei:
case Intrinsic::riscv_vluxei_mask: {
bool IsMasked = IntNo == Intrinsic::riscv_vloxei_mask ||
IntNo == Intrinsic::riscv_vluxei_mask;
bool IsOrdered = IntNo == Intrinsic::riscv_vloxei ||
IntNo == Intrinsic::riscv_vloxei_mask;
MVT VT = Node->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
unsigned CurOp = 2;
// Masked intrinsic only have TU version pseduo instructions.
bool IsTU = IsMasked || !Node->getOperand(CurOp).isUndef();
SmallVector<SDValue, 8> Operands;
if (IsTU)
Operands.push_back(Node->getOperand(CurOp++));
else
// Skip the undef passthru operand for nomask TA version pseudo
CurOp++;
MVT IndexVT;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked,
/*IsStridedOrIndexed*/ true, Operands,
/*IsLoad=*/true, &IndexVT);
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
"Element count mismatch");
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT);
unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits());
if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) {
report_fatal_error("The V extension does not support EEW=64 for index "
"values when XLEN=32");
}
const RISCV::VLX_VSXPseudo *P = RISCV::getVLXPseudo(
IsMasked, IsTU, IsOrdered, IndexLog2EEW, static_cast<unsigned>(LMUL),
static_cast<unsigned>(IndexLMUL));
MachineSDNode *Load =
CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()});
ReplaceNode(Node, Load);
return;
}
case Intrinsic::riscv_vlm:
case Intrinsic::riscv_vle:
case Intrinsic::riscv_vle_mask:
case Intrinsic::riscv_vlse:
case Intrinsic::riscv_vlse_mask: {
bool IsMasked = IntNo == Intrinsic::riscv_vle_mask ||
IntNo == Intrinsic::riscv_vlse_mask;
bool IsStrided =
IntNo == Intrinsic::riscv_vlse || IntNo == Intrinsic::riscv_vlse_mask;
MVT VT = Node->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
unsigned CurOp = 2;
// The riscv_vlm intrinsic are always tail agnostic and no passthru operand.
bool HasPassthruOperand = IntNo != Intrinsic::riscv_vlm;
// Masked intrinsic only have TU version pseduo instructions.
bool IsTU = HasPassthruOperand &&
(IsMasked || !Node->getOperand(CurOp).isUndef());
SmallVector<SDValue, 8> Operands;
if (IsTU)
Operands.push_back(Node->getOperand(CurOp++));
else if (HasPassthruOperand)
// Skip the undef passthru operand for nomask TA version pseudo
CurOp++;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided,
Operands, /*IsLoad=*/true);
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
const RISCV::VLEPseudo *P =
RISCV::getVLEPseudo(IsMasked, IsTU, IsStrided, /*FF*/ false, Log2SEW,
static_cast<unsigned>(LMUL));
MachineSDNode *Load =
CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()});
ReplaceNode(Node, Load);
return;
}
case Intrinsic::riscv_vleff:
case Intrinsic::riscv_vleff_mask: {
bool IsMasked = IntNo == Intrinsic::riscv_vleff_mask;
MVT VT = Node->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
unsigned CurOp = 2;
// Masked intrinsic only have TU version pseduo instructions.
bool IsTU = IsMasked || !Node->getOperand(CurOp).isUndef();
SmallVector<SDValue, 7> Operands;
if (IsTU)
Operands.push_back(Node->getOperand(CurOp++));
else
// Skip the undef passthru operand for nomask TA version pseudo
CurOp++;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked,
/*IsStridedOrIndexed*/ false, Operands,
/*IsLoad=*/true);
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
const RISCV::VLEPseudo *P =
RISCV::getVLEPseudo(IsMasked, IsTU, /*Strided*/ false, /*FF*/ true,
Log2SEW, static_cast<unsigned>(LMUL));
MachineSDNode *Load = CurDAG->getMachineNode(
P->Pseudo, DL, Node->getVTList(), Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()});
ReplaceNode(Node, Load);
return;
}
}
break;
}
case ISD::INTRINSIC_VOID: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
switch (IntNo) {
case Intrinsic::riscv_vsseg2:
case Intrinsic::riscv_vsseg3:
case Intrinsic::riscv_vsseg4:
case Intrinsic::riscv_vsseg5:
case Intrinsic::riscv_vsseg6:
case Intrinsic::riscv_vsseg7:
case Intrinsic::riscv_vsseg8: {
selectVSSEG(Node, /*IsMasked*/ false, /*IsStrided*/ false);
return;
}
case Intrinsic::riscv_vsseg2_mask:
case Intrinsic::riscv_vsseg3_mask:
case Intrinsic::riscv_vsseg4_mask:
case Intrinsic::riscv_vsseg5_mask:
case Intrinsic::riscv_vsseg6_mask:
case Intrinsic::riscv_vsseg7_mask:
case Intrinsic::riscv_vsseg8_mask: {
selectVSSEG(Node, /*IsMasked*/ true, /*IsStrided*/ false);
return;
}
case Intrinsic::riscv_vssseg2:
case Intrinsic::riscv_vssseg3:
case Intrinsic::riscv_vssseg4:
case Intrinsic::riscv_vssseg5:
case Intrinsic::riscv_vssseg6:
case Intrinsic::riscv_vssseg7:
case Intrinsic::riscv_vssseg8: {
selectVSSEG(Node, /*IsMasked*/ false, /*IsStrided*/ true);
return;
}
case Intrinsic::riscv_vssseg2_mask:
case Intrinsic::riscv_vssseg3_mask:
case Intrinsic::riscv_vssseg4_mask:
case Intrinsic::riscv_vssseg5_mask:
case Intrinsic::riscv_vssseg6_mask:
case Intrinsic::riscv_vssseg7_mask:
case Intrinsic::riscv_vssseg8_mask: {
selectVSSEG(Node, /*IsMasked*/ true, /*IsStrided*/ true);
return;
}
case Intrinsic::riscv_vsoxseg2:
case Intrinsic::riscv_vsoxseg3:
case Intrinsic::riscv_vsoxseg4:
case Intrinsic::riscv_vsoxseg5:
case Intrinsic::riscv_vsoxseg6:
case Intrinsic::riscv_vsoxseg7:
case Intrinsic::riscv_vsoxseg8:
selectVSXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ true);
return;
case Intrinsic::riscv_vsuxseg2:
case Intrinsic::riscv_vsuxseg3:
case Intrinsic::riscv_vsuxseg4:
case Intrinsic::riscv_vsuxseg5:
case Intrinsic::riscv_vsuxseg6:
case Intrinsic::riscv_vsuxseg7:
case Intrinsic::riscv_vsuxseg8:
selectVSXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ false);
return;
case Intrinsic::riscv_vsoxseg2_mask:
case Intrinsic::riscv_vsoxseg3_mask:
case Intrinsic::riscv_vsoxseg4_mask:
case Intrinsic::riscv_vsoxseg5_mask:
case Intrinsic::riscv_vsoxseg6_mask:
case Intrinsic::riscv_vsoxseg7_mask:
case Intrinsic::riscv_vsoxseg8_mask:
selectVSXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ true);
return;
case Intrinsic::riscv_vsuxseg2_mask:
case Intrinsic::riscv_vsuxseg3_mask:
case Intrinsic::riscv_vsuxseg4_mask:
case Intrinsic::riscv_vsuxseg5_mask:
case Intrinsic::riscv_vsuxseg6_mask:
case Intrinsic::riscv_vsuxseg7_mask:
case Intrinsic::riscv_vsuxseg8_mask:
selectVSXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ false);
return;
case Intrinsic::riscv_vsoxei:
case Intrinsic::riscv_vsoxei_mask:
case Intrinsic::riscv_vsuxei:
case Intrinsic::riscv_vsuxei_mask: {
bool IsMasked = IntNo == Intrinsic::riscv_vsoxei_mask ||
IntNo == Intrinsic::riscv_vsuxei_mask;
bool IsOrdered = IntNo == Intrinsic::riscv_vsoxei ||
IntNo == Intrinsic::riscv_vsoxei_mask;
MVT VT = Node->getOperand(2)->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
unsigned CurOp = 2;
SmallVector<SDValue, 8> Operands;
Operands.push_back(Node->getOperand(CurOp++)); // Store value.
MVT IndexVT;
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked,
/*IsStridedOrIndexed*/ true, Operands,
/*IsLoad=*/false, &IndexVT);
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
"Element count mismatch");
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT);
unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits());
if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) {
report_fatal_error("The V extension does not support EEW=64 for index "
"values when XLEN=32");
}
const RISCV::VLX_VSXPseudo *P = RISCV::getVSXPseudo(
IsMasked, /*TU*/ false, IsOrdered, IndexLog2EEW,
static_cast<unsigned>(LMUL), static_cast<unsigned>(IndexLMUL));
MachineSDNode *Store =
CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()});
ReplaceNode(Node, Store);
return;
}
case Intrinsic::riscv_vsm:
case Intrinsic::riscv_vse:
case Intrinsic::riscv_vse_mask:
case Intrinsic::riscv_vsse:
case Intrinsic::riscv_vsse_mask: {
bool IsMasked = IntNo == Intrinsic::riscv_vse_mask ||
IntNo == Intrinsic::riscv_vsse_mask;
bool IsStrided =
IntNo == Intrinsic::riscv_vsse || IntNo == Intrinsic::riscv_vsse_mask;
MVT VT = Node->getOperand(2)->getSimpleValueType(0);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
unsigned CurOp = 2;
SmallVector<SDValue, 8> Operands;
Operands.push_back(Node->getOperand(CurOp++)); // Store value.
addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided,
Operands);
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
const RISCV::VSEPseudo *P = RISCV::getVSEPseudo(
IsMasked, IsStrided, Log2SEW, static_cast<unsigned>(LMUL));
MachineSDNode *Store =
CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands);
if (auto *MemOp = dyn_cast<MemSDNode>(Node))
CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()});
ReplaceNode(Node, Store);
return;
}
}
break;
}
case ISD::BITCAST: {
MVT SrcVT = Node->getOperand(0).getSimpleValueType();
// Just drop bitcasts between vectors if both are fixed or both are
// scalable.
if ((VT.isScalableVector() && SrcVT.isScalableVector()) ||
(VT.isFixedLengthVector() && SrcVT.isFixedLengthVector())) {
ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
CurDAG->RemoveDeadNode(Node);
return;
}
break;
}
case ISD::INSERT_SUBVECTOR: {
SDValue V = Node->getOperand(0);
SDValue SubV = Node->getOperand(1);
SDLoc DL(SubV);
auto Idx = Node->getConstantOperandVal(2);
MVT SubVecVT = SubV.getSimpleValueType();
const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering();
MVT SubVecContainerVT = SubVecVT;
// Establish the correct scalable-vector types for any fixed-length type.
if (SubVecVT.isFixedLengthVector())
SubVecContainerVT = TLI.getContainerForFixedLengthVector(SubVecVT);
if (VT.isFixedLengthVector())
VT = TLI.getContainerForFixedLengthVector(VT);
const auto *TRI = Subtarget->getRegisterInfo();
unsigned SubRegIdx;
std::tie(SubRegIdx, Idx) =
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
VT, SubVecContainerVT, Idx, TRI);
// If the Idx hasn't been completely eliminated then this is a subvector
// insert which doesn't naturally align to a vector register. These must
// be handled using instructions to manipulate the vector registers.
if (Idx != 0)
break;
RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecContainerVT);
bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
(void)IsSubVecPartReg; // Silence unused variable warning without asserts.
assert((!IsSubVecPartReg || V.isUndef()) &&
"Expecting lowering to have created legal INSERT_SUBVECTORs when "
"the subvector is smaller than a full-sized register");
// If we haven't set a SubRegIdx, then we must be going between
// equally-sized LMUL groups (e.g. VR -> VR). This can be done as a copy.
if (SubRegIdx == RISCV::NoSubRegister) {
unsigned InRegClassID = RISCVTargetLowering::getRegClassIDForVecVT(VT);
assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) ==
InRegClassID &&
"Unexpected subvector extraction");
SDValue RC = CurDAG->getTargetConstant(InRegClassID, DL, XLenVT);
SDNode *NewNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
DL, VT, SubV, RC);
ReplaceNode(Node, NewNode);
return;
}
SDValue Insert = CurDAG->getTargetInsertSubreg(SubRegIdx, DL, VT, V, SubV);
ReplaceNode(Node, Insert.getNode());
return;
}
case ISD::EXTRACT_SUBVECTOR: {
SDValue V = Node->getOperand(0);
auto Idx = Node->getConstantOperandVal(1);
MVT InVT = V.getSimpleValueType();
SDLoc DL(V);
const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering();
MVT SubVecContainerVT = VT;
// Establish the correct scalable-vector types for any fixed-length type.
if (VT.isFixedLengthVector())
SubVecContainerVT = TLI.getContainerForFixedLengthVector(VT);
if (InVT.isFixedLengthVector())
InVT = TLI.getContainerForFixedLengthVector(InVT);
const auto *TRI = Subtarget->getRegisterInfo();
unsigned SubRegIdx;
std::tie(SubRegIdx, Idx) =
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
InVT, SubVecContainerVT, Idx, TRI);
// If the Idx hasn't been completely eliminated then this is a subvector
// extract which doesn't naturally align to a vector register. These must
// be handled using instructions to manipulate the vector registers.
if (Idx != 0)
break;
// If we haven't set a SubRegIdx, then we must be going between
// equally-sized LMUL types (e.g. VR -> VR). This can be done as a copy.
if (SubRegIdx == RISCV::NoSubRegister) {
unsigned InRegClassID = RISCVTargetLowering::getRegClassIDForVecVT(InVT);
assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) ==
InRegClassID &&
"Unexpected subvector extraction");
SDValue RC = CurDAG->getTargetConstant(InRegClassID, DL, XLenVT);
SDNode *NewNode =
CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT, V, RC);
ReplaceNode(Node, NewNode);
return;
}
SDValue Extract = CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, V);
ReplaceNode(Node, Extract.getNode());
return;
}
case RISCVISD::VMV_S_X_VL:
case RISCVISD::VFMV_S_F_VL:
case RISCVISD::VMV_V_X_VL:
case RISCVISD::VFMV_V_F_VL: {
// Only if we have optimized zero-stride vector load.
if (!Subtarget->hasOptimizedZeroStrideLoad())
break;
// Try to match splat of a scalar load to a strided load with stride of x0.
bool IsScalarMove = Node->getOpcode() == RISCVISD::VMV_S_X_VL ||
Node->getOpcode() == RISCVISD::VFMV_S_F_VL;
if (!Node->getOperand(0).isUndef())
break;
SDValue Src = Node->getOperand(1);
auto *Ld = dyn_cast<LoadSDNode>(Src);
if (!Ld)
break;
EVT MemVT = Ld->getMemoryVT();
// The memory VT should be the same size as the element type.
if (MemVT.getStoreSize() != VT.getVectorElementType().getStoreSize())
break;
if (!IsProfitableToFold(Src, Node, Node) ||
!IsLegalToFold(Src, Node, Node, TM.getOptLevel()))
break;
SDValue VL;
if (IsScalarMove) {
// We could deal with more VL if we update the VSETVLI insert pass to
// avoid introducing more VSETVLI.
if (!isOneConstant(Node->getOperand(2)))
break;
selectVLOp(Node->getOperand(2), VL);
} else
selectVLOp(Node->getOperand(2), VL);
unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits());
SDValue SEW = CurDAG->getTargetConstant(Log2SEW, DL, XLenVT);
SDValue Operands[] = {Ld->getBasePtr(),
CurDAG->getRegister(RISCV::X0, XLenVT), VL, SEW,
Ld->getChain()};
RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
const RISCV::VLEPseudo *P = RISCV::getVLEPseudo(
/*IsMasked*/ false, /*IsTU*/ false, /*IsStrided*/ true, /*FF*/ false,
Log2SEW, static_cast<unsigned>(LMUL));
MachineSDNode *Load =
CurDAG->getMachineNode(P->Pseudo, DL, {VT, MVT::Other}, Operands);
// Update the chain.
ReplaceUses(Src.getValue(1), SDValue(Load, 1));
// Record the mem-refs
CurDAG->setNodeMemRefs(Load, {Ld->getMemOperand()});
// Replace the splat with the vlse.
ReplaceNode(Node, Load);
return;
}
}
// Select the default instruction.
SelectCode(Node);
}
bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand(
const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
switch (ConstraintID) {
case InlineAsm::Constraint_m:
// We just support simple memory operands that have a single address
// operand and need no special handling.
OutOps.push_back(Op);
return false;
case InlineAsm::Constraint_A:
OutOps.push_back(Op);
return false;
default:
break;
}
return true;
}
bool RISCVDAGToDAGISel::SelectAddrFrameIndex(SDValue Addr, SDValue &Base,
SDValue &Offset) {
if (auto *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), Subtarget->getXLenVT());
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Subtarget->getXLenVT());
return true;
}
return false;
}
// Select a frame index and an optional immediate offset from an ADD or OR.
bool RISCVDAGToDAGISel::SelectFrameAddrRegImm(SDValue Addr, SDValue &Base,
SDValue &Offset) {
if (SelectAddrFrameIndex(Addr, Base, Offset))
return true;
if (!CurDAG->isBaseWithConstantOffset(Addr))
return false;
if (auto *FIN = dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) {
int64_t CVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
if (isInt<12>(CVal)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(),
Subtarget->getXLenVT());
Offset = CurDAG->getTargetConstant(CVal, SDLoc(Addr),
Subtarget->getXLenVT());
return true;
}
}
return false;
}
// Fold constant addresses.
static bool selectConstantAddr(SelectionDAG *CurDAG, const SDLoc &DL,
const MVT VT, const RISCVSubtarget *Subtarget,
SDValue Addr, SDValue &Base, SDValue &Offset) {
if (!isa<ConstantSDNode>(Addr))
return false;
int64_t CVal = cast<ConstantSDNode>(Addr)->getSExtValue();
// If the constant is a simm12, we can fold the whole constant and use X0 as
// the base. If the constant can be materialized with LUI+simm12, use LUI as
// the base. We can't use generateInstSeq because it favors LUI+ADDIW.
int64_t Lo12 = SignExtend64<12>(CVal);
int64_t Hi = (uint64_t)CVal - (uint64_t)Lo12;
if (!Subtarget->is64Bit() || isInt<32>(Hi)) {
if (Hi) {
int64_t Hi20 = (Hi >> 12) & 0xfffff;
Base = SDValue(
CurDAG->getMachineNode(RISCV::LUI, DL, VT,
CurDAG->getTargetConstant(Hi20, DL, VT)),
0);
} else {
Base = CurDAG->getRegister(RISCV::X0, VT);
}
Offset = CurDAG->getTargetConstant(Lo12, DL, VT);
return true;
}
// Ask how constant materialization would handle this constant.
RISCVMatInt::InstSeq Seq =
RISCVMatInt::generateInstSeq(CVal, Subtarget->getFeatureBits());
// If the last instruction would be an ADDI, we can fold its immediate and
// emit the rest of the sequence as the base.
if (Seq.back().getOpcode() != RISCV::ADDI)
return false;
Lo12 = Seq.back().getImm();
// Drop the last instruction.
Seq.pop_back();
assert(!Seq.empty() && "Expected more instructions in sequence");
Base = SDValue(selectImmSeq(CurDAG, DL, VT, Seq), 0);
Offset = CurDAG->getTargetConstant(Lo12, DL, VT);
return true;
}
// Is this ADD instruction only used as the base pointer of scalar loads and
// stores?
static bool isWorthFoldingAdd(SDValue Add) {
for (auto *Use : Add->uses()) {
if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
Use->getOpcode() != ISD::ATOMIC_LOAD &&
Use->getOpcode() != ISD::ATOMIC_STORE)
return false;
EVT VT = cast<MemSDNode>(Use)->getMemoryVT();
if (!VT.isScalarInteger() && VT != MVT::f16 && VT != MVT::f32 &&
VT != MVT::f64)
return false;
// Don't allow stores of the value. It must be used as the address.
if (Use->getOpcode() == ISD::STORE &&
cast<StoreSDNode>(Use)->getValue() == Add)
return false;
if (Use->getOpcode() == ISD::ATOMIC_STORE &&
cast<AtomicSDNode>(Use)->getVal() == Add)
return false;
}
return true;
}
bool RISCVDAGToDAGISel::SelectAddrRegImm(SDValue Addr, SDValue &Base,
SDValue &Offset) {
if (SelectAddrFrameIndex(Addr, Base, Offset))
return true;
SDLoc DL(Addr);
MVT VT = Addr.getSimpleValueType();
if (Addr.getOpcode() == RISCVISD::ADD_LO) {
Base = Addr.getOperand(0);
Offset = Addr.getOperand(1);
return true;
}
if (CurDAG->isBaseWithConstantOffset(Addr)) {
int64_t CVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
if (isInt<12>(CVal)) {
Base = Addr.getOperand(0);
if (Base.getOpcode() == RISCVISD::ADD_LO) {
SDValue LoOperand = Base.getOperand(1);
if (auto *GA = dyn_cast<GlobalAddressSDNode>(LoOperand)) {
// If the Lo in (ADD_LO hi, lo) is a global variable's address
// (its low part, really), then we can rely on the alignment of that
// variable to provide a margin of safety before low part can overflow
// the 12 bits of the load/store offset. Check if CVal falls within
// that margin; if so (low part + CVal) can't overflow.
const DataLayout &DL = CurDAG->getDataLayout();
Align Alignment = commonAlignment(
GA->getGlobal()->getPointerAlignment(DL), GA->getOffset());
if (CVal == 0 || Alignment > CVal) {
int64_t CombinedOffset = CVal + GA->getOffset();
Base = Base.getOperand(0);
Offset = CurDAG->getTargetGlobalAddress(
GA->getGlobal(), SDLoc(LoOperand), LoOperand.getValueType(),
CombinedOffset, GA->getTargetFlags());
return true;
}
}
}
if (auto *FIN = dyn_cast<FrameIndexSDNode>(Base))
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), VT);
Offset = CurDAG->getTargetConstant(CVal, DL, VT);
return true;
}
}
// Handle ADD with large immediates.
if (Addr.getOpcode() == ISD::ADD && isa<ConstantSDNode>(Addr.getOperand(1))) {
int64_t CVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
assert(!isInt<12>(CVal) && "simm12 not already handled?");
// Handle immediates in the range [-4096,-2049] or [2048, 4094]. We can use
// an ADDI for part of the offset and fold the rest into the load/store.
// This mirrors the AddiPair PatFrag in RISCVInstrInfo.td.
if (isInt<12>(CVal / 2) && isInt<12>(CVal - CVal / 2)) {
int64_t Adj = CVal < 0 ? -2048 : 2047;
Base = SDValue(
CurDAG->getMachineNode(RISCV::ADDI, DL, VT, Addr.getOperand(0),
CurDAG->getTargetConstant(Adj, DL, VT)),
0);
Offset = CurDAG->getTargetConstant(CVal - Adj, DL, VT);
return true;
}
// For larger immediates, we might be able to save one instruction from
// constant materialization by folding the Lo12 bits of the immediate into
// the address. We should only do this if the ADD is only used by loads and
// stores that can fold the lo12 bits. Otherwise, the ADD will get iseled
// separately with the full materialized immediate creating extra
// instructions.
if (isWorthFoldingAdd(Addr) &&
selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr.getOperand(1), Base,
Offset)) {
// Insert an ADD instruction with the materialized Hi52 bits.
Base = SDValue(
CurDAG->getMachineNode(RISCV::ADD, DL, VT, Addr.getOperand(0), Base),
0);
return true;
}
}
if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr, Base, Offset))
return true;
Base = Addr;
Offset = CurDAG->getTargetConstant(0, DL, VT);
return true;
}
bool RISCVDAGToDAGISel::selectShiftMask(SDValue N, unsigned ShiftWidth,
SDValue &ShAmt) {
ShAmt = N;
// Shift instructions on RISCV only read the lower 5 or 6 bits of the shift
// amount. If there is an AND on the shift amount, we can bypass it if it
// doesn't affect any of those bits.
if (ShAmt.getOpcode() == ISD::AND && isa<ConstantSDNode>(ShAmt.getOperand(1))) {
const APInt &AndMask = ShAmt.getConstantOperandAPInt(1);
// Since the max shift amount is a power of 2 we can subtract 1 to make a
// mask that covers the bits needed to represent all shift amounts.
assert(isPowerOf2_32(ShiftWidth) && "Unexpected max shift amount!");
APInt ShMask(AndMask.getBitWidth(), ShiftWidth - 1);
if (ShMask.isSubsetOf(AndMask)) {
ShAmt = ShAmt.getOperand(0);
} else {
// SimplifyDemandedBits may have optimized the mask so try restoring any
// bits that are known zero.
KnownBits Known = CurDAG->computeKnownBits(ShAmt.getOperand(0));
if (!ShMask.isSubsetOf(AndMask | Known.Zero))
return true;
ShAmt = ShAmt.getOperand(0);
}
}
if (ShAmt.getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(ShAmt.getOperand(1))) {
uint64_t Imm = ShAmt.getConstantOperandVal(1);
// If we are shifting by X+N where N == 0 mod Size, then just shift by X
// to avoid the ADD.
if (Imm != 0 && Imm % ShiftWidth == 0) {
ShAmt = ShAmt.getOperand(0);
return true;
}
} else if (ShAmt.getOpcode() == ISD::SUB &&
isa<ConstantSDNode>(ShAmt.getOperand(0))) {
uint64_t Imm = ShAmt.getConstantOperandVal(0);
// If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
// generate a NEG instead of a SUB of a constant.
if (Imm != 0 && Imm % ShiftWidth == 0) {
SDLoc DL(ShAmt);
EVT VT = ShAmt.getValueType();
SDValue Zero = CurDAG->getRegister(RISCV::X0, VT);
unsigned NegOpc = VT == MVT::i64 ? RISCV::SUBW : RISCV::SUB;
MachineSDNode *Neg = CurDAG->getMachineNode(NegOpc, DL, VT, Zero,
ShAmt.getOperand(1));
ShAmt = SDValue(Neg, 0);
return true;
}
// If we are shifting by N-X where N == -1 mod Size, then just shift by ~X
// to generate a NOT instead of a SUB of a constant.
if (Imm % ShiftWidth == ShiftWidth - 1) {
SDLoc DL(ShAmt);
EVT VT = ShAmt.getValueType();
MachineSDNode *Not =
CurDAG->getMachineNode(RISCV::XORI, DL, VT, ShAmt.getOperand(1),
CurDAG->getTargetConstant(-1, DL, VT));
ShAmt = SDValue(Not, 0);
return true;
}
}
return true;
}
bool RISCVDAGToDAGISel::selectSExti32(SDValue N, SDValue &Val) {
if (N.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N.getOperand(1))->getVT() == MVT::i32) {
Val = N.getOperand(0);
return true;
}
MVT VT = N.getSimpleValueType();
if (CurDAG->ComputeNumSignBits(N) > (VT.getSizeInBits() - 32)) {
Val = N;
return true;
}
return false;
}
bool RISCVDAGToDAGISel::selectZExtBits(SDValue N, unsigned Bits, SDValue &Val) {
if (N.getOpcode() == ISD::AND) {
auto *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (C && C->getZExtValue() == maskTrailingOnes<uint64_t>(Bits)) {
Val = N.getOperand(0);
return true;
}
}
MVT VT = N.getSimpleValueType();
APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), Bits);
if (CurDAG->MaskedValueIsZero(N, Mask)) {
Val = N;
return true;
}
return false;
}
/// Look for various patterns that can be done with a SHL that can be folded
/// into a SHXADD. \p ShAmt contains 1, 2, or 3 and is set based on which
/// SHXADD we are trying to match.
bool RISCVDAGToDAGISel::selectSHXADDOp(SDValue N, unsigned ShAmt,
SDValue &Val) {
if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
SDValue N0 = N.getOperand(0);
bool LeftShift = N0.getOpcode() == ISD::SHL;
if ((LeftShift || N0.getOpcode() == ISD::SRL) &&
isa<ConstantSDNode>(N0.getOperand(1))) {
uint64_t Mask = N.getConstantOperandVal(1);
unsigned C2 = N0.getConstantOperandVal(1);
unsigned XLen = Subtarget->getXLen();
if (LeftShift)
Mask &= maskTrailingZeros<uint64_t>(C2);
else
Mask &= maskTrailingOnes<uint64_t>(XLen - C2);
// Look for (and (shl y, c2), c1) where c1 is a shifted mask with no
// leading zeros and c3 trailing zeros. We can use an SRLI by c2+c3
// followed by a SHXADD with c3 for the X amount.
if (isShiftedMask_64(Mask)) {
unsigned Leading = XLen - llvm::bit_width(Mask);
unsigned Trailing = countTrailingZeros(Mask);
if (LeftShift && Leading == 0 && C2 < Trailing && Trailing == ShAmt) {
SDLoc DL(N);
EVT VT = N.getValueType();
Val = SDValue(CurDAG->getMachineNode(
RISCV::SRLI, DL, VT, N0.getOperand(0),
CurDAG->getTargetConstant(Trailing - C2, DL, VT)),
0);
return true;
}
// Look for (and (shr y, c2), c1) where c1 is a shifted mask with c2
// leading zeros and c3 trailing zeros. We can use an SRLI by C3
// followed by a SHXADD using c3 for the X amount.
if (!LeftShift && Leading == C2 && Trailing == ShAmt) {
SDLoc DL(N);
EVT VT = N.getValueType();
Val = SDValue(
CurDAG->getMachineNode(
RISCV::SRLI, DL, VT, N0.getOperand(0),
CurDAG->getTargetConstant(Leading + Trailing, DL, VT)),
0);
return true;
}
}
}
}
bool LeftShift = N.getOpcode() == ISD::SHL;
if ((LeftShift || N.getOpcode() == ISD::SRL) &&
isa<ConstantSDNode>(N.getOperand(1))) {
SDValue N0 = N.getOperand(0);
if (N0.getOpcode() == ISD::AND && N0.hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1))) {
uint64_t Mask = N0.getConstantOperandVal(1);
if (isShiftedMask_64(Mask)) {
unsigned C1 = N.getConstantOperandVal(1);
unsigned XLen = Subtarget->getXLen();
unsigned Leading = XLen - llvm::bit_width(Mask);
unsigned Trailing = countTrailingZeros(Mask);
// Look for (shl (and X, Mask), C1) where Mask has 32 leading zeros and
// C3 trailing zeros. If C1+C3==ShAmt we can use SRLIW+SHXADD.
if (LeftShift && Leading == 32 && Trailing > 0 &&
(Trailing + C1) == ShAmt) {
SDLoc DL(N);
EVT VT = N.getValueType();
Val = SDValue(CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, N0.getOperand(0),
CurDAG->getTargetConstant(Trailing, DL, VT)),
0);
return true;
}
// Look for (srl (and X, Mask), C1) where Mask has 32 leading zeros and
// C3 trailing zeros. If C3-C1==ShAmt we can use SRLIW+SHXADD.
if (!LeftShift && Leading == 32 && Trailing > C1 &&
(Trailing - C1) == ShAmt) {
SDLoc DL(N);
EVT VT = N.getValueType();
Val = SDValue(CurDAG->getMachineNode(
RISCV::SRLIW, DL, VT, N0.getOperand(0),
CurDAG->getTargetConstant(Trailing, DL, VT)),
0);
return true;
}
}
}
}
return false;
}
/// Look for various patterns that can be done with a SHL that can be folded
/// into a SHXADD_UW. \p ShAmt contains 1, 2, or 3 and is set based on which
/// SHXADD_UW we are trying to match.
bool RISCVDAGToDAGISel::selectSHXADD_UWOp(SDValue N, unsigned ShAmt,
SDValue &Val) {
if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1)) &&
N.hasOneUse()) {
SDValue N0 = N.getOperand(0);
if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
N0.hasOneUse()) {
uint64_t Mask = N.getConstantOperandVal(1);
unsigned C2 = N0.getConstantOperandVal(1);
Mask &= maskTrailingZeros<uint64_t>(C2);
// Look for (and (shl y, c2), c1) where c1 is a shifted mask with
// 32-ShAmt leading zeros and c2 trailing zeros. We can use SLLI by
// c2-ShAmt followed by SHXADD_UW with ShAmt for the X amount.
if (isShiftedMask_64(Mask)) {
unsigned Leading = countLeadingZeros(Mask);
unsigned Trailing = countTrailingZeros(Mask);
if (Leading == 32 - ShAmt && Trailing == C2 && Trailing > ShAmt) {
SDLoc DL(N);
EVT VT = N.getValueType();
Val = SDValue(CurDAG->getMachineNode(
RISCV::SLLI, DL, VT, N0.getOperand(0),
CurDAG->getTargetConstant(C2 - ShAmt, DL, VT)),
0);
return true;
}
}
}
}
return false;
}
// Return true if all users of this SDNode* only consume the lower \p Bits.
// This can be used to form W instructions for add/sub/mul/shl even when the
// root isn't a sext_inreg. This can allow the ADDW/SUBW/MULW/SLLIW to CSE if
// SimplifyDemandedBits has made it so some users see a sext_inreg and some
// don't. The sext_inreg+add/sub/mul/shl will get selected, but still leave
// the add/sub/mul/shl to become non-W instructions. By checking the users we
// may be able to use a W instruction and CSE with the other instruction if
// this has happened. We could try to detect that the CSE opportunity exists
// before doing this, but that would be more complicated.
bool RISCVDAGToDAGISel::hasAllNBitUsers(SDNode *Node, unsigned Bits,
const unsigned Depth) const {
assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB ||
Node->getOpcode() == ISD::MUL || Node->getOpcode() == ISD::SHL ||
Node->getOpcode() == ISD::SRL || Node->getOpcode() == ISD::AND ||
Node->getOpcode() == ISD::OR || Node->getOpcode() == ISD::XOR ||
Node->getOpcode() == ISD::SIGN_EXTEND_INREG ||
isa<ConstantSDNode>(Node) || Depth != 0) &&
"Unexpected opcode");
if (Depth >= SelectionDAG::MaxRecursionDepth)
return false;
for (auto UI = Node->use_begin(), UE = Node->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
// Users of this node should have already been instruction selected
if (!User->isMachineOpcode())
return false;
// TODO: Add more opcodes?
switch (User->getMachineOpcode()) {
default:
return false;
case RISCV::ADDW:
case RISCV::ADDIW:
case RISCV::SUBW:
case RISCV::MULW:
case RISCV::SLLW:
case RISCV::SLLIW:
case RISCV::SRAW:
case RISCV::SRAIW:
case RISCV::SRLW:
case RISCV::SRLIW:
case RISCV::DIVW:
case RISCV::DIVUW:
case RISCV::REMW:
case RISCV::REMUW:
case RISCV::ROLW:
case RISCV::RORW:
case RISCV::RORIW:
case RISCV::CLZW:
case RISCV::CTZW:
case RISCV::CPOPW:
case RISCV::SLLI_UW:
case RISCV::FMV_W_X:
case RISCV::FCVT_H_W:
case RISCV::FCVT_H_WU:
case RISCV::FCVT_S_W:
case RISCV::FCVT_S_WU:
case RISCV::FCVT_D_W:
case RISCV::FCVT_D_WU:
if (Bits < 32)
return false;
break;
case RISCV::SLL:
case RISCV::SRA:
case RISCV::SRL:
case RISCV::ROL:
case RISCV::ROR:
case RISCV::BSET:
case RISCV::BCLR:
case RISCV::BINV:
// Shift amount operands only use log2(Xlen) bits.
if (UI.getOperandNo() != 1 || Bits < Log2_32(Subtarget->getXLen()))
return false;
break;
case RISCV::SLLI:
// SLLI only uses the lower (XLen - ShAmt) bits.
if (Bits < Subtarget->getXLen() - User->getConstantOperandVal(1))
return false;
break;
case RISCV::ANDI:
if (Bits >= (unsigned)llvm::bit_width(User->getConstantOperandVal(1)))
break;
goto RecCheck;
case RISCV::ORI: {
uint64_t Imm = cast<ConstantSDNode>(User->getOperand(1))->getSExtValue();
if (Bits >= (unsigned)llvm::bit_width<uint64_t>(~Imm))
break;
[[fallthrough]];
}
case RISCV::AND:
case RISCV::OR:
case RISCV::XOR:
case RISCV::XORI:
case RISCV::ANDN:
case RISCV::ORN:
case RISCV::XNOR:
case RISCV::SH1ADD:
case RISCV::SH2ADD:
case RISCV::SH3ADD:
RecCheck:
if (hasAllNBitUsers(User, Bits, Depth + 1))
break;
return false;
case RISCV::SRLI: {
unsigned ShAmt = User->getConstantOperandVal(1);
// If we are shifting right by less than Bits, and users don't demand any
// bits that were shifted into [Bits-1:0], then we can consider this as an
// N-Bit user.
if (Bits > ShAmt && hasAllNBitUsers(User, Bits - ShAmt, Depth + 1))
break;
return false;
}
case RISCV::SEXT_B:
case RISCV::PACKH:
if (Bits < 8)
return false;
break;
case RISCV::SEXT_H:
case RISCV::FMV_H_X:
case RISCV::ZEXT_H_RV32:
case RISCV::ZEXT_H_RV64:
case RISCV::PACKW:
if (Bits < 16)
return false;
break;
case RISCV::PACK:
if (Bits < (Subtarget->getXLen() / 2))
return false;
break;
case RISCV::ADD_UW:
case RISCV::SH1ADD_UW:
case RISCV::SH2ADD_UW:
case RISCV::SH3ADD_UW:
// The first operand to add.uw/shXadd.uw is implicitly zero extended from
// 32 bits.
if (UI.getOperandNo() != 0 || Bits < 32)
return false;
break;
case RISCV::SB:
if (UI.getOperandNo() != 0 || Bits < 8)
return false;
break;
case RISCV::SH:
if (UI.getOperandNo() != 0 || Bits < 16)
return false;
break;
case RISCV::SW:
if (UI.getOperandNo() != 0 || Bits < 32)
return false;
break;
}
}
return true;
}
// Select VL as a 5 bit immediate or a value that will become a register. This
// allows us to choose betwen VSETIVLI or VSETVLI later.
bool RISCVDAGToDAGISel::selectVLOp(SDValue N, SDValue &VL) {
auto *C = dyn_cast<ConstantSDNode>(N);
if (C && isUInt<5>(C->getZExtValue())) {
VL = CurDAG->getTargetConstant(C->getZExtValue(), SDLoc(N),
N->getValueType(0));
} else if (C && C->isAllOnesValue()) {
// Treat all ones as VLMax.
VL = CurDAG->getTargetConstant(RISCV::VLMaxSentinel, SDLoc(N),
N->getValueType(0));
} else if (isa<RegisterSDNode>(N) &&
cast<RegisterSDNode>(N)->getReg() == RISCV::X0) {
// All our VL operands use an operand that allows GPRNoX0 or an immediate
// as the register class. Convert X0 to a special immediate to pass the
// MachineVerifier. This is recognized specially by the vsetvli insertion
// pass.
VL = CurDAG->getTargetConstant(RISCV::VLMaxSentinel, SDLoc(N),
N->getValueType(0));
} else {
VL = N;
}
return true;
}
bool RISCVDAGToDAGISel::selectVSplat(SDValue N, SDValue &SplatVal) {
if (N.getOpcode() != RISCVISD::VMV_V_X_VL || !N.getOperand(0).isUndef())
return false;
assert(N.getNumOperands() == 3 && "Unexpected number of operands");
SplatVal = N.getOperand(1);
return true;
}
using ValidateFn = bool (*)(int64_t);
static bool selectVSplatSimmHelper(SDValue N, SDValue &SplatVal,
SelectionDAG &DAG,
const RISCVSubtarget &Subtarget,
ValidateFn ValidateImm) {
if (N.getOpcode() != RISCVISD::VMV_V_X_VL || !N.getOperand(0).isUndef() ||
!isa<ConstantSDNode>(N.getOperand(1)))
return false;
assert(N.getNumOperands() == 3 && "Unexpected number of operands");
int64_t SplatImm =
cast<ConstantSDNode>(N.getOperand(1))->getSExtValue();
// The semantics of RISCVISD::VMV_V_X_VL is that when the operand
// type is wider than the resulting vector element type: an implicit
// truncation first takes place. Therefore, perform a manual
// truncation/sign-extension in order to ignore any truncated bits and catch
// any zero-extended immediate.
// For example, we wish to match (i8 -1) -> (XLenVT 255) as a simm5 by first
// sign-extending to (XLenVT -1).
MVT XLenVT = Subtarget.getXLenVT();
assert(XLenVT == N.getOperand(1).getSimpleValueType() &&
"Unexpected splat operand type");
MVT EltVT = N.getSimpleValueType().getVectorElementType();
if (EltVT.bitsLT(XLenVT))
SplatImm = SignExtend64(SplatImm, EltVT.getSizeInBits());
if (!ValidateImm(SplatImm))
return false;
SplatVal = DAG.getTargetConstant(SplatImm, SDLoc(N), XLenVT);
return true;
}
bool RISCVDAGToDAGISel::selectVSplatSimm5(SDValue N, SDValue &SplatVal) {
return selectVSplatSimmHelper(N, SplatVal, *CurDAG, *Subtarget,
[](int64_t Imm) { return isInt<5>(Imm); });
}
bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1(SDValue N, SDValue &SplatVal) {
return selectVSplatSimmHelper(
N, SplatVal, *CurDAG, *Subtarget,
[](int64_t Imm) { return (isInt<5>(Imm) && Imm != -16) || Imm == 16; });
}
bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1NonZero(SDValue N,
SDValue &SplatVal) {
return selectVSplatSimmHelper(
N, SplatVal, *CurDAG, *Subtarget, [](int64_t Imm) {
return Imm != 0 && ((isInt<5>(Imm) && Imm != -16) || Imm == 16);
});
}
bool RISCVDAGToDAGISel::selectVSplatUimm5(SDValue N, SDValue &SplatVal) {
if (N.getOpcode() != RISCVISD::VMV_V_X_VL || !N.getOperand(0).isUndef() ||
!isa<ConstantSDNode>(N.getOperand(1)))
return false;
int64_t SplatImm =
cast<ConstantSDNode>(N.getOperand(1))->getSExtValue();
if (!isUInt<5>(SplatImm))
return false;
SplatVal =
CurDAG->getTargetConstant(SplatImm, SDLoc(N), Subtarget->getXLenVT());
return true;
}
bool RISCVDAGToDAGISel::selectRVVSimm5(SDValue N, unsigned Width,
SDValue &Imm) {
if (auto *C = dyn_cast<ConstantSDNode>(N)) {
int64_t ImmVal = SignExtend64(C->getSExtValue(), Width);
if (!isInt<5>(ImmVal))
return false;
Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), Subtarget->getXLenVT());
return true;
}
return false;
}
// Try to remove sext.w if the input is a W instruction or can be made into
// a W instruction cheaply.
bool RISCVDAGToDAGISel::doPeepholeSExtW(SDNode *N) {
// Look for the sext.w pattern, addiw rd, rs1, 0.
if (N->getMachineOpcode() != RISCV::ADDIW ||
!isNullConstant(N->getOperand(1)))
return false;
SDValue N0 = N->getOperand(0);
if (!N0.isMachineOpcode())
return false;
switch (N0.getMachineOpcode()) {
default:
break;
case RISCV::ADD:
case RISCV::ADDI:
case RISCV::SUB:
case RISCV::MUL:
case RISCV::SLLI: {
// Convert sext.w+add/sub/mul to their W instructions. This will create
// a new independent instruction. This improves latency.
unsigned Opc;
switch (N0.getMachineOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case RISCV::ADD: Opc = RISCV::ADDW; break;
case RISCV::ADDI: Opc = RISCV::ADDIW; break;
case RISCV::SUB: Opc = RISCV::SUBW; break;
case RISCV::MUL: Opc = RISCV::MULW; break;
case RISCV::SLLI: Opc = RISCV::SLLIW; break;
}
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
// Shift amount needs to be uimm5.
if (N0.getMachineOpcode() == RISCV::SLLI &&
!isUInt<5>(cast<ConstantSDNode>(N01)->getSExtValue()))
break;
SDNode *Result =
CurDAG->getMachineNode(Opc, SDLoc(N), N->getValueType(0),
N00, N01);
ReplaceUses(N, Result);
return true;
}
case RISCV::ADDW:
case RISCV::ADDIW:
case RISCV::SUBW:
case RISCV::MULW:
case RISCV::SLLIW:
case RISCV::PACKW:
// Result is already sign extended just remove the sext.w.
// NOTE: We only handle the nodes that are selected with hasAllWUsers.
ReplaceUses(N, N0.getNode());
return true;
}
return false;
}
// Return true if we can make sure mask of N is all-ones mask.
static bool usesAllOnesMask(SDNode *N, unsigned MaskOpIdx) {
// Check that we're using V0 as a mask register.
if (!isa<RegisterSDNode>(N->getOperand(MaskOpIdx)) ||
cast<RegisterSDNode>(N->getOperand(MaskOpIdx))->getReg() != RISCV::V0)
return false;
// The glued user defines V0.
const auto *Glued = N->getGluedNode();
if (!Glued || Glued->getOpcode() != ISD::CopyToReg)
return false;
// Check that we're defining V0 as a mask register.
if (!isa<RegisterSDNode>(Glued->getOperand(1)) ||
cast<RegisterSDNode>(Glued->getOperand(1))->getReg() != RISCV::V0)
return false;
// Check the instruction defining V0; it needs to be a VMSET pseudo.
SDValue MaskSetter = Glued->getOperand(2);
const auto IsVMSet = [](unsigned Opc) {
return Opc == RISCV::PseudoVMSET_M_B1 || Opc == RISCV::PseudoVMSET_M_B16 ||
Opc == RISCV::PseudoVMSET_M_B2 || Opc == RISCV::PseudoVMSET_M_B32 ||
Opc == RISCV::PseudoVMSET_M_B4 || Opc == RISCV::PseudoVMSET_M_B64 ||
Opc == RISCV::PseudoVMSET_M_B8;
};
// TODO: Check that the VMSET is the expected bitwidth? The pseudo has
// undefined behaviour if it's the wrong bitwidth, so we could choose to
// assume that it's all-ones? Same applies to its VL.
return MaskSetter->isMachineOpcode() &&
IsVMSet(MaskSetter.getMachineOpcode());
}
// Optimize masked RVV pseudo instructions with a known all-ones mask to their
// corresponding "unmasked" pseudo versions. The mask we're interested in will
// take the form of a V0 physical register operand, with a glued
// register-setting instruction.
bool RISCVDAGToDAGISel::doPeepholeMaskedRVV(SDNode *N) {
const RISCV::RISCVMaskedPseudoInfo *I =
RISCV::getMaskedPseudoInfo(N->getMachineOpcode());
if (!I)
return false;
unsigned MaskOpIdx = I->MaskOpIdx;
if (!usesAllOnesMask(N, MaskOpIdx))
return false;
// Retrieve the tail policy operand index, if any.
std::optional<unsigned> TailPolicyOpIdx;
const RISCVInstrInfo &TII = *Subtarget->getInstrInfo();
const MCInstrDesc &MaskedMCID = TII.get(N->getMachineOpcode());
bool IsTA = true;
if (RISCVII::hasVecPolicyOp(MaskedMCID.TSFlags)) {
TailPolicyOpIdx = getVecPolicyOpIdx(N, MaskedMCID);
if (!(N->getConstantOperandVal(*TailPolicyOpIdx) &
RISCVII::TAIL_AGNOSTIC)) {
// Keep the true-masked instruction when there is no unmasked TU
// instruction
if (I->UnmaskedTUPseudo == I->MaskedPseudo && !N->getOperand(0).isUndef())
return false;
// We can't use TA if the tie-operand is not IMPLICIT_DEF
if (!N->getOperand(0).isUndef())
IsTA = false;
}
}
unsigned Opc = IsTA ? I->UnmaskedPseudo : I->UnmaskedTUPseudo;
// Check that we're dropping the mask operand and any policy operand
// when we transform to this unmasked pseudo. Additionally, if this insturtion
// is tail agnostic, the unmasked instruction should not have a merge op.
uint64_t TSFlags = TII.get(Opc).TSFlags;
assert((IsTA != RISCVII::hasMergeOp(TSFlags)) &&
RISCVII::hasDummyMaskOp(TSFlags) &&
!RISCVII::hasVecPolicyOp(TSFlags) &&
"Unexpected pseudo to transform to");
(void)TSFlags;
SmallVector<SDValue, 8> Ops;
// Skip the merge operand at index 0 if IsTA
for (unsigned I = IsTA, E = N->getNumOperands(); I != E; I++) {
// Skip the mask, the policy, and the Glue.
SDValue Op = N->getOperand(I);
if (I == MaskOpIdx || I == TailPolicyOpIdx ||
Op.getValueType() == MVT::Glue)
continue;
Ops.push_back(Op);
}
// Transitively apply any node glued to our new node.
const auto *Glued = N->getGluedNode();
if (auto *TGlued = Glued->getGluedNode())
Ops.push_back(SDValue(TGlued, TGlued->getNumValues() - 1));
SDNode *Result = CurDAG->getMachineNode(Opc, SDLoc(N), N->getVTList(), Ops);
Result->setFlags(N->getFlags());
ReplaceUses(N, Result);
return true;
}
// Try to fold VMERGE_VVM with unmasked intrinsic to masked intrinsic. The
// peephole only deals with VMERGE_VVM which is TU and has false operand same as
// its true operand now. E.g. (VMERGE_VVM_M1_TU False, False, (VADD_M1 ...),
// ...) -> (VADD_VV_M1_MASK)
bool RISCVDAGToDAGISel::performCombineVMergeAndVOps(SDNode *N, bool IsTA) {
unsigned Offset = IsTA ? 0 : 1;
uint64_t Policy = IsTA ? RISCVII::TAIL_AGNOSTIC : /*TUMU*/ 0;
SDValue False = N->getOperand(0 + Offset);
SDValue True = N->getOperand(1 + Offset);
SDValue Mask = N->getOperand(2 + Offset);
SDValue VL = N->getOperand(3 + Offset);
assert(True.getResNo() == 0 &&
"Expect True is the first output of an instruction.");
// Need N is the exactly one using True.
if (!True.hasOneUse())
return false;
if (!True.isMachineOpcode())
return false;
unsigned TrueOpc = True.getMachineOpcode();
// Skip if True has merge operand.
// TODO: Deal with True having same merge operand with N.
if (RISCVII::hasMergeOp(TII->get(TrueOpc).TSFlags))
return false;
// Skip if True has side effect.
// TODO: Support velff and vlsegff.
if (TII->get(TrueOpc).hasUnmodeledSideEffects())
return false;
// Only deal with True when True is unmasked intrinsic now.
const RISCV::RISCVMaskedPseudoInfo *Info =
RISCV::lookupMaskedIntrinsicByUnmaskedTA(TrueOpc);
if (!Info)
return false;
// The last operand of unmasked intrinsic should be sew or chain.
bool HasChainOp =
True.getOperand(True.getNumOperands() - 1).getValueType() == MVT::Other;
if (HasChainOp) {
// Avoid creating cycles in the DAG. We must ensure that none of the other
// operands depend on True through it's Chain.
SmallVector<const SDNode *, 4> LoopWorklist;
SmallPtrSet<const SDNode *, 16> Visited;
LoopWorklist.push_back(False.getNode());
LoopWorklist.push_back(Mask.getNode());
LoopWorklist.push_back(VL.getNode());
if (SDNode *Glued = N->getGluedNode())
LoopWorklist.push_back(Glued);
if (SDNode::hasPredecessorHelper(True.getNode(), Visited, LoopWorklist))
return false;
}
// Need True has same VL with N.
unsigned TrueVLIndex = True.getNumOperands() - HasChainOp - 2;
SDValue TrueVL = True.getOperand(TrueVLIndex);
auto IsNoFPExcept = [this](SDValue N) {
return !this->mayRaiseFPException(N.getNode()) ||
N->getFlags().hasNoFPExcept();
};
// Allow the peephole for non-exception True with VLMAX vector length, since
// all the values after VL of N are dependent on Merge. VLMAX should be
// lowered to (XLenVT -1).
if (TrueVL != VL && !(IsNoFPExcept(True) && isAllOnesConstant(TrueVL)))
return false;
SDLoc DL(N);
unsigned MaskedOpc = Info->MaskedPseudo;
assert(RISCVII::hasVecPolicyOp(TII->get(MaskedOpc).TSFlags) &&
"Expected instructions with mask have policy operand.");
assert(RISCVII::hasMergeOp(TII->get(MaskedOpc).TSFlags) &&
"Expected instructions with mask have merge operand.");
SmallVector<SDValue, 8> Ops;
Ops.push_back(False);
Ops.append(True->op_begin(), True->op_begin() + TrueVLIndex);
Ops.append({Mask, VL, /* SEW */ True.getOperand(TrueVLIndex + 1)});
Ops.push_back(CurDAG->getTargetConstant(Policy, DL, Subtarget->getXLenVT()));
// Result node should have chain operand of True.
if (HasChainOp)
Ops.push_back(True.getOperand(True.getNumOperands() - 1));
// Result node should take over glued node of N.
if (N->getGluedNode())
Ops.push_back(N->getOperand(N->getNumOperands() - 1));
SDNode *Result =
CurDAG->getMachineNode(MaskedOpc, DL, True->getVTList(), Ops);
Result->setFlags(True->getFlags());
// Replace vmerge.vvm node by Result.
ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
// Replace another value of True. E.g. chain and VL.
for (unsigned Idx = 1; Idx < True->getNumValues(); ++Idx)
ReplaceUses(True.getValue(Idx), SDValue(Result, Idx));
// Try to transform Result to unmasked intrinsic.
doPeepholeMaskedRVV(Result);
return true;
}
// Transform (VMERGE_VVM_<LMUL>_TU false, false, true, allones, vl, sew) to
// (VADD_VI_<LMUL>_TU false, true, 0, vl, sew). It may decrease uses of VMSET.
bool RISCVDAGToDAGISel::performVMergeToVAdd(SDNode *N) {
unsigned NewOpc;
switch (N->getMachineOpcode()) {
default:
llvm_unreachable("Expected VMERGE_VVM_<LMUL>_TU instruction.");
case RISCV::PseudoVMERGE_VVM_MF8_TU:
NewOpc = RISCV::PseudoVADD_VI_MF8_TU;
break;
case RISCV::PseudoVMERGE_VVM_MF4_TU:
NewOpc = RISCV::PseudoVADD_VI_MF4_TU;
break;
case RISCV::PseudoVMERGE_VVM_MF2_TU:
NewOpc = RISCV::PseudoVADD_VI_MF2_TU;
break;
case RISCV::PseudoVMERGE_VVM_M1_TU:
NewOpc = RISCV::PseudoVADD_VI_M1_TU;
break;
case RISCV::PseudoVMERGE_VVM_M2_TU:
NewOpc = RISCV::PseudoVADD_VI_M2_TU;
break;
case RISCV::PseudoVMERGE_VVM_M4_TU:
NewOpc = RISCV::PseudoVADD_VI_M4_TU;
break;
case RISCV::PseudoVMERGE_VVM_M8_TU:
NewOpc = RISCV::PseudoVADD_VI_M8_TU;
break;
}
if (!usesAllOnesMask(N, /* MaskOpIdx */ 3))
return false;
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue Ops[] = {N->getOperand(1), N->getOperand(2),
CurDAG->getTargetConstant(0, DL, Subtarget->getXLenVT()),
N->getOperand(4), N->getOperand(5)};
SDNode *Result = CurDAG->getMachineNode(NewOpc, DL, VT, Ops);
ReplaceUses(N, Result);
return true;
}
bool RISCVDAGToDAGISel::doPeepholeMergeVVMFold() {
bool MadeChange = false;
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
if (N->use_empty() || !N->isMachineOpcode())
continue;
auto IsVMergeTU = [](unsigned Opcode) {
return Opcode == RISCV::PseudoVMERGE_VVM_MF8_TU ||
Opcode == RISCV::PseudoVMERGE_VVM_MF4_TU ||
Opcode == RISCV::PseudoVMERGE_VVM_MF2_TU ||
Opcode == RISCV::PseudoVMERGE_VVM_M1_TU ||
Opcode == RISCV::PseudoVMERGE_VVM_M2_TU ||
Opcode == RISCV::PseudoVMERGE_VVM_M4_TU ||
Opcode == RISCV::PseudoVMERGE_VVM_M8_TU;
};
auto IsVMergeTA = [](unsigned Opcode) {
return Opcode == RISCV::PseudoVMERGE_VVM_MF8 ||
Opcode == RISCV::PseudoVMERGE_VVM_MF4 ||
Opcode == RISCV::PseudoVMERGE_VVM_MF2 ||
Opcode == RISCV::PseudoVMERGE_VVM_M1 ||
Opcode == RISCV::PseudoVMERGE_VVM_M2 ||
Opcode == RISCV::PseudoVMERGE_VVM_M4 ||
Opcode == RISCV::PseudoVMERGE_VVM_M8;
};
unsigned Opc = N->getMachineOpcode();
// The following optimizations require that the merge operand of N is same
// as the false operand of N.
if ((IsVMergeTU(Opc) && N->getOperand(0) == N->getOperand(1)) ||
IsVMergeTA(Opc))
MadeChange |= performCombineVMergeAndVOps(N, IsVMergeTA(Opc));
if (IsVMergeTU(Opc) && N->getOperand(0) == N->getOperand(1))
MadeChange |= performVMergeToVAdd(N);
}
return MadeChange;
}
// This pass converts a legalized DAG into a RISCV-specific DAG, ready
// for instruction scheduling.
FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new RISCVDAGToDAGISel(TM, OptLevel);
}
char RISCVDAGToDAGISel::ID = 0;
INITIALIZE_PASS(RISCVDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
|