aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/PowerPC/PPCISelLowering.h
blob: b80479427c2e4058d99a4bf24a520d756043a8f6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H

#include "PPCInstrInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/MachineValueType.h"
#include <optional>
#include <utility>

namespace llvm {

  namespace PPCISD {

    // When adding a NEW PPCISD node please add it to the correct position in
    // the enum. The order of elements in this enum matters!
    // Values that are added after this entry:
    //     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
    // are considered memory opcodes and are treated differently than entries
    // that come before it. For example, ADD or MUL should be placed before
    // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
    // after it.
  enum NodeType : unsigned {
    // Start the numbering where the builtin ops and target ops leave off.
    FIRST_NUMBER = ISD::BUILTIN_OP_END,

    /// FSEL - Traditional three-operand fsel node.
    ///
    FSEL,

    /// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
    XSMAXC,
    XSMINC,

    /// FCFID - The FCFID instruction, taking an f64 operand and producing
    /// and f64 value containing the FP representation of the integer that
    /// was temporarily in the f64 operand.
    FCFID,

    /// Newer FCFID[US] integer-to-floating-point conversion instructions for
    /// unsigned integers and single-precision outputs.
    FCFIDU,
    FCFIDS,
    FCFIDUS,

    /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
    /// operand, producing an f64 value containing the integer representation
    /// of that FP value.
    FCTIDZ,
    FCTIWZ,

    /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
    /// unsigned integers with round toward zero.
    FCTIDUZ,
    FCTIWUZ,

    /// Floating-point-to-integer conversion instructions
    FP_TO_UINT_IN_VSR,
    FP_TO_SINT_IN_VSR,

    /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
    /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
    VEXTS,

    /// Reciprocal estimate instructions (unary FP ops).
    FRE,
    FRSQRTE,

    /// Test instruction for software square root.
    FTSQRT,

    /// Square root instruction.
    FSQRT,

    /// VPERM - The PPC VPERM Instruction.
    ///
    VPERM,

    /// XXSPLT - The PPC VSX splat instructions
    ///
    XXSPLT,

    /// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
    /// converting immediate single precision numbers to double precision
    /// vector or scalar.
    XXSPLTI_SP_TO_DP,

    /// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
    ///
    XXSPLTI32DX,

    /// VECINSERT - The PPC vector insert instruction
    ///
    VECINSERT,

    /// VECSHL - The PPC vector shift left instruction
    ///
    VECSHL,

    /// XXPERMDI - The PPC XXPERMDI instruction
    ///
    XXPERMDI,
    XXPERM,

    /// The CMPB instruction (takes two operands of i32 or i64).
    CMPB,

    /// Hi/Lo - These represent the high and low 16-bit parts of a global
    /// address respectively.  These nodes have two operands, the first of
    /// which must be a TargetGlobalAddress, and the second of which must be a
    /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
    /// though these are usually folded into other nodes.
    Hi,
    Lo,

    /// The following two target-specific nodes are used for calls through
    /// function pointers in the 64-bit SVR4 ABI.

    /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
    /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
    /// compute an allocation on the stack.
    DYNALLOC,

    /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
    /// compute an offset from native SP to the address  of the most recent
    /// dynamic alloca.
    DYNAREAOFFSET,

    /// To avoid stack clash, allocation is performed by block and each block is
    /// probed.
    PROBED_ALLOCA,

    /// The result of the mflr at function entry, used for PIC code.
    GlobalBaseReg,

    /// These nodes represent PPC shifts.
    ///
    /// For scalar types, only the last `n + 1` bits of the shift amounts
    /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
    /// for exact behaviors.
    ///
    /// For vector types, only the last n bits are used. See vsld.
    SRL,
    SRA,
    SHL,

    /// FNMSUB - Negated multiply-subtract instruction.
    FNMSUB,

    /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
    /// word and shift left immediate.
    EXTSWSLI,

    /// The combination of sra[wd]i and addze used to implemented signed
    /// integer division by a power of 2. The first operand is the dividend,
    /// and the second is the constant shift amount (representing the
    /// divisor).
    SRA_ADDZE,

    /// CALL - A direct function call.
    /// CALL_NOP is a call with the special NOP which follows 64-bit
    /// CALL_NOTOC the caller does not use the TOC.
    /// SVR4 calls and 32-bit/64-bit AIX calls.
    CALL,
    CALL_NOP,
    CALL_NOTOC,

    /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    /// MTCTR instruction.
    MTCTR,

    /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    /// BCTRL instruction.
    BCTRL,

    /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
    /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
    /// and 64-bit AIX.
    BCTRL_LOAD_TOC,

    /// The variants that implicitly define rounding mode for calls with
    /// strictfp semantics.
    CALL_RM,
    CALL_NOP_RM,
    CALL_NOTOC_RM,
    BCTRL_RM,
    BCTRL_LOAD_TOC_RM,

    /// Return with a flag operand, matched by 'blr'
    RET_FLAG,

    /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
    /// This copies the bits corresponding to the specified CRREG into the
    /// resultant GPR.  Bits corresponding to other CR regs are undefined.
    MFOCRF,

    /// Direct move from a VSX register to a GPR
    MFVSR,

    /// Direct move from a GPR to a VSX register (algebraic)
    MTVSRA,

    /// Direct move from a GPR to a VSX register (zero)
    MTVSRZ,

    /// Direct move of 2 consecutive GPR to a VSX register.
    BUILD_FP128,

    /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
    /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
    /// unsupported for this target.
    /// Merge 2 GPRs to a single SPE register.
    BUILD_SPE64,

    /// Extract SPE register component, second argument is high or low.
    EXTRACT_SPE,

    /// Extract a subvector from signed integer vector and convert to FP.
    /// It is primarily used to convert a (widened) illegal integer vector
    /// type to a legal floating point vector type.
    /// For example v2i32 -> widened to v4i32 -> v2f64
    SINT_VEC_TO_FP,

    /// Extract a subvector from unsigned integer vector and convert to FP.
    /// As with SINT_VEC_TO_FP, used for converting illegal types.
    UINT_VEC_TO_FP,

    /// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
    /// place the value into the least significant element of the most
    /// significant doubleword in the vector. This is not element zero for
    /// anything smaller than a doubleword on either endianness. This node has
    /// the same semantics as SCALAR_TO_VECTOR except that the value remains in
    /// the aforementioned location in the vector register.
    SCALAR_TO_VECTOR_PERMUTED,

    // FIXME: Remove these once the ANDI glue bug is fixed:
    /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
    /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
    /// implement truncation of i32 or i64 to i1.
    ANDI_rec_1_EQ_BIT,
    ANDI_rec_1_GT_BIT,

    // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
    // target (returns (Lo, Hi)). It takes a chain operand.
    READ_TIME_BASE,

    // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
    EH_SJLJ_SETJMP,

    // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
    EH_SJLJ_LONGJMP,

    /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    /// instructions.  For lack of better number, we use the opcode number
    /// encoding for the OPC field to identify the compare.  For example, 838
    /// is VCMPGTSH.
    VCMP,

    /// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the
    /// altivec VCMP*_rec instructions.  For lack of better number, we use the
    /// opcode number encoding for the OPC field to identify the compare.  For
    /// example, 838 is VCMPGTSH.
    VCMP_rec,

    /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    /// condition register to branch on, OPC is the branch opcode to use (e.g.
    /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    /// an optional input flag argument.
    COND_BRANCH,

    /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
    /// loops.
    BDNZ,
    BDZ,

    /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
    /// towards zero.  Used only as part of the long double-to-int
    /// conversion sequence.
    FADDRTZ,

    /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
    MFFS,

    /// TC_RETURN - A tail call return.
    ///   operand #0 chain
    ///   operand #1 callee (register or absolute)
    ///   operand #2 stack adjustment
    ///   operand #3 optional in flag
    TC_RETURN,

    /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
    CR6SET,
    CR6UNSET,

    /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
    /// for non-position independent code on PPC32.
    PPC32_GOT,

    /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
    /// local dynamic TLS and position indendepent code on PPC32.
    PPC32_PICGOT,

    /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
    /// TLS model, produces an ADDIS8 instruction that adds the GOT
    /// base to sym\@got\@tprel\@ha.
    ADDIS_GOT_TPREL_HA,

    /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
    /// TLS model, produces a LD instruction with base register G8RReg
    /// and offset sym\@got\@tprel\@l.  This completes the addition that
    /// finds the offset of "sym" relative to the thread pointer.
    LD_GOT_TPREL_L,

    /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
    /// model, produces an ADD instruction that adds the contents of
    /// G8RReg to the thread pointer.  Symbol contains a relocation
    /// sym\@tls which is to be replaced by the thread pointer and
    /// identifies to the linker that the instruction is part of a
    /// TLS sequence.
    ADD_TLS,

    /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
    /// model, produces an ADDIS8 instruction that adds the GOT base
    /// register to sym\@got\@tlsgd\@ha.
    ADDIS_TLSGD_HA,

    /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
    /// model, produces an ADDI8 instruction that adds G8RReg to
    /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
    /// ADDIS_TLSGD_L_ADDR until after register assignment.
    ADDI_TLSGD_L,

    /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
    /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
    /// ADDIS_TLSGD_L_ADDR until after register assignment.
    GET_TLS_ADDR,

    /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
    /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
    /// register assignment.
    ADDI_TLSGD_L_ADDR,

    /// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
    /// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
    /// Op that combines two register copies of TOC entries
    /// (region handle into R3 and variable offset into R4) followed by a
    /// GET_TLS_ADDR node which will be expanded to a call to __get_tls_addr.
    /// This node is used in 64-bit mode as well (in which case the result is
    /// G8RC and inputs are X3/X4).
    TLSGD_AIX,

    /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
    /// model, produces an ADDIS8 instruction that adds the GOT base
    /// register to sym\@got\@tlsld\@ha.
    ADDIS_TLSLD_HA,

    /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
    /// model, produces an ADDI8 instruction that adds G8RReg to
    /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
    /// ADDIS_TLSLD_L_ADDR until after register assignment.
    ADDI_TLSLD_L,

    /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
    /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
    /// ADDIS_TLSLD_L_ADDR until after register assignment.
    GET_TLSLD_ADDR,

    /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
    /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
    /// following register assignment.
    ADDI_TLSLD_L_ADDR,

    /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
    /// model, produces an ADDIS8 instruction that adds X3 to
    /// sym\@dtprel\@ha.
    ADDIS_DTPREL_HA,

    /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
    /// model, produces an ADDI8 instruction that adds G8RReg to
    /// sym\@got\@dtprel\@l.
    ADDI_DTPREL_L,

    /// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS
    /// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel.
    PADDI_DTPREL,

    /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
    /// during instruction selection to optimize a BUILD_VECTOR into
    /// operations on splats.  This is necessary to avoid losing these
    /// optimizations due to constant folding.
    VADD_SPLAT,

    /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
    /// operand identifies the operating system entry point.
    SC,

    /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
    CLRBHRB,

    /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
    /// history rolling buffer entry.
    MFBHRBE,

    /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
    RFEBB,

    /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
    /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
    /// or stxvd2x instruction.  The chain is necessary because the
    /// sequence replaces a load and needs to provide the same number
    /// of outputs.
    XXSWAPD,

    /// An SDNode for swaps that are not associated with any loads/stores
    /// and thereby have no chain.
    SWAP_NO_CHAIN,

    /// An SDNode for Power9 vector absolute value difference.
    /// operand #0 vector
    /// operand #1 vector
    /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
    /// the most significant bit for signed i32
    ///
    /// Power9 VABSD* instructions are designed to support unsigned integer
    /// vectors (byte/halfword/word), if we want to make use of them for signed
    /// integer vectors, we have to flip their sign bits first. To flip sign bit
    /// for byte/halfword integer vector would become inefficient, but for word
    /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
    /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
    ///               => VABSDUW((XVNEGSP a), (XVNEGSP b))
    VABSD,

    /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
    /// lower (IDX=1) half of v4f32 to v2f64.
    FP_EXTEND_HALF,

    /// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
    /// either through an add like PADDI or through a PC Relative load like
    /// PLD.
    MAT_PCREL_ADDR,

    /// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for
    /// TLS global address when using dynamic access models. This can be done
    /// through an add like PADDI.
    TLS_DYNAMIC_MAT_PCREL_ADDR,

    /// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address
    /// when using local exec access models, and when prefixed instructions are
    /// available. This is used with ADD_TLS to produce an add like PADDI.
    TLS_LOCAL_EXEC_MAT_ADDR,

    /// ACC_BUILD = Build an accumulator register from 4 VSX registers.
    ACC_BUILD,

    /// PAIR_BUILD = Build a vector pair register from 2 VSX registers.
    PAIR_BUILD,

    /// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of
    /// an accumulator or pair register. This node is needed because
    /// EXTRACT_SUBVECTOR expects the input and output vectors to have the same
    /// element type.
    EXTRACT_VSX_REG,

    /// XXMFACC = This corresponds to the xxmfacc instruction.
    XXMFACC,

    // Constrained conversion from floating point to int
    STRICT_FCTIDZ = ISD::FIRST_TARGET_STRICTFP_OPCODE,
    STRICT_FCTIWZ,
    STRICT_FCTIDUZ,
    STRICT_FCTIWUZ,

    /// Constrained integer-to-floating-point conversion instructions.
    STRICT_FCFID,
    STRICT_FCFIDU,
    STRICT_FCFIDS,
    STRICT_FCFIDUS,

    /// Constrained floating point add in round-to-zero mode.
    STRICT_FADDRTZ,

    // NOTE: The nodes below may require PC-Rel specific patterns if the
    // address could be PC-Relative. When adding new nodes below, consider
    // whether or not the address can be PC-Relative and add the corresponding
    // PC-relative patterns and tests.

    /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    /// i32.
    STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,

    /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    /// or i32.
    LBRX,

    /// STFIWX - The STFIWX instruction.  The first operand is an input token
    /// chain, then an f64 value to store, then an address to store it to.
    STFIWX,

    /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
    /// load which sign-extends from a 32-bit integer value into the
    /// destination 64-bit register.
    LFIWAX,

    /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
    /// load which zero-extends from a 32-bit integer value into the
    /// destination 64-bit register.
    LFIWZX,

    /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
    /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
    /// This can be used for converting loaded integers to floating point.
    LXSIZX,

    /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
    /// chain, then an f64 value to store, then an address to store it to,
    /// followed by a byte-width for the store.
    STXSIX,

    /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
    /// Maps directly to an lxvd2x instruction that will be followed by
    /// an xxswapd.
    LXVD2X,

    /// LXVRZX - Load VSX Vector Rightmost and Zero Extend
    /// This node represents v1i128 BUILD_VECTOR of a zero extending load
    /// instruction from <byte, halfword, word, or doubleword> to i128.
    /// Allows utilization of the Load VSX Vector Rightmost Instructions.
    LXVRZX,

    /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
    /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
    /// the vector type to load vector in big-endian element order.
    LOAD_VEC_BE,

    /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
    /// v2f32 value into the lower half of a VSR register.
    LD_VSX_LH,

    /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
    /// instructions such as LXVDSX, LXVWSX.
    LD_SPLAT,

    /// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
    /// that zero-extends.
    ZEXT_LD_SPLAT,

    /// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
    /// that sign-extends.
    SEXT_LD_SPLAT,

    /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
    /// Maps directly to an stxvd2x instruction that will be preceded by
    /// an xxswapd.
    STXVD2X,

    /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
    /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
    /// the vector type to store vector in big-endian element order.
    STORE_VEC_BE,

    /// Store scalar integers from VSR.
    ST_VSR_SCAL_INT,

    /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
    /// except they ensure that the compare input is zero-extended for
    /// sub-word versions because the atomic loads zero-extend.
    ATOMIC_CMP_SWAP_8,
    ATOMIC_CMP_SWAP_16,

    /// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr
    /// The store conditional instruction ST[BHWD]ARX that produces a glue
    /// result to attach it to a conditional branch.
    STORE_COND,

    /// GPRC = TOC_ENTRY GA, TOC
    /// Loads the entry for GA from the TOC, where the TOC base is given by
    /// the last operand.
    TOC_ENTRY
  };

  } // end namespace PPCISD

  /// Define some predicates that are used for node matching.
  namespace PPC {

    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUHUM instruction.
    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                              SelectionDAG &DAG);

    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUWUM instruction.
    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                              SelectionDAG &DAG);

    /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUDUM instruction.
    bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
                              SelectionDAG &DAG);

    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                            unsigned ShuffleKind, SelectionDAG &DAG);

    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                            unsigned ShuffleKind, SelectionDAG &DAG);

    /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VMRGEW or VMRGOW instruction
    bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
                             unsigned ShuffleKind, SelectionDAG &DAG);
    /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXSLDWI instruction.
    bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                              bool &Swap, bool IsLE);

    /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRH instruction.
    bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);

    /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRW instruction.
    bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);

    /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRD instruction.
    bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);

    /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXBRQ instruction.
    bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);

    /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
    /// for a XXPERMDI instruction.
    bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                              bool &Swap, bool IsLE);

    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
    /// shift amount, otherwise return -1.
    int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
                            SelectionDAG &DAG);

    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a splat of a single element that is suitable for input to
    /// VSPLTB/VSPLTH/VSPLTW.
    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);

    /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
    /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
    /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
    /// vector into the other. This function will also set a couple of
    /// output parameters for how much the source vector needs to be shifted and
    /// what byte number needs to be specified for the instruction to put the
    /// element in the desired location of the target vector.
    bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
                         unsigned &InsertAtByte, bool &Swap, bool IsLE);

    /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
    /// appropriate for PPC mnemonics (which have a big endian bias - namely
    /// elements are counted from the left of the vector register).
    unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
                                        SelectionDAG &DAG);

    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    /// formed by using a vspltis[bhw] instruction of the specified element
    /// size, return the constant being splatted.  The ByteSize field indicates
    /// the number of bytes of each element [124] -> [bhw].
    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);

    // Flags for computing the optimal addressing mode for loads and stores.
    enum MemOpFlags {
      MOF_None = 0,

      // Extension mode for integer loads.
      MOF_SExt = 1,
      MOF_ZExt = 1 << 1,
      MOF_NoExt = 1 << 2,

      // Address computation flags.
      MOF_NotAddNorCst = 1 << 5,      // Not const. or sum of ptr and scalar.
      MOF_RPlusSImm16 = 1 << 6,       // Reg plus signed 16-bit constant.
      MOF_RPlusLo = 1 << 7,           // Reg plus signed 16-bit relocation
      MOF_RPlusSImm16Mult4 = 1 << 8,  // Reg plus 16-bit signed multiple of 4.
      MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16.
      MOF_RPlusSImm34 = 1 << 10,      // Reg plus 34-bit signed constant.
      MOF_RPlusR = 1 << 11,           // Sum of two variables.
      MOF_PCRel = 1 << 12,            // PC-Relative relocation.
      MOF_AddrIsSImm32 = 1 << 13,     // A simple 32-bit constant.

      // The in-memory type.
      MOF_SubWordInt = 1 << 15,
      MOF_WordInt = 1 << 16,
      MOF_DoubleWordInt = 1 << 17,
      MOF_ScalarFloat = 1 << 18, // Scalar single or double precision.
      MOF_Vector = 1 << 19,      // Vector types and quad precision scalars.
      MOF_Vector256 = 1 << 20,

      // Subtarget features.
      MOF_SubtargetBeforeP9 = 1 << 22,
      MOF_SubtargetP9 = 1 << 23,
      MOF_SubtargetP10 = 1 << 24,
      MOF_SubtargetSPE = 1 << 25
    };

    // The addressing modes for loads and stores.
    enum AddrMode {
      AM_None,
      AM_DForm,
      AM_DSForm,
      AM_DQForm,
      AM_PrefixDForm,
      AM_XForm,
      AM_PCRel
    };
  } // end namespace PPC

  class PPCTargetLowering : public TargetLowering {
    const PPCSubtarget &Subtarget;

  public:
    explicit PPCTargetLowering(const PPCTargetMachine &TM,
                               const PPCSubtarget &STI);

    /// getTargetNodeName() - This method returns the name of a target specific
    /// DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;

    bool isSelectSupported(SelectSupportKind Kind) const override {
      // PowerPC does not support scalar condition selects on vectors.
      return (Kind != SelectSupportKind::ScalarCondVectorVal);
    }

    /// getPreferredVectorAction - The code we generate when vector types are
    /// legalized by promoting the integer element type is often much worse
    /// than code we generate if we widen the type for applicable vector types.
    /// The issue with promoting is that the vector is scalaraized, individual
    /// elements promoted and then the vector is rebuilt. So say we load a pair
    /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
    /// loads, moves back into VSR's (or memory ops if we don't have moves) and
    /// then the VPERM for the shuffle. All in all a very slow sequence.
    TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
      const override {
      // Default handling for scalable and single-element vectors.
      if (VT.isScalableVector() || VT.getVectorNumElements() == 1)
        return TargetLoweringBase::getPreferredVectorAction(VT);

      // Split and promote vNi1 vectors so we don't produce v256i1/v512i1
      // types as those are only for MMA instructions.
      if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16)
        return TypeSplitVector;
      if (VT.getScalarSizeInBits() == 1)
        return TypePromoteInteger;

      // Widen vectors that have reasonably sized elements.
      if (VT.getScalarSizeInBits() % 8 == 0)
        return TypeWidenVector;
      return TargetLoweringBase::getPreferredVectorAction(VT);
    }

    bool useSoftFloat() const override;

    bool hasSPE() const;

    MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
      return MVT::i32;
    }

    bool isCheapToSpeculateCttz(Type *Ty) const override {
      return true;
    }

    bool isCheapToSpeculateCtlz(Type *Ty) const override {
      return true;
    }

    bool isCtlzFast() const override {
      return true;
    }

    bool isEqualityCmpFoldedWithSignedCmp() const override {
      return false;
    }

    bool hasAndNotCompare(SDValue) const override {
      return true;
    }

    bool preferIncOfAddToSubOfNot(EVT VT) const override;

    bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
      return VT.isScalarInteger();
    }

    SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
                                 bool OptForSize, NegatibleCost &Cost,
                                 unsigned Depth = 0) const override;

    /// getSetCCResultType - Return the ISD::SETCC ValueType
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;

    /// Return true if target always benefits from combining into FMA for a
    /// given value type. This must typically return false on targets where FMA
    /// takes more cycles to execute than FADD.
    bool enableAggressiveFMAFusion(EVT VT) const override;

    /// getPreIndexedAddressParts - returns true by value, base pointer and
    /// offset pointer and addressing mode by reference if the node's address
    /// can be legally represented as pre-indexed load / store address.
    bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                   SDValue &Offset,
                                   ISD::MemIndexedMode &AM,
                                   SelectionDAG &DAG) const override;

    /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
    /// it can be more efficiently represented as [r+imm].
    bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
                                SelectionDAG &DAG) const;

    /// SelectAddressRegReg - Given the specified addressed, check to see if it
    /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
    /// is non-zero, only accept displacement which is not suitable for [r+imm].
    /// Returns false if it can be represented by [r+imm], which are preferred.
    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
                             SelectionDAG &DAG,
                             MaybeAlign EncodingAlignment = std::nullopt) const;

    /// SelectAddressRegImm - Returns true if the address N can be represented
    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    /// is not better represented as reg+reg. If \p EncodingAlignment is
    /// non-zero, only accept displacements suitable for instruction encoding
    /// requirement, i.e. multiples of 4 for DS form.
    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
                             SelectionDAG &DAG,
                             MaybeAlign EncodingAlignment) const;
    bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base,
                               SelectionDAG &DAG) const;

    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    /// represented as an indexed [r+r] operation.
    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
                                 SelectionDAG &DAG) const;

    /// SelectAddressPCRel - Represent the specified address as pc relative to
    /// be represented as [pc+imm]
    bool SelectAddressPCRel(SDValue N, SDValue &Base) const;

    Sched::Preference getSchedulingPreference(SDNode *N) const override;

    /// LowerOperation - Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

    /// ReplaceNodeResults - Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;

    SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                          SmallVectorImpl<SDNode *> &Created) const override;

    Register getRegisterByName(const char* RegName, LLT VT,
                               const MachineFunction &MF) const override;

    void computeKnownBitsForTargetNode(const SDValue Op,
                                       KnownBits &Known,
                                       const APInt &DemandedElts,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;

    Align getPrefLoopAlignment(MachineLoop *ML) const override;

    bool shouldInsertFencesForAtomic(const Instruction *I) const override {
      return true;
    }

    Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst,
                                  AtomicOrdering Ord) const override;
    Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst,
                                   AtomicOrdering Ord) const override;

    bool shouldInlineQuadwordAtomics() const;

    TargetLowering::AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

    TargetLowering::AtomicExpansionKind
    shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;

    Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
                                        AtomicRMWInst *AI, Value *AlignedAddr,
                                        Value *Incr, Value *Mask,
                                        Value *ShiftAmt,
                                        AtomicOrdering Ord) const override;
    Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder,
                                            AtomicCmpXchgInst *CI,
                                            Value *AlignedAddr, Value *CmpVal,
                                            Value *NewVal, Value *Mask,
                                            AtomicOrdering Ord) const override;

    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;
    MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
                                        MachineBasicBlock *MBB,
                                        unsigned AtomicSize,
                                        unsigned BinOpcode,
                                        unsigned CmpOpcode = 0,
                                        unsigned CmpPred = 0) const;
    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
                                                MachineBasicBlock *MBB,
                                                bool is8bit,
                                                unsigned Opcode,
                                                unsigned CmpOpcode = 0,
                                                unsigned CmpPred = 0) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    bool hasInlineStackProbe(const MachineFunction &MF) const override;

    unsigned getStackProbeSize(const MachineFunction &MF) const;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight getSingleConstraintMatchWeight(
      AsmOperandInfo &info, const char *constraint) const override;

    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area.  This is the actual
    /// alignment, not its logarithm.
    uint64_t getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;

    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    /// vector.  If it is invalid, don't add anything to Ops.
    void LowerAsmOperandForConstraint(SDValue Op,
                                      std::string &Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "es")
        return InlineAsm::Constraint_es;
      else if (ConstraintCode == "Q")
        return InlineAsm::Constraint_Q;
      else if (ConstraintCode == "Z")
        return InlineAsm::Constraint_Z;
      else if (ConstraintCode == "Zy")
        return InlineAsm::Constraint_Zy;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    void CollectTargetIntrinsicOperands(const CallInst &I,
                                 SmallVectorImpl<SDValue> &Ops,
                                 SelectionDAG &DAG) const override;

    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;

    /// isLegalICmpImmediate - Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    /// isLegalAddImmediate - Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;

    /// isTruncateFree - Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
    /// register X1 to i32 by referencing its sub-register R1.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool isZExtFree(SDValue Val, EVT VT2) const override;

    bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;

    /// Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;

    bool convertSelectOfConstantsToMath(EVT VT) const override {
      return true;
    }

    bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
                                SDValue C) const override;

    bool isDesirableToTransformToIntegerOp(unsigned Opc,
                                           EVT VT) const override {
      // Only handle float load/store pair because float(fpr) load/store
      // instruction has more cycles than integer(gpr) load/store in PPC.
      if (Opc != ISD::LOAD && Opc != ISD::STORE)
        return false;
      if (VT != MVT::f32 && VT != MVT::f64)
        return false;

      return true;
    }

    // Returns true if the address of the global is stored in TOC entry.
    bool isAccessedAsGotIndirect(SDValue N) const;

    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;

    bool getTgtMemIntrinsic(IntrinsicInfo &Info,
                            const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    EVT getOptimalMemOpType(const MemOp &Op,
                            const AttributeList &FuncAttributes) const override;

    /// Is unaligned memory access allowed for the given type, and is it fast
    /// relative to software emulation.
    bool allowsMisalignedMemoryAccesses(
        EVT VT, unsigned AddrSpace, Align Alignment = Align(1),
        MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
        unsigned *Fast = nullptr) const override;

    /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    /// expanded to FMAs when this method returns true, otherwise fmuladd is
    /// expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
                                    EVT VT) const override;

    bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;

    /// isProfitableToHoist - Check if it is profitable to hoist instruction
    /// \p I to its dominator block.
    /// For example, it is not profitable if \p I and it's only user can form a
    /// FMA instruction, because Powerpc prefers FMADD.
    bool isProfitableToHoist(Instruction *I) const override;

    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

    // Should we expand the build vector with shuffles?
    bool
    shouldExpandBuildVectorWithShuffles(EVT VT,
                                        unsigned DefinedValues) const override;

    // Keep the zero-extensions for arguments to libcalls.
    bool shouldKeepZExtForFP16Conv() const override { return true; }

    /// createFastISel - This method returns a target-specific FastISel object,
    /// or null if the target does not support "fast" instruction selection.
    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
                             const TargetLibraryInfo *LibInfo) const override;

    /// Returns true if an argument of type Ty needs to be passed in a
    /// contiguous block of registers in calling convention CallConv.
    bool functionArgumentNeedsConsecutiveRegisters(
        Type *Ty, CallingConv::ID CallConv, bool isVarArg,
        const DataLayout &DL) const override {
      // We support any array type as "consecutive" block in the parameter
      // save area.  The element type defines the alignment requirement and
      // whether the argument should go in GPRs, FPRs, or VRs if available.
      //
      // Note that clang uses this capability both to implement the ELFv2
      // homogeneous float/vector aggregate ABI, and to avoid having to use
      // "byval" when passing aggregates that might fully fit in registers.
      return Ty->isArrayTy();
    }

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    Register
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    Register
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;

    /// Override to support customized stack guard loading.
    bool useLoadStackGuardNode() const override;
    void insertSSPDeclarations(Module &M) const override;
    Value *getSDagStackGuard(const Module &M) const override;

    bool isFPImmLegal(const APFloat &Imm, EVT VT,
                      bool ForCodeSize) const override;

    unsigned getJumpTableEncoding() const override;
    bool isJumpTableRelative() const override;
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                               unsigned JTI,
                                               MCContext &Ctx) const override;

    /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
    /// compute the address flags of the node, get the optimal address mode
    /// based on the flags, and set the Base and Disp based on the address mode.
    PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N,
                                        SDValue &Disp, SDValue &Base,
                                        SelectionDAG &DAG,
                                        MaybeAlign Align) const;
    /// SelectForceXFormMode - Given the specified address, force it to be
    /// represented as an indexed [r+r] operation (an XForm instruction).
    PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base,
                                       SelectionDAG &DAG) const;

    bool splitValueIntoRegisterParts(
        SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
        unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
        const override;
    /// Structure that collects some common arguments that get passed around
    /// between the functions for call lowering.
    struct CallFlags {
      const CallingConv::ID CallConv;
      const bool IsTailCall : 1;
      const bool IsVarArg : 1;
      const bool IsPatchPoint : 1;
      const bool IsIndirect : 1;
      const bool HasNest : 1;
      const bool NoMerge : 1;

      CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg,
                bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
          : CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg),
            IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect),
            HasNest(HasNest), NoMerge(NoMerge) {}
    };

    CCAssignFn *ccAssignFnForCall(CallingConv::ID CC, bool Return,
                                  bool IsVarArg) const;

  private:
    struct ReuseLoadInfo {
      SDValue Ptr;
      SDValue Chain;
      SDValue ResChain;
      MachinePointerInfo MPI;
      bool IsDereferenceable = false;
      bool IsInvariant = false;
      Align Alignment;
      AAMDNodes AAInfo;
      const MDNode *Ranges = nullptr;

      ReuseLoadInfo() = default;

      MachineMemOperand::Flags MMOFlags() const {
        MachineMemOperand::Flags F = MachineMemOperand::MONone;
        if (IsDereferenceable)
          F |= MachineMemOperand::MODereferenceable;
        if (IsInvariant)
          F |= MachineMemOperand::MOInvariant;
        return F;
      }
    };

    // Map that relates a set of common address flags to PPC addressing modes.
    std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap;
    void initializeAddrModeMap();

    bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
                             SelectionDAG &DAG,
                             ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
    void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
                         SelectionDAG &DAG) const;

    void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
                                SelectionDAG &DAG, const SDLoc &dl) const;
    SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
                                     const SDLoc &dl) const;

    bool directMoveIsProfitable(const SDValue &Op) const;
    SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
                                     const SDLoc &dl) const;

    SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
                                 const SDLoc &dl) const;

    SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;

    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;

    bool
    IsEligibleForTailCallOptimization(SDValue Callee,
                                      CallingConv::ID CalleeCC,
                                      bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                      SelectionDAG& DAG) const;

    bool IsEligibleForTailCallOptimization_64SVR4(
        SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB,
        bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs,
        const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const;

    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
                                         SDValue Chain, SDValue &LROpOut,
                                         SDValue &FPOpOut,
                                         const SDLoc &dl) const;

    SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;

    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
                           const SDLoc &dl) const;
    SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask,
                       EVT VT, SDValue V1, SDValue V2) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerToLibCall(const char *LibCallName, SDValue Op,
                           SelectionDAG &DAG) const;
    SDValue lowerLibCallBasedOnType(const char *LibCallFloatName,
                                    const char *LibCallDoubleName, SDValue Op,
                                    SelectionDAG &DAG) const;
    bool isLowringToMASSFiniteSafe(SDValue Op) const;
    bool isLowringToMASSSafe(SDValue Op) const;
    bool isScalarMASSConversionEnabled() const;
    SDValue lowerLibCallBase(const char *LibCallDoubleName,
                             const char *LibCallFloatName,
                             const char *LibCallDoubleNameFinite,
                             const char *LibCallFloatNameFinite, SDValue Op,
                             SelectionDAG &DAG) const;
    SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals) const;

    SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
                       SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
                       SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
                       SDValue &Callee, int SPDiff, unsigned NumBytes,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       SmallVectorImpl<SDValue> &InVals,
                       const CallBase *CB) const;

    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;

    SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;

    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
                              SelectionDAG &DAG, SDValue ArgVal,
                              const SDLoc &dl) const;

    SDValue LowerFormalArguments_AIX(
        SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
        const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
        SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
    SDValue LowerFormalArguments_64SVR4(
        SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
        const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
        SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
    SDValue LowerFormalArguments_32SVR4(
        SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
        const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
        SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;

    SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
                                       SDValue CallSeqStart,
                                       ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
                                       const SDLoc &dl) const;

    SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
                             const SmallVectorImpl<ISD::OutputArg> &Outs,
                             const SmallVectorImpl<SDValue> &OutVals,
                             const SmallVectorImpl<ISD::InputArg> &Ins,
                             const SDLoc &dl, SelectionDAG &DAG,
                             SmallVectorImpl<SDValue> &InVals,
                             const CallBase *CB) const;
    SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
                             const SmallVectorImpl<ISD::OutputArg> &Outs,
                             const SmallVectorImpl<SDValue> &OutVals,
                             const SmallVectorImpl<ISD::InputArg> &Ins,
                             const SDLoc &dl, SelectionDAG &DAG,
                             SmallVectorImpl<SDValue> &InVals,
                             const CallBase *CB) const;
    SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
                          const SmallVectorImpl<ISD::OutputArg> &Outs,
                          const SmallVectorImpl<SDValue> &OutVals,
                          const SmallVectorImpl<ISD::InputArg> &Ins,
                          const SDLoc &dl, SelectionDAG &DAG,
                          SmallVectorImpl<SDValue> &InVals,
                          const CallBase *CB) const;

    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;

    SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
    SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
                                 SelectionDAG &DAG) const;
    SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
                                 DAGCombinerInfo &DCI) const;

    /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
    /// SETCC with integer subtraction when (1) there is a legal way of doing it
    /// (2) keeping the result of comparison in GPR has performance benefit.
    SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;

    SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;
    SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;
    SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
                             const DenormalMode &Mode) const override;
    SDValue getSqrtResultForDenormInput(SDValue Operand,
                                        SelectionDAG &DAG) const override;
    unsigned combineRepeatedFPDivisors() const override;

    SDValue
    combineElementTruncationToVectorTruncation(SDNode *N,
                                               DAGCombinerInfo &DCI) const;

    /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
    /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
    /// essentially any shuffle of v8i16 vectors that just inserts one element
    /// from one vector into the other.
    SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;

    /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
    /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
    /// essentially v16i8 vector version of VINSERTH.
    SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;

    /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
    /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
    SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;

    // Return whether the call instruction can potentially be optimized to a
    // tail call. This will cause the optimizers to attempt to move, or
    // duplicate return instructions to help enable tail call optimizations.
    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
    bool hasBitPreservingFPLogic(EVT VT) const override;
    bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;

    /// getAddrModeForFlags - Based on the set of address flags, select the most
    /// optimal instruction format to match by.
    PPC::AddrMode getAddrModeForFlags(unsigned Flags) const;

    /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
    /// the address flags of the load/store instruction that is to be matched.
    /// The address flags are stored in a map, which is then searched
    /// through to determine the optimal load/store instruction format.
    unsigned computeMOFlags(const SDNode *Parent, SDValue N,
                            SelectionDAG &DAG) const;
  }; // end class PPCTargetLowering

  namespace PPC {

    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
                             const TargetLibraryInfo *LibInfo);

  } // end namespace PPC

  bool isIntS16Immediate(SDNode *N, int16_t &Imm);
  bool isIntS16Immediate(SDValue Op, int16_t &Imm);
  bool isIntS34Immediate(SDNode *N, int64_t &Imm);
  bool isIntS34Immediate(SDValue Op, int64_t &Imm);

  bool convertToNonDenormSingle(APInt &ArgAPInt);
  bool convertToNonDenormSingle(APFloat &ArgAPFloat);
  bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat);

} // end namespace llvm

#endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H