1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
|
//===-- RISCVFrameLowering.cpp - RISCV Frame Information ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "RISCVFrameLowering.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/LEB128.h"
#include <algorithm>
using namespace llvm;
// For now we use x18, a.k.a s2, as pointer to shadow call stack.
// User should explicitly set -ffixed-x18 and not use x18 in their asm.
static void emitSCSPrologue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
if (!MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
Register RAReg = STI.getRegisterInfo()->getRARegister();
// Do not save RA to the SCS if it's not saved to the regular stack,
// i.e. RA is not at risk of being overwritten.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
Register SCSPReg = RISCVABI::getSCSPReg();
auto &Ctx = MF.getFunction().getContext();
if (!STI.isRegisterReservedByUser(SCSPReg)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "x18 not reserved by user for Shadow Call Stack."});
return;
}
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useSaveRestoreLibCalls(MF)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Shadow Call Stack cannot be combined with Save/Restore LibCalls."});
return;
}
const RISCVInstrInfo *TII = STI.getInstrInfo();
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
int64_t SlotSize = STI.getXLen() / 8;
// Store return address to shadow call stack
// s[w|d] ra, 0(s2)
// addi s2, s2, [4|8]
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RAReg)
.addReg(SCSPReg)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
}
static void emitSCSEpilogue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
if (!MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
Register RAReg = STI.getRegisterInfo()->getRARegister();
// See emitSCSPrologue() above.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
Register SCSPReg = RISCVABI::getSCSPReg();
auto &Ctx = MF.getFunction().getContext();
if (!STI.isRegisterReservedByUser(SCSPReg)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "x18 not reserved by user for Shadow Call Stack."});
return;
}
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useSaveRestoreLibCalls(MF)) {
Ctx.diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"Shadow Call Stack cannot be combined with Save/Restore LibCalls."});
return;
}
const RISCVInstrInfo *TII = STI.getInstrInfo();
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
int64_t SlotSize = STI.getXLen() / 8;
// Load return address from shadow call stack
// l[w|d] ra, -[4|8](s2)
// addi s2, s2, -[4|8]
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::LD : RISCV::LW))
.addReg(RAReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
}
// Get the ID of the libcall used for spilling and restoring callee saved
// registers. The ID is representative of the number of registers saved or
// restored by the libcall, except it is zero-indexed - ID 0 corresponds to a
// single register.
static int getLibCallID(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF))
return -1;
Register MaxReg = RISCV::NoRegister;
for (auto &CS : CSI)
// RISCVRegisterInfo::hasReservedSpillSlot assigns negative frame indexes to
// registers which can be saved by libcall.
if (CS.getFrameIdx() < 0)
MaxReg = std::max(MaxReg.id(), CS.getReg().id());
if (MaxReg == RISCV::NoRegister)
return -1;
switch (MaxReg) {
default:
llvm_unreachable("Something has gone wrong!");
case /*s11*/ RISCV::X27: return 12;
case /*s10*/ RISCV::X26: return 11;
case /*s9*/ RISCV::X25: return 10;
case /*s8*/ RISCV::X24: return 9;
case /*s7*/ RISCV::X23: return 8;
case /*s6*/ RISCV::X22: return 7;
case /*s5*/ RISCV::X21: return 6;
case /*s4*/ RISCV::X20: return 5;
case /*s3*/ RISCV::X19: return 4;
case /*s2*/ RISCV::X18: return 3;
case /*s1*/ RISCV::X9: return 2;
case /*s0*/ RISCV::X8: return 1;
case /*ra*/ RISCV::X1: return 0;
}
}
// Get the name of the libcall used for spilling callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getSpillLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const SpillLibCalls[] = {
"__riscv_save_0",
"__riscv_save_1",
"__riscv_save_2",
"__riscv_save_3",
"__riscv_save_4",
"__riscv_save_5",
"__riscv_save_6",
"__riscv_save_7",
"__riscv_save_8",
"__riscv_save_9",
"__riscv_save_10",
"__riscv_save_11",
"__riscv_save_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return SpillLibCalls[LibCallID];
}
// Get the name of the libcall used for restoring callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getRestoreLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const RestoreLibCalls[] = {
"__riscv_restore_0",
"__riscv_restore_1",
"__riscv_restore_2",
"__riscv_restore_3",
"__riscv_restore_4",
"__riscv_restore_5",
"__riscv_restore_6",
"__riscv_restore_7",
"__riscv_restore_8",
"__riscv_restore_9",
"__riscv_restore_10",
"__riscv_restore_11",
"__riscv_restore_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return RestoreLibCalls[LibCallID];
}
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if frame pointer elimination is
// disabled, if it needs dynamic stack realignment, if the function has
// variable sized allocas, or if the frame address is taken.
bool RISCVFrameLowering::hasFP(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken();
}
bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
// If we do not reserve stack space for outgoing arguments in prologue,
// we will adjust the stack pointer before call instruction. After the
// adjustment, we can not use SP to access the stack objects for the
// arguments. Instead, use BP to access these stack objects.
return (MFI.hasVarSizedObjects() ||
(!hasReservedCallFrame(MF) && (!MFI.isMaxCallFrameSizeComputed() ||
MFI.getMaxCallFrameSize() != 0))) &&
TRI->hasStackRealignment(MF);
}
// Determines the size of the frame and maximum call frame size.
void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Get the number of bytes to allocate from the FrameInfo.
uint64_t FrameSize = MFI.getStackSize();
// Get the alignment.
Align StackAlign = getStackAlign();
// Make sure the frame is aligned.
FrameSize = alignTo(FrameSize, StackAlign);
// Update frame info.
MFI.setStackSize(FrameSize);
// When using SP or BP to access stack objects, we may require extra padding
// to ensure the bottom of the RVV stack is correctly aligned within the main
// stack. We calculate this as the amount required to align the scalar local
// variable section up to the RVV alignment.
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
if (RVFI->getRVVStackSize() && (!hasFP(MF) || TRI->hasStackRealignment(MF))) {
int ScalarLocalVarSize = FrameSize - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize();
if (auto RVVPadding =
offsetToAlignment(ScalarLocalVarSize, RVFI->getRVVStackAlign()))
RVFI->setRVVPadding(RVVPadding);
}
}
// Returns the stack size including RVV padding (when required), rounded back
// up to the required stack alignment.
uint64_t RISCVFrameLowering::getStackSizeWithRVVPadding(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
return alignTo(MFI.getStackSize() + RVFI->getRVVPadding(), getStackAlign());
}
// Returns the register used to hold the frame pointer.
static Register getFPReg(const RISCVSubtarget &STI) { return RISCV::X8; }
// Returns the register used to hold the stack pointer.
static Register getSPReg(const RISCVSubtarget &STI) { return RISCV::X2; }
static SmallVector<CalleeSavedInfo, 8>
getNonLibcallCSI(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> NonLibcallCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::Default)
NonLibcallCSI.push_back(CS);
}
return NonLibcallCSI;
}
void RISCVFrameLowering::adjustStackForRVV(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, int64_t Amount,
MachineInstr::MIFlag Flag) const {
assert(Amount != 0 && "Did not need to adjust stack pointer for RVV.");
const Register SPReg = getSPReg(STI);
// Optimize compile time offset case
StackOffset Offset = StackOffset::getScalable(Amount);
if (STI.getRealMinVLen() == STI.getRealMaxVLen()) {
// 1. Multiply the number of v-slots by the (constant) length of register
const int64_t VLENB = STI.getRealMinVLen() / 8;
assert(Amount % 8 == 0 &&
"Reserve the stack by the multiple of one vector size.");
const int64_t NumOfVReg = Amount / 8;
const int64_t FixedOffset = NumOfVReg * VLENB;
if (!isInt<32>(FixedOffset)) {
report_fatal_error(
"Frame size outside of the signed 32-bit range not supported");
}
Offset = StackOffset::getFixed(FixedOffset);
}
const RISCVRegisterInfo &RI = *STI.getRegisterInfo();
// We must keep the stack pointer aligned through any intermediate
// updates.
RI.adjustReg(MBB, MBBI, DL, SPReg, SPReg, Offset,
Flag, getStackAlign());
}
static MCCFIInstruction createDefCFAExpression(const TargetRegisterInfo &TRI,
Register Reg,
uint64_t FixedOffset,
uint64_t ScalableOffset) {
assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV");
SmallString<64> Expr;
std::string CommentBuffer;
llvm::raw_string_ostream Comment(CommentBuffer);
// Build up the expression (Reg + FixedOffset + ScalableOffset * VLENB).
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
Expr.push_back(0);
if (Reg == RISCV::X2)
Comment << "sp";
else
Comment << printReg(Reg, &TRI);
uint8_t buffer[16];
if (FixedOffset) {
Expr.push_back(dwarf::DW_OP_consts);
Expr.append(buffer, buffer + encodeSLEB128(FixedOffset, buffer));
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << " + " << FixedOffset;
}
Expr.push_back((uint8_t)dwarf::DW_OP_consts);
Expr.append(buffer, buffer + encodeSLEB128(ScalableOffset, buffer));
unsigned DwarfVlenb = TRI.getDwarfRegNum(RISCV::VLENB, true);
Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
Expr.append(buffer, buffer + encodeULEB128(DwarfVlenb, buffer));
Expr.push_back(0);
Expr.push_back((uint8_t)dwarf::DW_OP_mul);
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << " + " << ScalableOffset << " * vlenb";
SmallString<64> DefCfaExpr;
DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
DefCfaExpr.append(buffer, buffer + encodeULEB128(Expr.size(), buffer));
DefCfaExpr.append(Expr.str());
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(),
Comment.str());
}
void RISCVFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
Register FPReg = getFPReg(STI);
Register SPReg = getSPReg(STI);
Register BPReg = RISCVABI::getBPReg();
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Emit prologue for shadow call stack.
emitSCSPrologue(MF, MBB, MBBI, DL);
// Since spillCalleeSavedRegisters may have inserted a libcall, skip past
// any instructions marked as FrameSetup
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
++MBBI;
// Determine the correct frame layout
determineFrameLayout(MF);
// If libcalls are used to spill and restore callee-saved registers, the frame
// has two sections; the opaque section managed by the libcalls, and the
// section managed by MachineFrameInfo which can also hold callee saved
// registers in fixed stack slots, both of which have negative frame indices.
// This gets even more complicated when incoming arguments are passed via the
// stack, as these too have negative frame indices. An example is detailed
// below:
//
// | incoming arg | <- FI[-3]
// | libcallspill |
// | calleespill | <- FI[-2]
// | calleespill | <- FI[-1]
// | this_frame | <- FI[0]
//
// For negative frame indices, the offset from the frame pointer will differ
// depending on which of these groups the frame index applies to.
// The following calculates the correct offset knowing the number of callee
// saved registers spilt by the two methods.
if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) {
// Calculate the size of the frame managed by the libcall. The libcalls are
// implemented such that the stack will always be 16 byte aligned.
unsigned LibCallFrameSize = alignTo((STI.getXLen() / 8) * LibCallRegs, 16);
RVFI->setLibCallStackSize(LibCallFrameSize);
}
// FIXME (note copied from Lanai): This appears to be overallocating. Needs
// investigation. Get the number of bytes to allocate from the FrameInfo.
uint64_t StackSize = getStackSizeWithRVVPadding(MF);
uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
// Early exit if there is no need to allocate on the stack
if (RealStackSize == 0 && !MFI.adjustsStack() && RVVStackSize == 0)
return;
// If the stack pointer has been marked as reserved, then produce an error if
// the frame requires stack allocation
if (STI.isRegisterReservedByUser(SPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Stack pointer required, but has been reserved."});
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
// Split the SP adjustment to reduce the offsets of callee saved spill.
if (FirstSPAdjustAmount) {
StackSize = FirstSPAdjustAmount;
RealStackSize = FirstSPAdjustAmount;
}
// Allocate space on the stack if necessary.
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-StackSize),
MachineInstr::FrameSetup, getStackAlign());
// Emit ".cfi_def_cfa_offset RealStackSize"
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, RealStackSize));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
const auto &CSI = MFI.getCalleeSavedInfo();
// The frame pointer is callee-saved, and code has been generated for us to
// save it to the stack. We need to skip over the storing of callee-saved
// registers as the frame pointer must be modified after it has been saved
// to the stack, not before.
// FIXME: assumes exactly one instruction is used to save each callee-saved
// register.
std::advance(MBBI, getNonLibcallCSI(MF, CSI).size());
// Iterate over list of callee-saved registers and emit .cfi_offset
// directives.
for (const auto &Entry : CSI) {
int FrameIdx = Entry.getFrameIdx();
int64_t Offset;
// Offsets for objects with fixed locations (IE: those saved by libcall) are
// simply calculated from the frame index.
if (FrameIdx < 0)
Offset = FrameIdx * (int64_t) STI.getXLen() / 8;
else
Offset = MFI.getObjectOffset(Entry.getFrameIdx()) -
RVFI->getLibCallStackSize();
Register Reg = Entry.getReg();
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, RI->getDwarfRegNum(Reg, true), Offset));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
// Generate new FP.
if (hasFP(MF)) {
if (STI.isRegisterReservedByUser(FPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Frame pointer required, but has been reserved."});
// The frame pointer does need to be reserved from register allocation.
assert(MF.getRegInfo().isReserved(FPReg) && "FP not reserved");
RI->adjustReg(MBB, MBBI, DL, FPReg, SPReg,
StackOffset::getFixed(RealStackSize - RVFI->getVarArgsSaveSize()),
MachineInstr::FrameSetup, getStackAlign());
// Emit ".cfi_def_cfa $fp, RVFI->getVarArgsSaveSize()"
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
nullptr, RI->getDwarfRegNum(FPReg, true), RVFI->getVarArgsSaveSize()));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
// Emit the second SP adjustment after saving callee saved registers.
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount =
getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getFixed(-SecondSPAdjustAmount),
MachineInstr::FrameSetup, getStackAlign());
// If we are using a frame-pointer, and thus emitted ".cfi_def_cfa fp, 0",
// don't emit an sp-based .cfi_def_cfa_offset
if (!hasFP(MF)) {
// Emit ".cfi_def_cfa_offset StackSize"
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(
nullptr, getStackSizeWithRVVPadding(MF)));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
}
if (RVVStackSize) {
adjustStackForRVV(MF, MBB, MBBI, DL, -RVVStackSize,
MachineInstr::FrameSetup);
if (!hasFP(MF)) {
// Emit .cfi_def_cfa_expression "sp + StackSize + RVVStackSize * vlenb".
unsigned CFIIndex = MF.addFrameInst(createDefCFAExpression(
*RI, SPReg, getStackSizeWithRVVPadding(MF), RVVStackSize / 8));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlag(MachineInstr::FrameSetup);
}
}
if (hasFP(MF)) {
// Realign Stack
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
if (RI->hasStackRealignment(MF)) {
Align MaxAlignment = MFI.getMaxAlign();
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (isInt<12>(-(int)MaxAlignment.value())) {
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg)
.addReg(SPReg)
.addImm(-(int)MaxAlignment.value())
.setMIFlag(MachineInstr::FrameSetup);
} else {
unsigned ShiftAmount = Log2(MaxAlignment);
Register VR =
MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR)
.addReg(SPReg)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg)
.addReg(VR)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
}
// FP will be used to restore the frame in the epilogue, so we need
// another base register BP to record SP after re-alignment. SP will
// track the current stack after allocating variable sized objects.
if (hasBP(MF)) {
// move BP, SP
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg)
.addReg(SPReg)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
}
void RISCVFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
Register FPReg = getFPReg(STI);
Register SPReg = getSPReg(STI);
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Get the insert location for the epilogue. If there were no terminators in
// the block, get the last instruction.
MachineBasicBlock::iterator MBBI = MBB.end();
DebugLoc DL;
if (!MBB.empty()) {
MBBI = MBB.getLastNonDebugInstr();
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
MBBI = MBB.getFirstTerminator();
// If callee-saved registers are saved via libcall, place stack adjustment
// before this call.
while (MBBI != MBB.begin() &&
std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy))
--MBBI;
}
const auto &CSI = getNonLibcallCSI(MF, MFI.getCalleeSavedInfo());
// Skip to before the restores of callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
auto LastFrameDestroy = MBBI;
if (!CSI.empty())
LastFrameDestroy = std::prev(MBBI, CSI.size());
uint64_t StackSize = getStackSizeWithRVVPadding(MF);
uint64_t RealStackSize = StackSize + RVFI->getLibCallStackSize();
uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
// Restore the stack pointer using the value of the frame pointer. Only
// necessary if the stack pointer was modified, meaning the stack size is
// unknown.
//
// In order to make sure the stack point is right through the EH region,
// we also need to restore stack pointer from the frame pointer if we
// don't preserve stack space within prologue/epilogue for outgoing variables,
// normally it's just checking the variable sized object is present or not
// is enough, but we also don't preserve that at prologue/epilogue when
// have vector objects in stack.
if (RI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
!hasReservedCallFrame(MF)) {
assert(hasFP(MF) && "frame pointer should not have been eliminated");
RI->adjustReg(MBB, LastFrameDestroy, DL, SPReg, FPReg,
StackOffset::getFixed(-FPOffset),
MachineInstr::FrameDestroy, getStackAlign());
} else {
if (RVVStackSize)
adjustStackForRVV(MF, MBB, LastFrameDestroy, DL, RVVStackSize,
MachineInstr::FrameDestroy);
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount =
getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
RI->adjustReg(MBB, LastFrameDestroy, DL, SPReg, SPReg,
StackOffset::getFixed(SecondSPAdjustAmount),
MachineInstr::FrameDestroy, getStackAlign());
}
if (FirstSPAdjustAmount)
StackSize = FirstSPAdjustAmount;
// Deallocate stack
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(StackSize),
MachineInstr::FrameDestroy, getStackAlign());
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
}
StackOffset
RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Callee-saved registers should be referenced relative to the stack
// pointer (positive offset), otherwise use the frame pointer (negative
// offset).
const auto &CSI = getNonLibcallCSI(MF, MFI.getCalleeSavedInfo());
int MinCSFI = 0;
int MaxCSFI = -1;
StackOffset Offset;
auto StackID = MFI.getStackID(FI);
assert((StackID == TargetStackID::Default ||
StackID == TargetStackID::ScalableVector) &&
"Unexpected stack ID for the frame object.");
if (StackID == TargetStackID::Default) {
Offset =
StackOffset::getFixed(MFI.getObjectOffset(FI) - getOffsetOfLocalArea() +
MFI.getOffsetAdjustment());
} else if (StackID == TargetStackID::ScalableVector) {
Offset = StackOffset::getScalable(MFI.getObjectOffset(FI));
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (CSI.size()) {
MinCSFI = CSI[0].getFrameIdx();
MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
}
if (FI >= MinCSFI && FI <= MaxCSFI) {
FrameReg = RISCV::X2;
if (FirstSPAdjustAmount)
Offset += StackOffset::getFixed(FirstSPAdjustAmount);
else
Offset += StackOffset::getFixed(getStackSizeWithRVVPadding(MF));
return Offset;
}
if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) {
// If the stack was realigned, the frame pointer is set in order to allow
// SP to be restored, so we need another base register to record the stack
// after realignment.
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | realignment (the size of | | |
// | this area is not counted | | |
// | in MFI.getStackSize()) | | |
// |--------------------------| -- |-- MFI.getStackSize()
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize() or in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
if (hasBP(MF)) {
FrameReg = RISCVABI::getBPReg();
} else {
// VarSize objects must be empty in this case!
assert(!MFI.hasVarSizedObjects());
FrameReg = RISCV::X2;
}
} else {
FrameReg = RI->getFrameRegister(MF);
}
if (FrameReg == getFPReg(STI)) {
Offset += StackOffset::getFixed(RVFI->getVarArgsSaveSize());
if (FI >= 0)
Offset -= StackOffset::getFixed(RVFI->getLibCallStackSize());
// When using FP to access scalable vector objects, we need to minus
// the frame size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | |
// | area for register varargs| |
// |--------------------------| |
// | callee-saved registers | |
// |--------------------------| | MFI.getStackSize()
// | scalar local variables | |
// |--------------------------| -- (Offset of RVV objects is from here.)
// | RVV objects |
// |--------------------------|
// | VarSize objects |
// |--------------------------| <-- SP
if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
// We don't expect any extra RVV alignment padding, as the stack size
// and RVV object sections should be correct aligned in their own
// right.
assert(MFI.getStackSize() == getStackSizeWithRVVPadding(MF) &&
"Inconsistent stack layout");
Offset -= StackOffset::getFixed(MFI.getStackSize());
}
return Offset;
}
// This case handles indexing off both SP and BP.
// If indexing off SP, there must not be any var sized objects
assert(FrameReg == RISCVABI::getBPReg() || !MFI.hasVarSizedObjects());
// When using SP to access frame objects, we need to add RVV stack size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |-- MFI.getStackSize()
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
//
// The total amount of padding surrounding RVV objects is described by
// RVV->getRVVPadding() and it can be zero. It allows us to align the RVV
// objects to the required alignment.
if (MFI.getStackID(FI) == TargetStackID::Default) {
if (MFI.isFixedObjectIndex(FI)) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
Offset += StackOffset::get(getStackSizeWithRVVPadding(MF) +
RVFI->getLibCallStackSize(),
RVFI->getRVVStackSize());
} else {
Offset += StackOffset::getFixed(MFI.getStackSize());
}
} else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
// Ensure the base of the RVV stack is correctly aligned: add on the
// alignment padding.
int ScalarLocalVarSize =
MFI.getStackSize() - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding();
Offset += StackOffset::get(ScalarLocalVarSize, RVFI->getRVVStackSize());
}
return Offset;
}
void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Unconditionally spill RA and FP only if the function uses a frame
// pointer.
if (hasFP(MF)) {
SavedRegs.set(RISCV::X1);
SavedRegs.set(RISCV::X8);
}
// Mark BP as used if function has dedicated base pointer.
if (hasBP(MF))
SavedRegs.set(RISCVABI::getBPReg());
// If interrupt is enabled and there are calls in the handler,
// unconditionally save all Caller-saved registers and
// all FP registers, regardless whether they are used.
MachineFrameInfo &MFI = MF.getFrameInfo();
if (MF.getFunction().hasFnAttribute("interrupt") && MFI.hasCalls()) {
static const MCPhysReg CSRegs[] = { RISCV::X1, /* ra */
RISCV::X5, RISCV::X6, RISCV::X7, /* t0-t2 */
RISCV::X10, RISCV::X11, /* a0-a1, a2-a7 */
RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17,
RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31, 0 /* t3-t6 */
};
for (unsigned i = 0; CSRegs[i]; ++i)
SavedRegs.set(CSRegs[i]);
if (MF.getSubtarget<RISCVSubtarget>().hasStdExtF()) {
// If interrupt is enabled, this list contains all FP registers.
const MCPhysReg * Regs = MF.getRegInfo().getCalleeSavedRegs();
for (unsigned i = 0; Regs[i]; ++i)
if (RISCV::FPR16RegClass.contains(Regs[i]) ||
RISCV::FPR32RegClass.contains(Regs[i]) ||
RISCV::FPR64RegClass.contains(Regs[i]))
SavedRegs.set(Regs[i]);
}
}
}
std::pair<int64_t, Align>
RISCVFrameLowering::assignRVVStackObjectOffsets(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Create a buffer of RVV objects to allocate.
SmallVector<int, 8> ObjectsToAllocate;
for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
unsigned StackID = MFI.getStackID(I);
if (StackID != TargetStackID::ScalableVector)
continue;
if (MFI.isDeadObjectIndex(I))
continue;
ObjectsToAllocate.push_back(I);
}
// The minimum alignment is 16 bytes.
Align RVVStackAlign(16);
const auto &ST = MF.getSubtarget<RISCVSubtarget>();
if (!ST.hasVInstructions()) {
assert(ObjectsToAllocate.empty() &&
"Can't allocate scalable-vector objects without V instructions");
return std::make_pair(0, RVVStackAlign);
}
// Allocate all RVV locals and spills
int64_t Offset = 0;
for (int FI : ObjectsToAllocate) {
// ObjectSize in bytes.
int64_t ObjectSize = MFI.getObjectSize(FI);
auto ObjectAlign = std::max(Align(8), MFI.getObjectAlign(FI));
// If the data type is the fractional vector type, reserve one vector
// register for it.
if (ObjectSize < 8)
ObjectSize = 8;
Offset = alignTo(Offset + ObjectSize, ObjectAlign);
MFI.setObjectOffset(FI, -Offset);
// Update the maximum alignment of the RVV stack section
RVVStackAlign = std::max(RVVStackAlign, ObjectAlign);
}
// Ensure the alignment of the RVV stack. Since we want the most-aligned
// object right at the bottom (i.e., any padding at the top of the frame),
// readjust all RVV objects down by the alignment padding.
uint64_t StackSize = Offset;
if (auto AlignmentPadding = offsetToAlignment(StackSize, RVVStackAlign)) {
StackSize += AlignmentPadding;
for (int FI : ObjectsToAllocate)
MFI.setObjectOffset(FI, MFI.getObjectOffset(FI) - AlignmentPadding);
}
return std::make_pair(StackSize, RVVStackAlign);
}
static unsigned getScavSlotsNumForRVV(MachineFunction &MF) {
// For RVV spill, scalable stack offsets computing requires up to two scratch
// registers
static constexpr unsigned ScavSlotsNumRVVSpillScalableObject = 2;
// For RVV spill, non-scalable stack offsets computing requires up to one
// scratch register.
static constexpr unsigned ScavSlotsNumRVVSpillNonScalableObject = 1;
// ADDI instruction's destination register can be used for computing
// offsets. So Scalable stack offsets require up to one scratch register.
static constexpr unsigned ScavSlotsADDIScalableObject = 1;
static constexpr unsigned MaxScavSlotsNumKnown =
std::max({ScavSlotsADDIScalableObject, ScavSlotsNumRVVSpillScalableObject,
ScavSlotsNumRVVSpillNonScalableObject});
unsigned MaxScavSlotsNum = 0;
if (!MF.getSubtarget<RISCVSubtarget>().hasVInstructions())
return false;
for (const MachineBasicBlock &MBB : MF)
for (const MachineInstr &MI : MBB) {
bool IsRVVSpill = RISCV::isRVVSpill(MI);
for (auto &MO : MI.operands()) {
if (!MO.isFI())
continue;
bool IsScalableVectorID = MF.getFrameInfo().getStackID(MO.getIndex()) ==
TargetStackID::ScalableVector;
if (IsRVVSpill) {
MaxScavSlotsNum = std::max(
MaxScavSlotsNum, IsScalableVectorID
? ScavSlotsNumRVVSpillScalableObject
: ScavSlotsNumRVVSpillNonScalableObject);
} else if (MI.getOpcode() == RISCV::ADDI && IsScalableVectorID) {
MaxScavSlotsNum =
std::max(MaxScavSlotsNum, ScavSlotsADDIScalableObject);
}
}
if (MaxScavSlotsNum == MaxScavSlotsNumKnown)
return MaxScavSlotsNumKnown;
}
return MaxScavSlotsNum;
}
static bool hasRVVFrameObject(const MachineFunction &MF) {
// Originally, the function will scan all the stack objects to check whether
// if there is any scalable vector object on the stack or not. However, it
// causes errors in the register allocator. In issue 53016, it returns false
// before RA because there is no RVV stack objects. After RA, it returns true
// because there are spilling slots for RVV values during RA. It will not
// reserve BP during register allocation and generate BP access in the PEI
// pass due to the inconsistent behavior of the function.
//
// The function is changed to use hasVInstructions() as the return value. It
// is not precise, but it can make the register allocation correct.
//
// FIXME: Find a better way to make the decision or revisit the solution in
// D103622.
//
// Refer to https://github.com/llvm/llvm-project/issues/53016.
return MF.getSubtarget<RISCVSubtarget>().hasVInstructions();
}
static unsigned estimateFunctionSizeInBytes(const MachineFunction &MF,
const RISCVInstrInfo &TII) {
unsigned FnSize = 0;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
// Far branches over 20-bit offset will be relaxed in branch relaxation
// pass. In the worst case, conditional branches will be relaxed into
// the following instruction sequence. Unconditional branches are
// relaxed in the same way, with the exception that there is no first
// branch instruction.
//
// foo
// bne t5, t6, .rev_cond # `TII->getInstSizeInBytes(MI)` bytes
// sd s11, 0(sp) # 4 bytes, or 2 bytes in RVC
// jump .restore, s11 # 8 bytes
// .rev_cond
// bar
// j .dest_bb # 4 bytes, or 2 bytes in RVC
// .restore:
// ld s11, 0(sp) # 4 bytes, or 2 bytes in RVC
// .dest:
// baz
if (MI.isConditionalBranch())
FnSize += TII.getInstSizeInBytes(MI);
if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
if (MF.getSubtarget<RISCVSubtarget>().hasStdExtC())
FnSize += 2 + 8 + 2 + 2;
else
FnSize += 4 + 8 + 4 + 4;
continue;
}
FnSize += TII.getInstSizeInBytes(MI);
}
}
return FnSize;
}
void RISCVFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
const RISCVRegisterInfo *RegInfo =
MF.getSubtarget<RISCVSubtarget>().getRegisterInfo();
const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
int64_t RVVStackSize;
Align RVVStackAlign;
std::tie(RVVStackSize, RVVStackAlign) = assignRVVStackObjectOffsets(MF);
RVFI->setRVVStackSize(RVVStackSize);
RVFI->setRVVStackAlign(RVVStackAlign);
if (hasRVVFrameObject(MF)) {
// Ensure the entire stack is aligned to at least the RVV requirement: some
// scalable-vector object alignments are not considered by the
// target-independent code.
MFI.ensureMaxAlignment(RVVStackAlign);
}
unsigned ScavSlotsNum = 0;
// estimateStackSize has been observed to under-estimate the final stack
// size, so give ourselves wiggle-room by checking for stack size
// representable an 11-bit signed field rather than 12-bits.
if (!isInt<11>(MFI.estimateStackSize(MF)))
ScavSlotsNum = 1;
// Far branches over 20-bit offset require a spill slot for scratch register.
bool IsLargeFunction = !isInt<20>(estimateFunctionSizeInBytes(MF, *TII));
if (IsLargeFunction)
ScavSlotsNum = std::max(ScavSlotsNum, 1u);
// RVV loads & stores have no capacity to hold the immediate address offsets
// so we must always reserve an emergency spill slot if the MachineFunction
// contains any RVV spills.
ScavSlotsNum = std::max(ScavSlotsNum, getScavSlotsNumForRVV(MF));
for (unsigned I = 0; I < ScavSlotsNum; I++) {
int FI = MFI.CreateStackObject(RegInfo->getSpillSize(*RC),
RegInfo->getSpillAlign(*RC), false);
RS->addScavengingFrameIndex(FI);
if (IsLargeFunction && RVFI->getBranchRelaxationScratchFrameIndex() == -1)
RVFI->setBranchRelaxationScratchFrameIndex(FI);
}
if (MFI.getCalleeSavedInfo().empty() || RVFI->useSaveRestoreLibCalls(MF)) {
RVFI->setCalleeSavedStackSize(0);
return;
}
unsigned Size = 0;
for (const auto &Info : MFI.getCalleeSavedInfo()) {
int FrameIdx = Info.getFrameIdx();
if (MFI.getStackID(FrameIdx) != TargetStackID::Default)
continue;
Size += MFI.getObjectSize(FrameIdx);
}
RVFI->setCalleeSavedStackSize(Size);
}
// Not preserve stack space within prologue for outgoing variables when the
// function contains variable size objects or there are vector objects accessed
// by the frame pointer.
// Let eliminateCallFramePseudoInstr preserve stack space for it.
bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo().hasVarSizedObjects() &&
!(hasFP(MF) && hasRVVFrameObject(MF));
}
// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions.
MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
Register SPReg = RISCV::X2;
DebugLoc DL = MI->getDebugLoc();
if (!hasReservedCallFrame(MF)) {
// If space has not been reserved for a call frame, ADJCALLSTACKDOWN and
// ADJCALLSTACKUP must be converted to instructions manipulating the stack
// pointer. This is necessary when there is a variable length stack
// allocation (e.g. alloca), which means it's not possible to allocate
// space for outgoing arguments from within the function prologue.
int64_t Amount = MI->getOperand(0).getImm();
if (Amount != 0) {
// Ensure the stack remains aligned after adjustment.
Amount = alignSPAdjust(Amount);
if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN)
Amount = -Amount;
const RISCVRegisterInfo &RI = *STI.getRegisterInfo();
RI.adjustReg(MBB, MI, DL, SPReg, SPReg, StackOffset::getFixed(Amount),
MachineInstr::NoFlags, getStackAlign());
}
}
return MBB.erase(MI);
}
// We would like to split the SP adjustment to reduce prologue/epilogue
// as following instructions. In this way, the offset of the callee saved
// register could fit in a single store.
// add sp,sp,-2032
// sw ra,2028(sp)
// sw s0,2024(sp)
// sw s1,2020(sp)
// sw s3,2012(sp)
// sw s4,2008(sp)
// add sp,sp,-64
uint64_t
RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
uint64_t StackSize = getStackSizeWithRVVPadding(MF);
// Disable SplitSPAdjust if save-restore libcall is used. The callee-saved
// registers will be pushed by the save-restore libcalls, so we don't have to
// split the SP adjustment in this case.
if (RVFI->getLibCallStackSize())
return 0;
// Return the FirstSPAdjustAmount if the StackSize can not fit in a signed
// 12-bit and there exists a callee-saved register needing to be pushed.
if (!isInt<12>(StackSize) && (CSI.size() > 0)) {
// FirstSPAdjustAmount is chosen as (2048 - StackAlign) because 2048 will
// cause sp = sp + 2048 in the epilogue to be split into multiple
// instructions. Offsets smaller than 2048 can fit in a single load/store
// instruction, and we have to stick with the stack alignment. 2048 has
// 16-byte alignment. The stack alignment for RV32 and RV64 is 16 and for
// RV32E it is 4. So (2048 - StackAlign) will satisfy the stack alignment.
return 2048 - getStackAlign().value();
}
return 0;
}
bool RISCVFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
const char *SpillLibCall = getSpillLibCallName(*MF, CSI);
if (SpillLibCall) {
// Add spill libcall via non-callee-saved register t0.
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5)
.addExternalSymbol(SpillLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameSetup);
// Add registers spilled in libcall as liveins.
for (auto &CS : CSI)
MBB.addLiveIn(CS.getReg());
}
// Manually spill values not spilled by libcall.
const auto &NonLibcallCSI = getNonLibcallCSI(*MF, CSI);
for (auto &CS : NonLibcallCSI) {
// Insert the spill to the stack frame.
Register Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(MBB, MI, Reg, !MBB.isLiveIn(Reg), CS.getFrameIdx(),
RC, TRI, Register());
}
return true;
}
bool RISCVFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
// Manually restore values not restored by libcall.
// Keep the same order as in the prologue. There is no need to reverse the
// order in the epilogue. In addition, the return address will be restored
// first in the epilogue. It increases the opportunity to avoid the
// load-to-use data hazard between loading RA and return by RA.
// loadRegFromStackSlot can insert multiple instructions.
const auto &NonLibcallCSI = getNonLibcallCSI(*MF, CSI);
for (auto &CS : NonLibcallCSI) {
Register Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI,
Register());
assert(MI != MBB.begin() && "loadRegFromStackSlot didn't insert any code!");
}
const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI);
if (RestoreLibCall) {
// Add restore libcall via tail call.
MachineBasicBlock::iterator NewMI =
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL))
.addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameDestroy);
// Remove trailing returns, since the terminator is now a tail call to the
// restore function.
if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) {
NewMI->copyImplicitOps(*MF, *MI);
MI->eraseFromParent();
}
}
return true;
}
bool RISCVFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// Keep the conventional code flow when not optimizing.
if (MF.getFunction().hasOptNone())
return false;
return true;
}
bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const MachineFunction *MF = MBB.getParent();
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Inserting a call to a __riscv_save libcall requires the use of the register
// t0 (X5) to hold the return address. Therefore if this register is already
// used we can't insert the call.
RegScavenger RS;
RS.enterBasicBlock(*TmpMBB);
return !RS.isRegUsed(RISCV::X5);
}
bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
const MachineFunction *MF = MBB.getParent();
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Using the __riscv_restore libcalls to restore CSRs requires a tail call.
// This means if we still need to continue executing code within this function
// the restore cannot take place in this basic block.
if (MBB.succ_size() > 1)
return false;
MachineBasicBlock *SuccMBB =
MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin();
// Doing a tail call should be safe if there are no successors, because either
// we have a returning block or the end of the block is unreachable, so the
// restore will be eliminated regardless.
if (!SuccMBB)
return true;
// The successor can only contain a return, since we would effectively be
// replacing the successor with our own tail return at the end of our block.
return SuccMBB->isReturnBlock() && SuccMBB->size() == 1;
}
bool RISCVFrameLowering::isSupportedStackID(TargetStackID::Value ID) const {
switch (ID) {
case TargetStackID::Default:
case TargetStackID::ScalableVector:
return true;
case TargetStackID::NoAlloc:
case TargetStackID::SGPRSpill:
case TargetStackID::WasmLocal:
return false;
}
llvm_unreachable("Invalid TargetStackID::Value");
}
TargetStackID::Value RISCVFrameLowering::getStackIDForScalableVectors() const {
return TargetStackID::ScalableVector;
}
|